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1. Introduction

It is generally expected that the usual description of spacetime in terms of Riemannian geometry
would break down above the Planck energy scale. A possibility is that geometry is quantized and
spacetime coordinates become quantum operators. In this case, traditional spacetime concepts such as
locality and causality, and even the fundamental nature of spacetime itself, will have to be re-examined.
String theory, as a candidate for a theory of quantum gravity, provides an interesting setup to address
some of these questions.

In the paper [1], a new kind of quantized geometry was discovered. It is characterized by the
quantum Nambu bracket

[ f ,g,h] := f gh+gh f +h f g− f hg−g f h−hg f , (1.1)

where f ,g,h are any three operators and the binary product is the usual operator product. This differs
from the previous examples of noncommutative geometry in string theory which are characterized by a
commutator and could be referred to as of Lie-algebra type.

For the standard Lie algebraic type noncommutative geometry [2–7], a 2-form field strength can
be written as

Fµν =−i[X µ ,Xν ] (1.2)

when the fluctuation over the noncommutative geometry background is taken into account. What about
the fluctuation around the quantum Nambu geometry? It is suggestive to interpret the quantum Nambu
bracket of the target space coordinate fields X µ as a 3-form field strength

Hµνλ =−i[X µ ,Xν ,Xλ ]. (1.3)

To check this idea, we have to look for a place where a non-abelian 3-form field strength lives. This
leads us to consider the system of multiple D4-branes (where the 3-form field strength would be the
Hodge dual of a 2-form field strength) and multiple M5-branes (where the 3-form field strength would
be self-dual).

To reach the D4-branes system, we use the D1-strings matrix model to derive the Matrix model
descriptions for the IIB string, IIA string and M-theory in a corresponding background of large RR-flux
or its uplift to eleven dimensions. For the IIA Matrix string theory, we find that a classical solution of
quantum Nambu geometry is again allowed. We also find that the fluctuation around the solution gives
a Lagrangian for a 1-form gauge potential whose form is exactly the same as the dimensional reduced
PST action (which describes a single D4-brane) [8] if a quantum Nambu bracket of X µ is identified as
(1.3) as a 3-form field strength whose Hodge dual would be the Yang-Mills field strength. Physically,
this means the system of fundamental strings has expanded over the quantum Nambu geometry into a
system of multiple D4-branes.

Since a system of multiple D4-branes can be considered as a dimensional reduction of multiple
M5-branes on a circle, it has been proposed recently that [9, 10] the instantons on the D4-branes can
be identified with the KK modes of the compactified M5-branes, and that by including all the instan-
tons, the D4-branes SYM theory is in fact equal to the M5-branes theory. In view of this, we suggest a
natural way to include all the KK modes into the D4-branes and propose the action (4.4) for multiple
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M5-branes in a constant self-dual C-field. Our proposed action is living on a 6-dimensional quantum
Nambu geometry with self-dual parameter θ µνλ and is formulated in terms of a non-abelian 3-form
field strength defined using (1.3). A priori, such an Hµνλ may not obey the desired self-duality condi-
tion. Nevertheless quite amazingly we find that the self-duality condition emerges naturally from our
model. The M5-branes system in a C-field could be reduced to a system of D4-branes in B-field, and the
latter has a worldvolume described by the standard Moyal type noncommutative geometry. This con-
nection allows us to identify the θ µνλ parameter of the quantum Nambu geometry as a C-field on the
worldvolume of the M5-branes. Therefore we obtain the result that the worldvolume of the M5-branes
in a C-field is described by a quantum Nambu geometry

[X µ ,Xν ,Xλ ] = iθ µνλ , (1.4)

with self-dual parameters θ µνλ =Cµνλ .

2. Matrix Model of D1-Strings in Large RR 3-Form Flux

We start with the supergravity background of [11]: The metric (in the string frame) takes the form
of R3×AdS2×S5:

ds2 =
3

∑
i=1

(dX i)2 +R2(
−dt2 +dU2

U2 )+R′2dΩ
2
5, (2.1)

where
R2 = 2e−2Φ/ f 2, R′2 = 80e−2Φ/ f 2, (2.2)

and dΩ2
5 = Ĝi′ j′dX i′dX j′ is the metric for an S5 of unit radius. In addition, there is a nonvanishing

dilaton, axion, RR potentials C2 and C4 specified by:

e−Φ = χ/(2
√

2) = constant, (2.3)

F3 =

{
f εi jk, i, j,k = 1,2,3,

0, otherwise,
(2.4)

F5 =


cε5 on M5,

cε ′5 on M ′
5,

0 otherwise

(2.5)

and f 2 = 2
3 c2.

Next let us consider a system of N parallel D1-branes in this background. The worldvolume action
for the D1-branes is given by

SD1 := SX +SCS +SY M, (2.6)

where SCS is the Chern-Simons term of the Myers type given by

SCS = µ1

∫
Tr
[

λFχ +PC2 + iλ 2F iΦiΦC2 + iλP iΦiΦC4−
λ 3

2
F i4ΦC4

]
(2.7)

:= Sχ +SC2 +SC4 . (2.8)
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It was shown in [1] that there is a low energy large flux double scaling limit so that the term SC2

dominates and one can ignore all the other terms in the action, In this limit, the system of D1-branes is
govern by

SC2/µ1 = f
∫

d2
σTr(

1
2

εi jkX iDαX jDβ Xk
ε

αβ )+ f
∫

d2
σTr(iFX iX jXk

εi jk)

≡ f
∫

d2
σ (L1 +L2). (2.9)

The classical solution to the equation of motion was obtained in [1]. It was found a new solution

[X i,X j,Xk] = iθε
i jk, (2.10)

where θ is a constant and the 3-bracket is given by quantum Nambu bracket.
It was also shown that in the large N limit, there are new representations of (2.10) that are not

given by Lie algebraic representation, The existence of these representations that demonstrates the
fundamental and novel nature of the Nambu-Heisenberg commutation relation (2.10). In other words,
a quantized geometry, the quantum Nambu geometry, characterized by the Nambu bracket (1.1) is
allowed as a solution in string theory.

3. D4-branes in Large RR Flux Background

We would like to perform an expansion around the quantum Nambu geometry and ask what kind
of gauge theory would come out. We recall that for the standard Lie algebraic type noncommutative
geometry, a 2-form field strength is obtained from the fluctuation over the noncommutative geometry
as

Fµν =−i[X µ ,Xν ]. (3.1)

For our quantum Nambu geometry, it is suggestive to interpret the quantum Nambu bracket of the target
space coordinate fields X µ as a 3-form field strength

Hµνλ =−i[X µ ,Xν ,Xλ ] (3.2)

and we would like to check this idea.
Places where a non-abelian 3-form field strength lives are, for example, multiple D4-branes (where

the 3-form field strength would be the Hodge dual to a 2-form field strength) and multiple M5-branes
(where the 3-form field strength would be self-dual). To check the idea, we would like to connect
to these systems from our D1-branes system. And to do this, let us first derive the Matrix model
descriptions for the IIB string theory, M-theory and IIA string theory in a large flux background using
our description (2.9) for the D1-branes.

In [1], a duality argument was performed and a Matrix IIA string theory that is dual to the above
D1-string matrix theory was obtained. The action reads

SIIA =
f
N

∫
d2

σ TrXaXbXcXdXe
εabcde, a,b,c,d,e = 0,1,2,3,4, (3.3)
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where
Xα = iDα , X i = scalars, α = 0,1, i = 2,3,4 (3.4)

We note that the D1-strings action and the IIA Matrix string action are indeed the same up to a constant
coefficient. This is similar to the matrix IIA string of DVV where the same 2-dimensional supersym-
metric Yang-Mils theory could have different string interpretations depending on how one associate its
parameters with the string theories. This is consistent with T-duality.

The matrix string action (3.3) admits the classical solution:

[Xα ,Xβ ] = 0, [Xα ,X i] = 0, α = 0,1, i = 2,3,4. (3.5)

As before, the commutation relations of X i among themselves are not constrained. Let us consider the
solution X i

cl = xi of quantum Nambu geometry

[x2,x3,x4] = iθ (3.6)

and consider a fluctuation around it. In the large N limit, we get a set of large N matrices xi. Depending
on the representation chosen, they may or may not generate the entire set of N×N matrices. In general,
assume xi do not generate the whole set of N×N matrices. Then every N×N matrix can be expressed
as a K×K matrix whose entries are functions of xi. The expansion of the dynamical variables around
the classical solution can thus be parameterized as

X i = xi1K×K +Ai(σ ,x j). (3.7)

The action (3.3) becomes

S5 =
f
N

∫
Σ5

trXaXbXcXdXe
εabcde (3.8)

where
∫

Σ5
=
∫

d2σ
∫

x and
∫

x is an integral on the quantum Nambu geometry which can be constructed
from a representation of the geometry. In the large N limit, the trace over large N matrices decompose
as usual as Tr =

∫
x tr.

With the introduction of a three-form H-field whose components are defined by

Habc = −i[Xa,Xb,Xc], (3.9)

Hde5 = −i[Xd ,Xe], a,b,c,d,e = 0,1,2,3,4, (3.10)

where
H∗µνλ :=

1
6
√
−g

ε
µνλραβ Hραβ (3.11)

is the Hodge dual of Hραβ , the action (3.8) becomes

S5 =
∫

Σ5

trHabcHde5
εabcde. (3.12)

In [1], it was argued that this matches with the dimension reduced PST action and so describes a sector
of multiple D4-branes theory (where Xa′ = 0) in a large RR 2-form flux background.
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4. A proposal for a theory of multiple M5-branes using 1-form gauge field

Recently, it has been argued that [9, 10] the instantons on multiple D4-branes could be identified
with the KK modes associated with the compactification of M5-branes on a circle. By including all these
modes, it was proposed that the low energy SYM theory of D4-branes is a well-defined quantum theory
and is actually the theory of multiple M5-branes compactified on a circle. Back to our proposed action
(3.12) for D4-branes in a large RR flux background, how can we incorporate the higher KK modes in
our description? A possible hint is from the identification (3.10). We note that the identification for
Hde5 can be written as

Hde5 =−i[Xd ,Xe,X5] (4.1)

with
X5 = 1. (4.2)

If we think about X5 as a scalar field describing the compactified X5 direction transverse to the D4-
brane, then one can understand the relation (3.10) and (4.2) as saying only the zero mode of the M5-
branes has been included, i.e. a dimensional reduction to D4-branes. In this picture, it is suggestive
to include the higher KK/instantonic modes by promoting X5 = 1 to a general field. The identification
(3.9) and (4.1) can be put together as

Hµνλ =−i[X µ ,Xν ,Xλ ]. (4.3)

It was proposed in [1] to be a different way to write the non-abelian self-dual 3-form field strength
living on M5-branes. In a conventional description, there would be a non-abelian 2-form potential B
and H = dB+ · · · where the · · · term denotes terms necessarily for the non-abelianization. Thus we are
proposing that there is a dual description of the non-abelian 3-form field strength in terms of the 1-form
variables X =Xµdσ µ ; and the B-field and the X-field are related, although one can expect the relation to
be very complicated. To justify our proposal, one needs to show that Hµνλ satisfies the correct equation
of motion (i.e. the self-dual equation) and describes the correct number of on-shell degrees of freedom
(i.e. three). In [1], the following action

SM5,θ =−1
4

∫
x
tr
(

1
6

εabcdeHabcHde5 +
(
α
−1
3

HabcHabc +(1−α)Hab5Hab5
)√
−g
)
, (4.4)

(α = 1/6) was proposed. The theory has solution

[xµ ,xν ,xλ ] = iθ µνλ 1, (4.5)

where θ µνλ are arbitrary self-dual constants. This corresponds to a six dimensional quantum Nambu
geometry parameterized by self-dual parameter θ µνλ and the trace

∫
x is determined from the represen-

tations of the quantum Nambu geometry (4.5)
The fluctuations around the solution can be written as

X µ = xµ1K×K +Aµ(x), (4.6)

where Aµ are K×K matrices. The theory (4.4) over the geometry (4.5) was proposed to describe a
theory of K M5-branes.
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We note that our M5-branes system has a quantum Nambu geometry as its worldvolume geometry.
What is the physical origin responsible for this quantized spacetime? The emergence of a noncommu-
tative worldvolume on a brane is typically the result of a background gauge potential being turned on
in its worldvolume. The fact that the quantization parameter θ µνλ is self-dual suggests to identify it
with the self-dual 3-form C-field on the worldvolume of the M5-branes. This identification is further
supported by the fact that if we dimensionally reduced the M5-branes, say, on the 5-th direction, which
amounts to putting X5 = 1, then the relation (4.5) reads

[X µ ,Xν ,1] = [X µ ,Xν ] = iθ µν5. (4.7)

This is the noncommutative geometry over D4-branes with a B-field whose components are Bµν = θµν5

(we remind the readers we are considering the linearized limit). Since the B-field is related to the 11-
dimensional C-field as Bµν =Cµν5, it is correct to identify θ µνλ with the constant C-field Cµνλ . All in
all, we conclude that the geometry (4.5) is the result of having a self-dual 3-form C-field

Cµνλ = θµνλ (4.8)

turned on in the worldvolume of the M5-branes.
In our description, the field strength Hµνλ is constructed from the 1-form potentials Aµ using (4.3)

and (4.6). In a conventional description of 3-form field strength, a 2-form potential is used. Our analysis
suggests that there maybe in fact two equivalent formulations for the theory of multiple M5-branes in a
C-field, one in terms of a 1-form gauge field as in ours (4.4), and the conventional formulation in terms
of a 2-form gauge potential.

Evidence of this can be seen from the counting of the degrees of freedom of our model. Initially
we have six fields. If the self-duality equation is in fact the equation of motion of the theory, then
the degrees of freedom are reduced to half and we have indeed three degrees of freedom which is
appropriate for a description of a self-dual 3-form field strength. The theory (4.4) would then have all
the desirable properties of a theory of non-abelian self-dual 3-form field strength except that the theory
is written manifestly using a 1-form potential as the variables.

A couple of comments on the dual formulation are in order:

1. As noted above, our action (4.4) is equal to the non-abelian form of the PST action when the
self-duality condition is satisfied. The agreement of the actions on-shell is a necessary condition
for our formulation to be an equivalent description on-shell. Therefore this agreement provides
more support that our proposed action (4.4) indeed provides a dual description of the non-abelian
self-dual 3-form.

2. Our formulation of using a 1-form gauge field Aµ is supposed to be equivalent to the conventional
formulation of using a 2-form gauge potential Bµν only on-shell. As such there can be a relation
between the 2-form gauge field and the 1-form gauge field only on-shell. Identifying such a
B-field from our description is important as it would allow us to couple to self-dual strings.

3. In the conventional formulation, the existence of the tensor gauge symmetry and the self-duality
equation is crucial in reducing the fifteen components of B to three. In our formulation, we do
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get the desired number of degree of freedom (modulo the issues discussed above) and there is no
need of a tensor gauge symmetry. Curiously, in a recent construction of the non-abelian 3-form
theory using a 2-form B-field potential [13], it was shown that the tensor gauge symmetry (part
of the G×G symmetry structure constructed there) could be gauge fixed to an ordinary gauge
symmetry G (diagonal part of G×G). It is interesting that the gauge fixed theory has precisely
the same gauge symmetry as our proposed description here. This coincidence provides some
support to both the description proposed in [13] and the description proposed here.

4. In the above we have obtained the Bianchi identity and the self-duality condition as a solution of
the reduced matrix description. However to fully justify our proposal, we need to establish that it
is the only nontrivial solution. We recall that in the PST action , one does not get the self-duality
condition as the equation of motion immediately. To do this, one needs to make crucial use of a
symmetry which acts on the B-field. For our case, it is possible that there is a counterpart of the
symmetry which acts on the X’s; and this symmetry is needed to derive the self-duality equation
(and hence the Bianchi identity). It is important to understand whether such a symmetry really
exists in our model, and if so, how it acts.

Another possible way to settle the issue is to supersymmetrize our action with (1,0) or (2,0)
supersymmetry since supersymmetry would require the 3-form field strength to be self-dual au-
tomatically. Supersymmetrization of our system is also needed for describing M5-branes. In any
case supersymmetry is an important topic and we hope to return to it in future work. See [12]
for some recent related works on (2,0) supersymmetry of a non-abelian self-dual 3-form field
strength multiplet.

More recently, an non-abelian action for multiple M5-branes was constructed [14]. In this formu-
lation, the tensor symmetry is abelian but the theory carry with it a U(N) Yang-Mills gauge symmetry.
It is not clear yet the connection between these different formulations, but it is encouraging to see the
same gauge group emerges.
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