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1. Introduction

The object of study in this paper is the spectral action for the Yang–Mills (YM) system, given
by

S[A] = Tr f (DA/Λ)−Tr f (D/Λ), (1.1)

with DA the Dirac operator coupled to a SU(N) gauge field Aµ . The function f is real and even,
and such that f (DA/Λ) is traceclass, and Λ is a real cutoff parameter. In comparison to [4, 5], we
have subtracted the purely gravitational term Tr f (D/Λ), focusing on the Yang–Mills part.

Already in [4] it was shown that in four dimensions there is an asymptotic expansion as Λ→∞

for S[A] such that, modulo negative powers of Λ the spectral action yields the Yang–Mills action.
The remaining terms in this asymptotic expansion (as Λ→ ∞) turn out to be of interest too, ap-
pearing in [6] and my previous work [18, 17]. We write the asymptotic expansion (as Λ→ ∞)
as

S[A]∼ S0[A]+ ∑
n>0

Λ
−nSn[A], (1.2)

where S0 is independent of Λ. Recall from asymptotic analysis that this means that there exists a
constant C > 0 and Λ0 > 0 such that for all Λ > Λ0

∣∣S[A]− N

∑
n=0

Λ
−nSn[A]

∣∣≤CΛ
−N−1. (1.3)

We interpret this in the following way:

• S0[A] is the physical action of interest, in this case the Yang–Mills action,

• ∑n>0 Λ−nSn[A] is a higher-derivative (HD) gauge invariant action that acts as a regulator for
S0[A] as in [15, 16] (cf. also [11, Section 4.4]); it vanishes as Λ→ ∞.

We consider Λ as a regularizing parameter for, in this case, Yang–Mills theory. Eventually,
after a perturbative quantization and renormalization, one sends Λ to infinity. This motivates the
fact that we start with the asymptotic expansion ∑n≥0 Λ−nSn[A], rather than S[A] as [13] do. It is
illustrative to compare this with lattice gauge theory where a similar approach is taken: applying
a lattice regularization to the Yang–Mills action one obtains the Wilson action. One then proceeds
to quantize the latter, to eventually let the lattice spacing go to zero to recover a quantization of the
original theory. In our case, we turn the spectral action in a higher-derivative action that regularizes
Yang–Mills theory and reduces to the Yang–Mills action as the regularizing parameter Λ goes to
infinity.

Note that this is in contrast with the interpretation of Λ as a large (but finite) physial scale,
with the spectral action considered as an effective action, as in the original [4]. The different
approach we take here has led to some controversy in the literature on the spectral action, with
seemingly contradictory claims in [18] and [13]. However, as said, in the latter paper the authors
consider the spectral action as given in Equation (1.1), without asymptotically expanding it in large
Λ. They do not interpret Λ as a regularizing parameter and of the action as a local HD gauge
theory which at lowest order (in the derivatives) is the Yang–Mills action. Even though both started
from the same spectral action principle, there is no contradiction between our results since one
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is really considering different Lagrangian theories. Here, the use in [13] of the word weak-field
is misleading: the authors claim that the above asymptotic expansion (1.2) is only valid in the
weak-field approximation. As a matter of fact, the estimates for the asymptotic expansion (cf. Eq.
(1.3)) do not impose any bound on Sn[A], nor on the fields A and their momenta. Only the (invalid)
consideration of the asymptotic expansion as a convergent series expansion might require such
bounds.

2. Higher-derivative Yang–Mills theory from the spectral action

The main ingredient in the spectral action (1.1) is the Dirac operator on a compact Riemannian
spin manifold M with coefficients in a SU(N)-vector bundle equipped with a connection A. That
is, locally we have

DA = iγµ(∇µ +Aµ)

with ∇µ the spin connection and Aµ a skew-hermitian traceless matrix. The (hermitian) Dirac
gamma matrices satisfy {γµ ,γν} = 2gµν and are represented on spinor space Sx for each x ∈ M.
The Dirac operator then acts as a self-adjoint operator in the Hilbert space H of MN(C)-valued
spinors:

H := L2(M,S)⊗MN(C).

For simplicity, we take M to be flat (i.e. vanishing Riemann curvature tensor) and 4-dimensional.
Furthermore, we will assume that f is a Laplace–Stieltjes transform:

f (x) =
∫

t>0
e−tx2

dµ(t).

Proposition 1 ([5]). In the above notation, there is an asymptotic expansion (as Λ→ ∞):

S[A]∼ ∑
m>0

Λ
4−m f4−m

∫
M

am(x,D2
A), (2.1)

in terms of the Seeley–De Witt invariants of D2
A. The coefficients are defined by fk :=

∫
t−k/2dµ(t);

in particular f0 = f (0).

We can also compute the other coefficients fk explicitly:

Lemma 2 ([17]). The constants fk :=
∫

t−k/2dµ(t) (k ∈ Z) are given by

1. k > 0: fk =
2

Γ( k
2)

Mk−1[ f ] with Mk−1 the k−1’th moment of f ,

2. k ≥ 0: f−2k =
(−1)k f (2k)(0)
(2k−1)!! .

We will denote the asymptotic expansion at the right-hand side of Equation (2.1) by SΛ[A].
Recall that the Seeley–De Witt coefficients am(x,D2

A) are gauge invariant (and coordinate indepen-
dent) polynomials in the fields Aµ . Indeed, the Weitzenböck formula gives

D2
A =−(∂µ +Aµ)(∂

µ +Aµ)− 1
2

γ
µ

γ
νFµν (2.2)
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in terms of the curvature Fµν = ∂µAν−∂νAµ +[Aµ ,Aν ] of Aµ . Consequently, a Theorem by Gilkey
[12, Theorem 4.8.16] shows that (in this case) am are polynomial gauge invariants in Fµν and its
covariant derivatives. The order ord of am is m, where we set on generators:

ordAµ1;µ2···µk = k.

Consequently, the curvature Fµν has order 2, and Fµ1µ2;µ3···µk has order k. For example, a4(x,D2
A)

is proportional to TrFµνFµν . In fact, we have an explicit expression for SΛ up to order Λ−4.

Theorem 3. The action SΛ
≤4[A] := f0a4(D2

A)+Λ−2 f−2a6(D2
A)+Λ−4 f−4a8(D2

A) equals

SΛ
≤4[A] =−

f0

8π2

∫
TrN

(
1
3

FµνFµν

)
+

f−2Λ−2

8π2

∫
TrN

(
2
15

Fµν
;µFρν

;ρ +
1
45

Fµ
νFν

ρFρ
µ

)
+

f−4Λ−4

8π2

∫
TrN

(
19

1260
FµνFµνFρσ Fρσ − 13

210
FµνFνρFµσ Fσρ −

1
63

Fµ
νFν

ρFρ
σ Fσ

µ

+
4

315
FµνFρσ FµνFρσ +

4
315

Fσν
;σ µFνρFρµ − 17

315
Fρµ

;ρFσν
;σ Fµν −

1
70

Fρν
;ρµFσν

;σ µ

)
.

Proof. The Weitzenböck formula gives in the case of a flat manifold:

D2
A =−1

2
{γµ ,γν}∇µ∇ν −

1
2
[γµ ,γν ]∇µ∇ν =−∇µ∇

µ − 1
2

γ
µ

γ
νFµν ≡ ∆−E.

The first three non-trivial heat coefficients of e−tD2
A are on a flat manifold, and in a minimal basis

[19, 1, 2] given by

a4(D2
A) =

1
(4π)2

1
2

∫
Tr
(

E2 +
1
6

FµνFµν

)
,

a6(D2
A) =

1
(4π)2

1
6

∫
Tr
{

1
2

EE;µ
µ +E3− 1

10
Fµν

;µFρν
;ρ +

1
15

Fµ
νFν

ρFρ
µ

}
,

a8(D2
A) =

1
(4π)2

1
24

∫
Tr
{

E4 +E2E;µ
µ +

4
5

E2FµνFµν +
1
5

EFµνEFµν − 2
5

EE;µFνµ
;ν +

1
5
(
E;µ

µ
)2

+
17

210
FµνFµνFρσ Fρσ +

2
35

FµνFνρFµσ Fσρ +
1

105
Fµ

νFν
ρFρ

σ Fσ
µ +

1
420

FµνFρσ FµνFρσ

+
16

105
(
Fσν

;σ µFνρFρµ +Fρµ
;ρFσν

;σ Fµν

)
+

1
35

Fρν
;ρµFσν

;σ µ

}
where we also used that the spinorial trace of E = 1

2 γµγνFµν vanishes.
Before substituting E = 1

2 γµγνFµν in the above expressions for a4,a6 and a8, one can show
the following crucial gamma matrix identities, when contracted with Fµν ’s and their covariant
derivatives:

TrE;κ1λ1···E;κ2λ2··· =−2TrN Fµν ;κ1λ1···F
µν

;κ2λ2··· (2.3)

TrE;κ1λ1···E;κ2λ2···E;κ3λ3··· = 4TrN Fµ
ν

;κ1λ1···Fν
ρ

;κ2λ2···Fρ
µ

;κ3λ3··· (2.4)

TrE;κ1λ1···E;κ2λ2···E;κ3λ3···E;κ4λ4··· = 2TrN Fµν ;κ1λ1···F
µν

;κ2λ2···Fρσ ;κ3λ3···F
ρσ

;κ4λ4···

−8TrN Fµν ;κ1λ1···F
νρ

;κ2λ2···F
µσ

;κ3λ3···Fσρ;κ4λ4···

+TrN Fµν ;κ1λ1···Fρσ ;κ2λ2···F
µν

;κ3λ3···F
ρσ

;κ4λ4···

+4TrN Fµ
ν

;κ1λ1···Fν
ρ

;κ2λ2···Fρ
σ

;κ3λ3···Fσ
µ

;κ4λ4··· (2.5)
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where the κi,λi, · · · indicate an arbitrary number of covariant derivatives.
Let us start with a4. Then using Eq. (2.3) we find

TrE2 =−2TrN FµνFµν ,

TrFµνFµν = 4TrN FµνFµν .

The coefficient in front of
∫

TrN FµνFµν in a4 thus becomes

1
(4π)2

1
2

(
−2+4× 1

6

)
=

1
8π2

(
−1

3

)
,

where the 4 on the left-hand side is due to the trace in spinor space.
Next, for a6 we derive from Eq. (2.3) and (2.4) for the first two terms that∫

Tr
{

1
2

EE;ρ
ρ +E3

}
=
∫ (
−TrN FµνFµν ;ρ

ρ +4TrN Fµ
νFν

ρFρ
µ
)
=
∫

2TrN Fµν
;µFρν

;ρ

where we have used in addition the relation1∫
TrN FµνFµν ;ρ

ρ =
∫ (
−2TrN Fµν

;µFρν
;ρ +4TrN Fµ

νFν
ρFρ

µ
)

(2.6)

which follows from partial integration and the Bianchi identity. The coefficient in front of
∫

TrN Fµν
;µFρν

;ρ

in a6 thus becomes

1
(4π)2

1
6

(
2−4× 1

10

)
=

1
8π2

2
15

We now turn to the more involved coefficient a8. We first determine the first 6 terms in a8,
depending on E and its derivatives. Using (2.5) we find

TrE4 = 2TrN FµνFµνFρσ Fρσ −8TrN FµνFνρFµσ Fσρ

+4TrN Fµ
νFν

ρFρ
σ Fσ

µ +TrN FµνFρσ FµνFρσ

For the cubic term in E we apply (2.4), partial integration and the Bianchi identity to obtain∫
TrE2E;σ

σ =
∫ (

8TrN FµνFνρFµσ Fσρ −8TrN Fµ
νFν

ρFρ
σ Fσ

µ +8TrN Fσν
;σ µFνρFρµ

)
.

For the terms quadratic in E we apply (2.3), partial integration and the Bianchi identity to obtain
the subsequent identities∫ 4

5
TrE2FµνFµν =

∫
−8

5
TrN FµνFµνFρσ Fρσ∫ 1

5
TrEFµνEFµν =

∫
−2

5
TrN FµνFρσ FµνFρσ

∫
−2

5
TrEE;µFνµ

;ν =
∫ (
−8

5
TrN Fσρ

;σ Fµν
;µFρν −

8
5

TrN Fσρ
;σ µFρνFνµ

)
1Here we correct for a typo at the end of the proof of Proposition 27 in [17].
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and finally

∫ 1
5

Tr
(
E;µ

µ
)2

=
∫ (
− 16

5
TrN FµνFνρFµσ Fσρ +

16
5

TrN Fµ
νFν

ρFρ
σ Fσ

µ

− 32
5

TrN Fρµ
;ρνFµσ Fσν − 4

5
TrN Fσν

;σ µFρν
;ρµ −

8
5

TrN Fρµ
;ρFσν

;σ Fµν

)
The only thing that remains to be done is to collect all the terms and compute their coefficients:∫

TrN FµνFµνFρσ Fρσ :
1

(4π)2
1

24

(
2− 8

5
+4× 17

210

)
=

1
8π2

19
1260∫

TrN FµνFνρFµσ Fσρ :
1

(4π)2
1

24

(
−8+8− 16

5
+4× 2

35

)
=

1
8π2

(
− 13

210

)
∫

TrN Fµ
νFν

ρFρ
σ Fσ

µ :
1

(4π)2
1

24

(
4−8+

16
5
+4× 1

105

)
=

1
8π2

(
− 1

63

)
∫

TrN FµνFρσ FµνFρσ :
1

(4π)2
1

24

(
1− 2

5
+4× 1

420

)
=

1
8π2

4
315∫

TrN Fσν
;σ µFνρFρµ :

1
(4π)2

1
24

(
8− 8

5
− 32

5
+4× 16

105

)
=

1
8π2

4
315∫

TrN Fρµ
;ρFσν

;σ Fµν :
1

(4π)2
1

24

(
−8

5
− 8

5
+4× 16

105

)
=

1
8π2

(
− 17

315

)
∫

TrN Fρν
;ρµFσν

;σ µ :
1

(4π)2
1

24

(
−4

5
+4× 1

35

)
=

1
8π2

(
− 1

70

)

The appearance of the Yang–Mills action is the main motivation to study this model. As
explained in the introduction, we consider the terms in SΛ[A] proportional to Λ−2 and Λ−4 as
regulators for the Yang–Mills action. Let us first focus on the free quadratic part of the action
SΛ[A].

Theorem 4 ([17]). There is the following asymptotic expansion (as Λ→∞) for the free part of the
spectral action on a flat background manifold M

Sfree[A]∼−
∫

Tr F̂µνϕΛ(∆)(F̂µν)

where

ϕΛ(∆) = ∑
k≥0

(−1)k
Λ
−2k f−2kck∆

k, ck =
1

8π2
(k+1)!

(2k+3)(2k+1)!
,

is an expansion in the Laplacian ∆ and F̂µν = ∂µAν −∂νAµ .

Remark 5. Even though the above expansion for Sfree[A] is asymptotic for large Λ, it is interesting
to consider the corresponding actual sum that defines ϕΛ. In particular, this allows to confront
our results once again with [13], by considering the large momentum limit of the full sum. Thus,
consider

ϕΛ(x) =
1

8π2

∫
t≥0

∞

∑
k=0

(k+1)!
(2k+3)(2k+1)!

(−tx/Λ
2)kdµ(t).

6
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One finds that

ϕΛ(x) =
1

8π2

∫ ((
Λ√
tx

+2
Λ3

(tx)3/2

)
F
(√

tx
2Λ

)
− Λ2

tx

)
dµ(t).

Here, the Dawson function F is defined in terms of the error function by

F(z) =
√

π

2
e−z2

erfi(z).

The asymptotic behaviour of ϕΛ(p2) as p2→ ∞ can then be determined to be

ϕΛ(p2) ∼
p2→∞

1
2π2 f4Λ

4 p−4 + · · ·

using that F(z) ∼ 1/2z+ 1/4z3 + · · · as z→ ∞. It is striking that already at this heuristic level it
would lead to the same conclusion on the UV-behaviour of the spectral action as in [13]. For more
details on this comparison, we refer to [17].

In our case, being interested in the action SΛ
≤4[A] up to order Λ−4, we put f−6 = f−8 = · · ·= 0

in the above expansion for ϕΛ. Thus, ϕΛ is the following polynomial in ∆:

ϕΛ(∆) = f0c0− f−2Λ
−2c2∆

2 + f−4Λ
−4c4∆

4 =
1

8π2

(
f (0)

3
+

f (2)(0)
15

∆/Λ
2 +

f (4)(0)
420

(∆/Λ
2)2

)

where for the second equality we have used Lemma 2.
Moreover, the free part of SΛ

≤4 is given by the following polynomial expression:

SΛ
free,≤4[A] =−

∫
Tr F̂µνϕΛ(∆)(F̂µν)

This form motivates the interpretation of SΛ
free[A] (and of SΛ[A]) as a higher-derivative gauge the-

ory. As we will see below, this indeed regularizes the theory in such a way that SΛ[A] defines a
superrenormalizable field theory.

Remark 6. The above form of ϕΛ can be confronted with the free part of the action that was
computed in Theorem 3. From there, we find

S≤4 =
1

8π2

∫ (
− f0

3
TrN F̂µν F̂µν +

f−2

15
TrN F̂µν∆(F̂µν)− f−4

140
TrN F̂µν∆

2(F̂µν)

)
+O(A3)

using also that TrN Fµν ;ρ
ρFµν

;σ
σ = 2TrN Fρµ;

ρνFσ µ
;σν +O(A3). This is in concordance with the

above expression for Sfree,≤4[A] since c0 = 1/24π2, c1 = 1/120π2 and c2 = 1/1120π2 as appearing
in Theorem 4.

In the following, we will drop the subscript ≤ 4 and assume f−6 = f−8 = · · ·= 0.

7



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
4
0

Higher-derivative gauge theories from noncommutative geometry Walter D. van Suijlekom

3. Higher-derivative gauge fixing in the YM-system

As usual for a gauge theory, the quadratic form defined by Sfree[A] is not invertible: we need
to fix the gauge.

First, we introduce su(N)-valued ghost fields C,C and an auxiliary field h, which is also su(N)-
valued. These fields are transformed into eachother by the BRST-differential s, which is defined
by

sAµ = ∂µC+[Aµ ,C]; sC =−1
2 [C,C]; sC =−h, sh = 0. (3.1)

Note that these are the usual formulas for the BRST-differential, so that s2 = 0. The gauge-fixing
fermion is given by

Ψ
Λ =−

∫
TrN ϕΛ(∆)(C)

(1
2 ξ h+∂µAµ

)
.

so that gauge-fixing is achieved by adding s(ΨΛ) to the asymptotically expanded spectral action. It
is then automatic that

Proposition 7. The sum SΛ[A]+ s(ΨΛ) is BRST-invariant: s(SΛ[A]+ s(ΨΛ)) = 0.

In order to derive the gauge propagator, we need to invert the quadratic forms in Aµ and C
given by SΛ

free[A] + s(ΨΛ), after solving the equations of motion for the auxiliary field h. This is
only possible if ϕΛ(p2) is nonvanishing, in which case the propagator is given by

Dab
µν(p;Λ) =

[
gµν − (1−ξ )

pµ pν

p2

]
δ ab

p2ϕΛ(p2)
.

The non-vanishing of ϕΛ(p2) can be guaranteed by assuming that f (2)(0), f (4)(0) ≥ 0, which is
what we do in the following. The behaviour of Dab

µν for large p will be discussed in more detail in
the next subsection.

Similarly, we derive that the propagator for the Faddeev–Popov ghost fields and their propa-
gator is

D̃ab(p;Λ) =
δ ab

p2ϕΛ(p2)
.

referring to [17] for more details.

3.1 Renormalization of the asymptotically expanded YM-spectral action

We now discuss the UV-behaviour of the field theory defined by SΛ[A], still keeping f−6 =

f−8 = · · ·= 0. First, we easily derive from the polynomial structure of ϕΛ(p2) that the propagators
of both the gauge field and the ghost field behave as |p|−6 as |p| → ∞. Indeed, in this case:

ϕΛ(p2) =
1

8π2

(
f (0)

3
+

f (2)(0)
15

p2/Λ
2 +

f (4)(0)
420

(p2/Λ
2)2

)

Moreover, the maximum weights of the interaction in terms of powers of momenta is given by 8− i,
where i is the valence of the vertex. We will use vk to indicate the number of gauge interaction
vertices of valence k, and with ṽ the number of ghost-gauge vertices.

8
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Let us now find an expression for the superficial degree of divergence ω of a Feynman graph
consisting of I internal gauge edges, Ĩ internal ghost edges, vk valence k gauge vertices and ṽ
ghost-gauge vertices. In 4 dimensions, we find at loop order L:

ω ≤ 4L−6I−6Ĩ +
8

∑
i=3

vi(8− i)+5ṽ.

Lemma 8. Let E and Ẽ denote the number of external gauge and ghost edges, respectively. The
superficial degree of divergence of the graph satisfies:

ω ≤−4(L−1)+4− (E + Ẽ).

Proof. We use the relations

2I +E = ∑
i

ivi + ṽ; 2Ĩ + Ẽ = 2ṽ

where E and Ẽ are the number of external gauge and ghost legs, respectively. Indeed, these for-
mulas count the number of half (gauge/ghost) edges in a graph in two ways: from the number of
edges and from the valences of the vertices. We use them to substitute for 2I and 2Ĩ in the above
expression for ω so as to obtain

ω ≤ 4L−8I−8Ĩ +8

(
∑

i
vi + ṽ

)
− (E + Ẽ)

from which the result follows at once from Euler’s formula L = I + Ĩ−∑i vi− ṽ+1.

We conclude that the theory defined by SΛ[A] is superrenormalizable. Indeed, ω < 0 if L≥ 2:
all Feynman graphs are finite at loop order greater than 1. If L = 1, then there are finitely many
graphs which are divergent, namely those for which E+Ẽ ≤ 4. We conclude that the asymptotically
expanded spectral action for the Yang–Mills system is superrenormalizable.

Of course, the spectral action being a gauge theory, there is more to renormalizability than just
power counting: we have to establish gauge invariance of the counterterms. We already know that
the counterterms needed to render the perturbative quantization of SΛ[A] finite are of order 4 or less
in the fields and arise only from one-loop graphs. The key property of the effective action at one
loop is that it is supposed to be BRST-invariant:

s(Γ1) = 0.

In particular, assuming a regularization compatible with gauge invariance, the divergent part Γ1,∞

is BRST-invariant. Results from [7, 8, 9, 3, 10] on BRST-cohomology for Yang–Mills type theories
ascertain that the only BRST-closed functional of order 4 or less in the fields is represented by

δZ
∫

FµνFµν

for some constant δZ.
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Theorem 9. The action SΛ[A] for the Yang–Mills system on a flat background manifold is renor-
malizable. The renormalized (asymptotically expanded) spectral action SΛ

ren[A] is obtained from
SΛ[A] by the following redefinition of the coefficient f0:

f0 7→ f0 +24π
2
δZ

leaving all other coefficients f−2k (k 6= 0) invariant.

Intriguingly, renormalization of SΛ[A] can thus be accomplished merely by shifting the func-
tion f by a constant amount 24π2δZ. If we adopt dimensional-regularization and minimal sub-
traction to renormalize the one-loop diagrams, then the counterterms are typically of the following
form

δZ = c
(

1
z
+2ln µ

)
for some constant c, and in terms of the usual mass scale µ . Defining a bare quantity f B

0 by

f B
0 := f0 +24π

2c
(

1
z
+2ln µ

)
,

its supposed independence of the mass scale µ implies that

µ
∂ f0

∂ µ
=−48π

2c

This defines the renormalization group flow on the spectral function f , which in this case is linear
on the coefficient f0. Also, since the only divergences appear at one loop, these equations are
expected to hold at the non-perturbative level.

4. Outlook

The above linear beta-function seems to be at odds with the usual Yang–Mills beta-function.
This is due to the fact that one would have to consider the divergences that appear in the Feynman
amplitudes defined by SΛ as Λ→ ∞. As in [14], we expect that besides the above 1/z-divergences
(in dim-reg), also terms will appear that are proportional to lnΛ, Λ2, etc. This is a consequence
of the adopted hybrid regularization, combining higher-derivative and dimensional regularization.
Once both types of divergences have been countered, the beta-functions should be determined and
compared to the usual (dim-reg) Yang–Mills beta-function.
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