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1. Introduction

Gauge/gravity dualities have become an important approach into studying both quantum field
theories and quantum gravitation from a novel perspective. The most studied duality is the AdS/CFT
correspondence, which relates type IIB string theory on AdS5× S5 to the four dimensional super-
conformal field theory N = 4 SYM [2]. Over the years this correspondence has been generalized
in order to make a connection to more physical systems, like the quark-gluon plasma or condensed
matter systems. The strong-weak nature of the duality allows for a description of strongly coupled
quantum field theories in terms of higher dimensional classical gravity. This is especially promis-
ing, as it can provide us with a tool for understanding strongly coupled quantum field theories.
Here we will focus on two developments in this field of research which have been made inde-
pendently: the generalization of the AdS/CFT correspondence to systems with anisotropic scale
invariance [3, 4, 5] and the AdS/logarithmic CFT correspondence for theories of massive gravity
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Motivated by applications in condensed matter physics an anisotropically scaling version of
the AdS/CFT correspondence has been proposed. This anisotropy is characterized by a dynamical
exponent z, which determines how scale transformations act differently on the spatial and the time
coordinates; x→ λx, t→ λ zt. Such a symmetry is generated by the Lifshitz algebra, which consists
of spatial rotations Mi j and translations Pi, time translations H and a scaling transformation D. Their
commutation relations are as usual, except for the scaling transformation which acts differently on
Pi and H:

[D,Mi j] = 0 , [D,Pi] = iPi , [D,H] = izH . (1.1)

The Lifshitz algebra is realized geometrically by the Lifshitz metric [3]:

ds2
Lifd+1

= L2
(

1
r2z dt2 +

1
r2 dr2 +

1
r2 dxadxa

)
, (1.2)

with a = 1, . . .d−1. The isometries of this metric are precisely the symmetries of the Lifshitz alge-
bra. Since this algebra gives rise to non-relativistic dispersion relations, these types of gauge/gravity
dualities are often referred to as non-relativistic holography.

Another development in gauge/gravity dualities is the connection between Logarithmic Con-
formal Field Theories (LCFTs) and theories of massive gravity at a critical point in their parameter
space (i.e. Log gravity and critical gravity). Generically these theories have massive and massless
spin-2 excitations in their spectrum. At the critical point the massive excitations become massless
and degenerate with the massless Einstein-Hilbert spin-2 mode. Due to this degeneracy a new
mode with logarithmic falloff behavior appears. In the next section the connection between the
log-modes and LCFTs will be reviewed in more detail. Let us here comment briefly on the nature
of LCFTs and their difference from ‘ordinary’ CFTs. For a more detailed review on LCFTs and
references we refer to [16, 17, 18].

Conformal Field Theories are invariant under scale transformations that preserve angles. The
two-point correlation functions are restricted by conformal symmetry to behave like:

〈Oi(x)O j(y)〉= δi j
c

|x− y|2∆
, (1.3)
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and there exists an Hamiltonian that is diagonalizable:

[H,Oi] = E0Oi . (1.4)

Logarithmic CFT’s arise when two operators degenerate in all quantum numbers. The two opera-
tors will form an indecomposable, but non-irreducible representation of the CFT symmetry algebra
(Jordan cells). The Hamiltonian no longer acts diagonally on the operators, but instead:

[H,O log
i ] = E0O

log
i +Oi , [H,Oi] = E0Oi , (1.5)

where O log
i is called the logarithmic partner of Oi. The two point correlation functions will now

involve logarithmic terms:

〈Oi(x)O j(y)〉= 0 , (1.6)

〈O log
i (x)O j(y)〉= δi j

b
|x−y|2∆ , (1.7)

〈O log
i (x)O log

j (y)〉= δi j
1

|x−y|2∆ (−2b log |x− y|+λ ) . (1.8)

The rank of the LCFT determines the amount of logarithmic partner operators. Typically this can
be any integer and the correlation function will show higher power log-terms. In this work we
will limit the discussion to rank 2, where there is one null state, corresponding to (1.6), and one
logarithmic partner.

The outline of the remainder of this paper is as follows. In section 2 we will devote some atten-
tion to the connection between critical gravity and LCFTs. Then, in section 3 we will introduce a
simple scalar field model, similar to the ones discussed in [19, 20] which shares its general structure
with critical gravity. When considering this model in a fixed Lifshitz background, we define a non-
relativistic version of an LCFT by calculating its two-point correlation functions holographically.
Finally, we conclude in the last section.

2. AdS/LCFT from Critical Gravity

Einstein-Hilbert gravity with a cosmological constant may be supplemented with terms which
are higher order in derivatives of the metric. This results in a class of theories of massive gravity.
The original motivation for studying these theories was to improve the renormalizability of gravity,
however it soon became apparent these theories of massive gravity have problems with unitarity.

In three dimensions, the most general fourth order theory of massive gravity which does not
propagate scalar modes is Generalized Massive Gravity (GMG). It’s Lagrangian is given by:

LGMG = σR−2λm2 +
1
µ

LLCS +
1

m2 LR2 , (2.1)

with σ = ±1 and λ is a dimensionless cosmological parameter. LLCS is the topological Lorentz-
Chern-Simons term:

LLCS = ε
µνρ

Γ
γ

µα

(
∂νΓ

α
ργ +

2
3

Γ
α

νβ
Γ

β

ργ

)
, (2.2)

and the curvature squared term is given by:

LR2 = RµνRµν − 3
8

R2 . (2.3)
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In the limit m2→ ∞, while keeping λm2 =−1/l2 fixed, the Lagrangian (2.1) reduces to Topolog-
ical Massive Gravity (TMG) [21], which propagates a single massive mode of helicity 2. At the
special value of the parameters µl = 1 the massive mode becomes massless. The remaining theory
with Fefferman-Graham-Brown-Henneaux boundary conditions (which are asymptotically AdS3)
is called chiral gravity [22, 23]. It has been shown that this theory is chiral and has positive energy
solutions (despite of suffering from linearization instabilities). If one relaxes the Brown-Henneaux
boundary conditions to allow for logarithmic fall-off behavior, one obtains Log gravity. The theory
is no longer chiral and it is non-unitary, but the upshot is that its dual CFT is a Logarithmic CFT
(which is also non-unitary) [7, 8, 23].

In the remainder of this paper we focus on another limit in (2.1): µ → ∞. In that case the
Lagrangian reduces to that of New Massive Gravity (NMG) [24]. In contrast to TMG, NMG
is parity even and propagates two massive modes with helicities ±2. In three dimensions it is
perturbatively unitary for a ’wrong sign’ Einstein-Hilbert term (σ = −1). Unfortunately, for this
value of σ the BTZ black hole has negative mass, so the full non-linear theory is not unitary.

Unlike TMG, New Massive Gravity can be extended to d dimensions. Its action is:

S =
1

κ2

∫
ddx
√
−g
{

σR−2λm2 +
1

(d−2)
f µνGµν −

m2

4(d−2)
(

f µν fµν − f 2)} , (2.4)

where the ’auxiliary field’ fµν is a symmetric two-tensor that is used to lower the number of deriva-
tives in the action from four to two. After linearizing this action around an AdSd background the
Lagrangian reduces to [13]:

L2 =−
1
2

σ̄hµνGµν(h)+
2

m2(d−1)(d−2)
kµνGµν(k)−

2
m2(d−1)2(d−2)

(
kµνkµν − k2) . (2.5)

Here h,k are the fluctuations of the metric and the auxiliary field tensor respectively. The parameter
σ̄ is given by:

σ̄ = σ − λ

m2
1

d−1
. (2.6)

Depending on the value of σ̄ one can distinguish two case:

• σ̄ 6= 0⇒ non-critical gravity

• σ̄ = 0⇒ critical gravity

We will now briefly discuss both cases. The linearized equations of motion of NMG can be reduced
to: (

�− 4Λ

(d−1)(d−2)
−M2

)(
�− 4Λ

(d−1)(d−2)

)
hµν = 0 , (2.7)

with:
M2 =−m2(d−2)σ̄ . (2.8)

From these equations it is clear that the spectrum contains a massive and a massless mode. The
massive mode hM

µν solves the equation
(
�− 4Λ

(d−1)(d−2) −M2
)

hM
µν = 0, while the massless mode

hm
µν is a solution of

(
�− 4Λ

(d−1)(d−2)

)
hm

µν = 0.
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In three dimensions, the massless excitations do not propagate in the bulk and only describe
boundary gravitons. The only propagating bulk modes come from the k-fluctuations which are
described by a Fierz-Pauli Lagrangian with a mass term. One is thus allowed to choose the sign in
front of the massless term in such a way that both modes have positive energy. This is achieved for
σ =−1.

For dimensions d > 3 both modes propagate, while their energies have opposite sign [10],
except at the critical point where λ

m2
1

d−1 = σ . At this point the energies of both modes vanish (as
well as the energy of the Schwarzschild-AdS black hole). In addition the mass (2.8) vanishes and
the massive modes degenerate with the massless modes. Now a new solution hlog

µν can be found,
which obeys the equation of motion:(

�− 4Λ

(d−1)(d−2)

)2

hlog
µν = 0 , (2.9)

but it is not annihilated by acting with the operator in the parenthesis only once. Instead we have
that: (

�− 4Λ

(d−1)(d−2)

)
hlog

µν = hm
µν . (2.10)

This is the logarithmic mode and it’s characterized by a logarithmic fall off behavior to the bound-
ary. An explicit solution for the log-mode has been found in d = 4 for global AdS in [13] and it is
given by:

hlog
µν = f (τ,ρ)hm

µν , (2.11)

with:
f (τ,ρ) =

1
2
(−2iτ− log(sinh(2ρ))+ log(tanh(ρ))) . (2.12)

Following the AdS/CFT logic we can compute two point correlation functions on the boundary at
the critical point. We couple the massless mode to the stress-energy tensor Ti j at the boundary, while
the logarithmic mode is coupled to the logarithmic partner operator of the stress-energy tensor ti j.
In three dimensions the correlation functions are those of a two-dimensional LCFT [7, 8, 9]:

〈Tzz(z, z̄)Tzz(0)〉= 0 , (2.13)

〈tzz(z, z̄)Tzz(0)〉= b
|z|4 , (2.14)

〈tzz(z, z̄)tzz(0)〉= 1
z4 (−2b logz+λ ) , (2.15)

where b=−6σ l
GN

is the ‘new anomaly’. Similar correlation functions apply for the anti-holomorphic
part. These are the two-point correlators for a rank 2 LCFT 1.6-1.8 with conformal weight of two.

If we impose Brown-Henneaux boundary conditions to critical gravity, the log-modes will be
truncated from the theory. The resulting theory will be trivial in the sense that it only contains
null-states and the Schwarzschild-AdS black hole has zero mass. If we relax the Brown-Henneaux
boundary conditions to allow for logarithmic asymptotics, the bulk theory is no longer unitary, but
its dual field theory is an LCFT. One can also find black hole solutions with logarithmic asymptotics
[25, 26] which have positive mass for the wrong sign Einstein-Hilbert term. In three dimensions
this coincides with the requirement for the unitarily propagating bulk mode.
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3. Non-Relativistic Logarithmic CFT

In order to look for a non-relativistic scaling version of the AdS/LCFT correspondence out-
lined above, we work with a scalar field model which mimics critical gravity. This makes the
equations much more tractable while keeping the same overall structure of the theory. The scalar
fields obey a fourth order equation of motion given by:

(�−m2
1)(�−m2

2)φ = 0 . (3.1)

This is the spin-0 analogue of equation (2.7). We study solutions of this equation in a fixed Lifshitz
background (1.2). For generic masses m2

1 6= m2
2 the spectrum contains two massive spin-0 excita-

tions obeying second order differential equations. At the critical point m2
1 = m2

2, the analogue of
the critical point in NMG, the two Klein-Gordon operators in (3.1) degenerate and a logarithmic
mode appears. The equations of motion at this point are the spin-0 version of (2.9) and (2.10):

(�−m2)φ s = 0 , (�−m2)φ log = φ
s . (3.2)

The solutions can be written as:

φ
s(r,x) =

∫
ddx′φ1(0)(x

′)GKG(r,x;0,x′) , (3.3)

φ
log(r,x) =

∫
ddx′

(
φ2(0)(x

′)GKG(r,x;0,x′)+φ1(0)(x
′)Glog(r,x;0,x′)

)
, (3.4)

where GKG(r,x;0,x′) and Glog(r,x;0,x′) are the bulk-to-boundary propagators for the scalar and
the log mode respectively. Explicit solutions for these functions for z = 2 are given in [1], here it
should suffice to remark that for the φ log-mode we must relax the Fefferman-Graham near-boundary
expansion to include logarithmic terms.

Correlation functions for this theory can be calculated by explicitly constructing the action
which reproduces these equations of motion. Then this action may be renormalized in the holo-
graphic sense, as outlined in [27]. The correlation functions on the boundary of the Lifshitz space-
time can be seen as defining a non-relativistic scaling version of a Logarithmic Conformal Field
Theory. They are in general:

〈Os(t1,x1)O
s(t2,x2)〉 = 0 , (3.5)

〈O log(t1,x1)O
s(t2,x2)〉 =

1
|x1−x2|2∆

f (χ) , (3.6)

〈O log(t1,x1)O
log(t2,x2)〉 =

1
|x1−x2|2∆

(−g(χ) log |x1−x2|+λ ) , (3.7)

with f (χ),g(χ) functions of the scale invariant variable χ = xz

t . The constant λ is related to a well-
known shift invariance in LCFTs: O log→O log +λOs. This invariance is also present in the scalar
field model, where one can always add to φ log solutions to its homogeneous equation of motion.

For z = 2 we explicitly calculated the full two point functions in Fourier space. They are [1]:

〈Os
∆(ω,k)Os

∆(−ω,−k)〉 = 0 , (3.8)

6
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〈Os
∆(ω,k)O log

∆
(−ω,−k)〉 = (2∆− (d +1))ω∆− d+1

2

Γ
(d+1

2 −∆
)

Γ

(
|k|2+(2∆−(d−1))ω

4ω

)
Γ
(
∆− d+1

2

)
Γ

(
|k|2−(2∆−(d+3))ω

4ω

) , (3.9)

〈O log
∆

(ω,k)O log
∆

(−ω,−k)〉 = ω
∆− d+1

2

Γ
(d+1

2 −∆
)

Γ

(
|k|2+(2∆−(d−1))ω

4ω

)
Γ
(
∆− d+1

2

)
Γ

(
|k|2−(2∆−(d+3))ω

4ω

)( logω (3.10)

−ψ

(
d +1

2
−∆

)
+

1
2

ψ

(
|k|2 +(2∆− (d−1))ω

4ω

)
−ψ

(
∆− d +1

2

)
+

1
2

ψ

(
|k|2− (2∆− (d +3))ω

4ω

)
+λ

)
.

Here ψ(x) is the digamma function defined by ψ(x) = Γ′(x)/Γ(x). The correlation function (3.9)
agrees with the two point function for a massive scalar field in a Lifshitz background found in [3]
and later by means of holographic renormalization in [28], while the general structure is that of an
LCFT with non-relativistic scale invariance.

4. Conclusion

The correlation functions (3.5-3.7) can be thought of as defining the non-relativistic LCFT
through holographic reasoning. They agree with what one would expect from Lifshitz scaling
arguments. The functions f (χ) and g(χ) can be obtained by explicitly solving the bulk field equa-
tions for a specific critical exponent z and we presented the full solution for z = 2. In the AdS limit
(z = 1) it is shown in [1] that the correlation functions reduce to an LCFT (1.6-1.8). This agrees
with earlier results found in [19].

In addition, a scalar field model for critical gravity is presented. The model is a spin-0 analogue
of the linearized equations of motion of critical gravity and can thus be useful as a toy model of
this theory in general dimensions. This toy model can be useful for studying other deformations
of the AdS/LCFT correspondence, such as extending it to a model of higher rank LCFTs [29]. It
may also be interesting to consider non-relativistic scaling solutions of the full spin-2 theory. In
this respect it is of interest to note that NGM and TMG generally allow for Lifshitz vacua.
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