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1. Introduction

Lagrangian field theories are used to describe physical models. Their quantization is some-
how expected to satisfy Segal’s [25] axioms (which generalize in higher dimensions our under-
standing of quantum mechanics). Roughly speaking they say that a d-dimensional quantum field
theory should provide a functor from the category of d-dimensional cobordisms (with possible ex-
tra structures) to the category of vector spaces and linear maps. This program has been completed
in conformal field theories. Atiyah proposed a stricter version of these axioms in the case of topo-
logical field theories, which was first realized by the Reshetikhin–Turaev invariant [20] which may
be thought of as some nonperturbative quantization of Chern–Simons theory [28, 11]. Another
example is implicitly present in an old work by Migdal [19].

It would be interesting to understand how this picture emerges from the perturbative func-
tional integral quantization of Lagrangian fields theories. An important application would be the
construction of perturbative quantum field theories on manifolds out of topologically simple or
geometrically small pieces, where the computations might be more tractable. Even in the case of
topological field theories this would produce new insight (and might possibly lead to a full un-
derstanding of the relation between the perturbative expansion of Chern–Simons theory and the
asymptotics of the Reshetikhin–Turaev invariant).

The first step in developing this program, performed in [7], consists in developing the anal-
ogous pictures in the classical formalism and in the BV formalism [5] which is the main tool for
the perturbative quantization of theories with symmetries. In principle, this already yields the pos-
sibility of constructing moduli spaces of solutions to variational problems out of computations on
topologically simple or geometrically small pieces.

This note reviews some results of [7], see Section 5, with a didactical introduction through
classical Lagrangian field theory given in Sections 2 and 3, and with the BFV formalism [4], being
outlined in Section 4. Notice that Section 5 is self contained, so the hasty reader who does not
need a motivation or an introduction might well jump directly there.

As a final remark, notice that in this paper every manifold is assumed to be compact, though
possibly with boundary.

Acknowledgment. We thank F. Bonechi, H. Bursztyn, A. Cabrera, K. Costello, C. De Lellis, G.
Felder, V. Fock and E. Getzler for useful discussions. We especially thank J.Stasheff for helpful
comments on a first draft. A.S.C. thanks University of Florence, IMPA and Northwestern Univer-
sity for hospitality.

2. Lagrangian field theory I: Overview

We start reviewing classical Lagrangian mechanics. This is usually defined by specifying a La-
grangian function L on the tangent bundle T N of some manifold N. The action S[t0,t1] corresponding
to an interval [t0, t1] is a function on the path space N[t0,t1] defined by

S[t0,t1][x] =
∫ t1

t0
L(ẋ(t),x(t)) dt. (2.1)

The Euler–Lagrange (EL) equations describe the critical points of the action. As this requires
integration by parts, one usually puts appropriate boundary conditions for the boundary terms to
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vanish, e.g., one fixes the initial and final values x(t0) and x(t1). In the sequel we will want to avoid
this.

2.1 Symplectic formulation

The typical example is Newtonian mechanics on a Riemannian manifold. In this case N is
a Riemannian manifold and the Lagrangian is L(q,v) = 1

2 m||v||2−V (q), where || || is the norm
induced by a metric on N, V is a function on N and m is a parameter (usually assumed to be strictly
positive). The EL equations in this case are the Newton equations with force given by −∇V . They
admit, locally, a unique solution if initial position and velocity are specified. We denote by C = T N
the space of such initial conditions. Here C stands here for Cauchy, but we will see later it can also
stand for coisotropic. Notice the peculiar coincidence that C is the same as the space on which L is
defined. This will not be the case in further examples.

One usually reformulates the problem in symplectic terms using the Legendre mapping φL : T N→
T ∗N, (v,q) 7→ (p(v,q),q), with pi =

∂L
∂vi . The Newton equations of motions now become first order

and their solution yields the symplectic flow ΦHL with respect to the canonical symplectic form
ωcan on T ∗M and Hamiltonian function HL given by the Legendre transform of L: HL(p,q) =
pivi(p,q)−L(v(p,q),q). Here we have used the inverse of the Legendre mapping φ

−1
L : T ∗N →

T N, (p,q) 7→ (v(p,q),q), where v(p,q) is the inverse to p(v,q). Since in the following we will also
be interested in degenerate Lagrangians, for which the Legendre mapping is not a local diffeomor-
phisms, we now recall how to reformulate things without going to the cotangent bundle. The first
simple fact is that

α =
∂L
∂vi dqi (2.2)

is a well-defined one-form on C = T N (it would be more precise to write αL instead of α to stress
the dependency on L, but we regard L as given for the whole discussion). Moreover, ω := dα

is non degenerate precisely when the Lagrangian is regular, i.e. when the Legendre mapping is
a local diffeomorphism. In this case, one can also easily show that ω = φ ∗L ωcan. We can now
formulate the Hamiltonian evolution directly on C. For later considerations, however, it is better to
consider the graph of the Hamiltonian flow instead of the flow itself. Borrowing notations from the
cotangent bundle, we then consider L[t0,t1] = (φ−1

L ×φ
−1
L )(graph(ΦHL |

t1
t0)). As a Hamiltonian flow

is a symplectomorphism and as the graph of a symplectomorphism is a Lagrangian submanifold
of the Cartesian product with reversed sign of the symplectic form on the first factor, we have that
L[t0,t1] is Lagrangian submanifold in C̄×C . The fact that it comes from the graph of a flow yields
the property

L[t1,t2] ◦L[t0,t1] = L[t0,t2], lim
t1→t0

L[t0,t1] = graph of the Id map . (2.3)

The limit has to be understood by putting an appropriate topology on the space of submanifolds of
C.

The crucial point now is that L[t0,t1] may be defined directly without making reference to the
Hamiltonian flow. Let

π[t0,t1] : N[t0,t1] → C×C
{x(t)} 7→ ((ẋ(t0),x(t0)),(ẋ(t1),x(t1)))

3
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and let EL[t0,t1] ⊂ N[t0,t1] be the space of solutions to the EL equations. Then we simply have

L[t0,t1] = π[t0,t1](EL[t0,t1]). (2.4)

This is the fundamental equation we are going to use. Notice that (2.3) immediately follow from
this new definition (the limiting property follows from the fact that C is the space of initial condi-
tions that guarantee local existence and uniqueness).

To insure that L[t0,t1] is Lagrangian we have to make some further observations. First we
observe that, if we do not impose boundary conditions, the variational calculus yields

δS[t0,t1] = EL[t0,t1]+π
∗
[t0,t1]α, (2.5)

where EL[t0,t1] is the term containing the EL equations that we reinterpret as a one-form on N[t0,t1].
Notice that we also interpret the variation symbol δ as the de Rham differential on Ω•(N[t0,t1]).
The appearance of the same α here and in (2.2) is crucial. The equation yields in fact, after differ-
entiation, π∗[t0,t1]ω = −δ EL[t0,t1], which in turn implies that the restriction of ω to L[t0,t1] vanishes

(observe here that the space of solutions to the EL equations on M[t0,t1] is the zero locus of EL[t0,t1]

and that π[t0,t1] is a surjective submersion). This amounts to saying that L[t0,t1] is isotropic.
In addition we know that a unique solution is given, locally, once we specify initial conditions

in T N or, equivalently, if we specify initial and final position for a short enough time interval [t0, t1].
Hence, if we fix initial and final positions Q0 and Q1 and let LQ0,Q1 := {(v,q,v′,q′) ∈ C×C|q =

Q0, q′ = Q1}, we get that, for t1 sufficiently close to t0, LQ0,Q1 ∩ L[t0,t1] consists of one point;
by dimension counting, assuming the intersection is transversal, this implies that L[t0,t1] has half
dimension than C and so is Lagrangian1. Finally, if t0 and t1 are not close, we can decompose
the interval into short ones on which we can use the previous argument and recover L[t0,t1] as the
composition of the canonical relations corresponding to the subintervals. Hence L[t0,t1] is also a
canonical relation.

After understanding this, we can also think of more general boundary conditions by replacing
LQ0,Q1 with another submanifold L of C×C on which α vanishes. The latter condition ensures
that the variational problem has no boundary contributions. It also implies that L is isotropic. In
order to have, generically, intersection points of L with L[t0,t1], one has to require L to have maximal
dimension, and hence to be Lagrangian2. Now, the intersection L∩ L[t0,t1] can be considered as
the space of solutions to the EL equations. Notice however that this intersection might as well be
empty or contain (infinitely) many points, though generically, it will be a discrete set.

2.2 A degenerate example: geodesics on the Euclidean plane

We now consider the non-regular Lagrangian L(v,q) := ||v||, where || || is the Euclidean norm
and v,q ∈ TR2. The action is still given by (2.1) which we now define only on the space N[t0,t1]

0
of immersed paths (i.e., we impose the condition γ̇(t) 6= 0 ∀t ∈ [t0, t1]). The EL equations have as
solutions parameterized segments of straight lines in R2. By analogy with Newtonian mechanics

1Here is another argument. For a short interval, the initial and final positions specify a unique solution. Hence initial
and final positions determine initial and final velocities, which implies the L is a graph, hence Lagrangian.

2If L is Lagrangian but α does not vanish on it, we can modify the action by adding boundary terms such that the
modified one-form α is vanishing on L
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the Cauchy data include initial position and initial velocity, but these data do not give uniqueness:
they define one end of the segment and its slope but do not define a parametrization of the segment
uniquely. Nevertheless, let us consider what will happen if we take the “wrong" space of Cauchy
data C = TR2 \ {zero section}. We defer to Remark 2.3 the discussion of the “true" space of
Cauchy data.

Using polar coordinates for the velocities, we can write C =R2×S1×R>0 with coordinates the
position q, the normalized velocity v (i.e. ||v||= 1) and the speed ρ . Then (2.2) yields α = v ·dq,
so that ω = dv ·dq is clearly degenerate (as it does not have a dρ component). On the other hand,
(2.4) (with π the evaluation of position and velocity at the initial and at the final point) yields

L[t0,t1] = {(q0,v,ρ0),(q1,v,ρ1))|(q1−q0) parallel to v}

which is clearly not a graph but can easily be checked to be Lagrangian in C×C (see Appendix A
for the definition of Lagrangianity in the case of a degenerate two-form).

In this example one can can easily get rid of the degeneracy of ω by taking the quotient by
its kernel which is the span of the vector fields v · ∂

∂q and ∂

∂ρ
(geometrically, these vector fields

represent the space directions parallel to the velocity and the rescalings of the velocity). The
quotient turns out to be T S1 with symplectic structure given by pullback of the canonical one
on T ∗S1 by the induced metric on S1. Notice that the base S1 here is the space of normalized
velocities, whereas the tangent fiber can be thought of as the space direction orthogonal to the
given velocity. One can also project L[t0,t1] down to the quotient T S1×T S1 . The result is just the
graph of the identity map on T S1. This is a consequence of the fact that the action is invariant under
reparametrization. Notice that this is an example of topological theory: the action does not depend
of the metric on [t0, t1].

In this example we passed to the quotient space which appeared to be smooth. However that
in general reduction may produce very singular quotients, so passing directly to the reduced space
had better be avoided. Instead, as we will see, it is better to use the BV-BFV approach.

Remark 2.1. Notice that the one-form α = v ·dq is not horizontal with respect to the kernel of ω ,
so it cannot be reduced to T S1. On the other hand, we may regard α as a connection one-form
on the trivial line bundle on C. We can then reduce this line bundle to a line bundle over T S1 and
reduce α as a connection.

Also notice that evaluating the action on a solution yields a well-defined function SHJ (the
Hamilton–Jacobi action) on L[t0,t1] which is just the length of the path. Again, SHJ cannot be
reduced to a well-defined function on T S1×T S1, but exp i

h̄ SHJ can be reduced to a section of the
reduced line bundle.

Remark 2.2. If one considers the same example but now with the Minkowski metric, also in higher
dimensions, and considers only timelike velocities (i.e., with ds2 = dt2−dx2, one assumes ||v||>
0), the reduction yields T H, where H is the upper hyperboloid v2

0− v2 = 1, and the symplectic
structure is obtained by pullback of the canonical one on the cotangent bundle by the hyperbolic
metric on H (which is induced by the Minkowski metric). The reduced Lagrangian is again just the
graph of the identity.

Remark 2.3. We mentioned above that TR2 \ {zero section} is not the true space of initial condi-
tions because giving initial position and velocity does not select a unique parametrized segment. In
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order to obtain uniqueness in a formal neighborhood of the initial point we can enlarge C by setting
C̃ = TR2 \{zero section}×R∞, where the coordinates on R∞ are all higher derivatives of the path.
In other words here we work with the space of jets. Define the one form α̃ as the pull-back of α

with respect to the natural projection C̃→ C. It is clear the R∞ factor is in the kernel of α̃ and
of ω̃ = ω . This is the reason why this factor can be completely neglected just as we neglected
the space R > 0 of speeds in the discussion above. The reduction of C̃ is the same as that of C.
Boundary values (2.4) of solutions to the Euler-Lagrange equations define a Lagrangian subspace
in C̃×C̃). Its reduction is again the graph of the identity.

2.3 Example: Free scalar field theory

We now describe an example of a field theory in dimension d. The space time in such theory
is a Riemannian d-manifold (M,gM). The space of fields is RM (functions on M) and the action is

S(M,gM)[φ ] =
1
2

∫
M

gµν

M ∂µφ ∂µφ dvolgM =
1
2

∫
M
(dφ ,dφ)dvolgM

where φ ∈ RM. Solutions to the EL equations are harmonic functions on M.
In order to understand the boundary structure for an arbitrary space time manifold M consider

first a thin neighborhood of its boundary Σ = ∂M. That is consider a short cylinder Σ× [0,ε] where
(Σ,gΣ) is a (d− 1)-dimensional Riemannian manifold and gM = gΣ + ds2, s ∈ [0,ε]. A unique
solution to the EL equation is obtained if one specifies the values of φ and of its normal derivative
on Σ×{0}. This gives the natural space of Cauchy data associated to Σ, CΣ = RΣ×RΣ. Similarly
to (2.2) the boundary term in the variation of SΣ×[0,ε] gives the one-form

α(Σ,gΣ) =
∫

Σ

χ δφ dvolgΣ

with (χ,φ) ∈CΣ. Here χ should be thought of as the restriction to Σ×{0} of the normal derivative
of the bulk field φ . Notice that ω(Σ,gΣ) = δα(Σ,gΣ) is (weakly) nondegenerate.

For a general Riemannian d-manifold M with boundary ∂M, we have the surjective submer-
sion πM : RM →C∂M obtained by evaluating the field φ and its normal derivative on the boundary.
Formula (2.5) still holds (with a little change in notation):

δS(M,gM) = EL(M,gM)+π
∗
Mα(∂M,gM |∂M).

Moreover, in the spirit of (2.4), define L(M,gM) ⊂C∂M as πM(EL(M,gM)).
It is easy to see that L(M,gM) is Lagrangian. Indeed, the Dirichlet problem for φ has unique

solution on M. Thus, if φ ∈ ELM, its boundary values define the the normal derivative of φ at
the boundary. This map from the Dirichlet data to Neumann data is known as the Dirichlet-to-
Neumann mapping. Thus, the submanifold LM ∈ C∂M is the graph of the Dirichlet-to-Neumann
mapping R∂M → R∂M.

Notice that one may distinguish the connected components of ∂M into incoming and outgoing:
∂M = ∂inM t ∂outM. Denoting ∂inM with opposite orientation by ∂inMopp, we may then view
L(M,gM) ⊂C∂inMopp×C∂outM as a canonical relation from C∂inMopp to C∂outM.

6
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2.4 Conclusions

From these examples we see that the Hamiltonian framework for non-regular Lagrangians has
to be replaced by its weaker version. However, certain important patterns remain. We have seen in
these examples that that i) in all cases we were able to derive a, possibly degenerate, two-form on
the space of initial conditions associated to the boundary of the space time and ii) we were able to
assign to the bulk of the space time a Lagrangian/isotropic submanifold (not necessarily a graph)
in such spaces. In the next Section we will see that this a quite general fact.

3. Lagrangian field theory II (after V. Fock)

In an unpublished account [10], V. Fock has considered the general structure of Lagrangian
field theories on manifolds with boundary. We give here our recapitulation of this account. (To
different levels of generality, this structure has been rediscovered many times, see e.g. [13, 24] and
references therein.)

Notice that this Section is rather about a philosophical account leading to a concrete construc-
tion than a precise mathematical formulation. For simplicity, we also assume that all the "spaces"
occurring in the following are actually (possibly infinite dimensional) manifolds.

A Lagrangian field theory is specified by

1. fixing the dimension d of the source manifolds;

2. fixing a class of d-manifolds, possibly with extra structure, such as a metric in the example
of subsection 2.3;

3. associating a space of fields FM (functions, maps to a fixed target manifold, sections of bun-
dles, connections,. . . ) to every d-manifold M in the class;

4. defining a density, the Lagrangian L, of the fields and finitely many of their derivatives.3

The action functional associated to a manifold M, as a function on FM, is then given by SM =
∫

M L.
The variation of the action, neglecting the boundary terms, yields the EL equations. We denote by
ELM ⊂ FM the space of solutions to the EL equations on a given manifold M.

Let now Σ be a (d−1)-manifold. We extend it to a d-manifold M := Σ× [0,ε] (taking care of
the possible additional structure). The variational calculus on this particular M produces two new
pieces of data:

1. The space CΣ of Cauchy data consisting on the information on the fields (and their deriva-
tives) that one has to specify on Σ so that there is a unique solution to EL equations on
Σ× [0,ε] for ε small enough (possibly, one might have to work with a formal neighborhood
of 0 like in the example of subsection 2.2).

2. A one-form αΣ on CΣ arising from the Σ×{0}-boundary contribution to the variation of
SΣ×[0,ε].

3For a precise definition, see, e.g., [9]
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One can see that the Lagrangian is regular iff ωΣ := dαΣ is non degenerate.
Using these data, one can further develop the induced structure. Namely, for every M in the

class we now have a surjective submersion

πM : FM →C∂M

and the variation of the action leads to the fundamental equation

δSM = ELM +π
∗
Mα∂M. (3.1)

Again we define LM := πM(ELM)⊂C∂M. It follows from (3.1) that LM is isotropic (i.e., the restric-
tion of ω∂M vanishes). In most examples LM is actually Lagrangian.

Remark 3.1. From now on for simplicity we are going to assume that all FM and CΣ can be given
a manifold structure and that ELM and LM are smooth submanifolds and, apart from the following
counterexample, we are always going to assume that LM is Lagrangian.

Example 3.2 (LM is not Lagrangian). Consider a one-dimensional example with target R2, space
of fields F[t0,t1] = (R2)[t0,t1], with Lagrangian L ∈C∞(TR2) given by L(vx,vy,x,y) = 1

2 yv2
x and with

the action S[t0,t1] =
∫ t1

t0
1
2 y(t) ẋ(t)2 dt. This example is related to the one given in [16](section 1.2.2)

where it is used to disprove a related conjecture by Dirac. Note also that this is a 1-dimensional
version of the Polyakov string action.

The EL equations are ẋ2 = 0 and d
dt (y ẋ) = 0, the latter being trivially implied from the first.

The x-component of a solution is then completely determined by its initial value, whereas the
y-component is completely free. To get formal uniqueness of solutions to the EL equations define
C = R×R∞. Here the second factor contains the information about y and all its derivatives at the
initial time. The variation of the action is

∫ t1
t0 (

1
2 δyẋ2 + y ẋδ ẋ) dt. However the boundary term here

is absent because we have to assume ẋ = 0 on the boundary in order to have a solution and therefore
α = 0. The projection π[t0,t1] : F[t0,t1]→C×C is then simply given by

π(x(·),y(·)) = (x(t0),y(t0), ẏ(t0), ÿ(t0), . . . ,x(t1),y(t1), ẏ(t1), ÿ(t1), . . .)

so that L[t0,t1] = {(x,y0,y1,y2, . . . ,x, ỹ0, ỹ1, ỹ2, . . .),x,yi, ỹi ∈R ∀i}. Now L[t0,t1] is obviously isotropic
since ω = 0. On the other hand, since ω = 0, L⊥[t0,t1] =C 6= L. Hence L[t0,t1] is not Lagrangian.

As in subsection 2.3, we can decide to split the boundary of a given d-manifold M into incom-
ing and outgoing boundary components, ∂M = ∂Mint∂Mout, and regard LM as a canonical relation
from C

∂Mopp
in

to C∂Mout , which we will call the evolution relation since it generalizes the evolution
flow.

Suppose we cut a manifold M along a submanifold Σ into two manifolds M1 and M2 in such
a way that ∂inM ⊂ ∂M1 and ∂outM ⊂ ∂M2. Then we set ∂inM1 = ∂inM, ∂outM1 = Σ, ∂inM2 = Σopp

and ∂outM2 = ∂outM. We then have
LM = LM2 ◦LM1

since a solution on M corresponds to solutions on M1 and M2 that match on Σ. This composition
of canonical relations replaces the usual composition of flows.

8
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In particular, in the case of a cylinder Σ× [t0, t1] we have

LΣ×[t0,t1] = LΣ×[t,t1] ◦LΣ×[t0,t]

for all t ∈ (t0, t1). On the other hand, in general we cannot expect LΣ := limt1→t0 LΣ×[t0,t1] to be the
graph of the identity on CΣ as this will happen only in regular theories. We call gauge theories
those for which LΣ, which can be seen to be an equivalence relation, is not the graph of the identity.

Remark 3.3 (Evolution correspondences). Recall that the Cauchy space CΣ determines uniqueness
only locally (or just formally, like in example 3.2 or in remark 2.3) on cylinders. Therefore, we may
miss some important information by looking only at LM. The information about nonuniqueness is
contained in the fibers of πM : ELM → LM. Notice that by cutting M along some Σ as above we
get ELM = ELM2 ×CΣ

ELM1 , so we may also interpret ELM as a canonical correspondence, the
evolution correspondence.

It is tempting to think in terms of gluing manifolds along boundary components instead of
cutting them (even though this might require some extra pieces of data, like collars, or to work
up to homotopy as in [18]). From this perspective we could think of Lagrangian field theories as
inducing a functor from the cobordism category (of manifolds with appropriate structure) to the
extended presymplectic category. We may think of this as the classical version of the Segal–Atiyah
[25, 3] axioms for quantum field theory.

Remark 3.4. Recall that a closed two-form on a manifold P is called presymplectic if its kernel is
a subbundle of T P (in finitely many dimensions this is equivalent to requiring ω to have constant
rank). There is no reason why the two-forms ωΣ we obtained above should be presymplectic, but
this is a fundamental requirement for making sense of the rest of this program. This requirement
puts some constraints on the theories one can write down.

Remark 3.5. In the above description the two-form is always exact. On the other hand, physical
examples with non exact symplectic forms abound. One source for them is reduction, see the next
subsection, others arise from dropping the restrictive condition that the action is a (well defined)
function. More generally, one should think of the action S, or rather of the Gibbs weight exp i

h̄ S, as
the section of a line bundle over FM. In this more general setting, αΣ/h̄ is no longer a one-form on
CΣ, but a connection one-form on a line bundle.

A simple example where this occurs is that of a charged particle moving in a magnetic field
on a manifold N. The action contains the term

∫ t1
t0 Ai(x(t)) ẋi(t) dt, where A = Aidxi is the vector

potential regarded as a one-form. This term is also equal to
∫

γ
A, where γ is the image of the path.

If we make a gauge transformation, the action then changes by boundary terms. Such action is
not a function on the space of paths when A is a connection on some nontrivial line bundle E over
N. Using the evaluation map at the endpoints, we can pullback this line bundle to F[t0,t1]. Namely,
we define E[t0,t1] = ev∗t0E∗⊗ ev∗t1E. We can then see the Gibbs weight as a section of (E[t0,t1])

⊗k

(where k = 1/h̄ is an integer). The boundary one-form α has the term A as a contribution from the
magnetic term in the action and therefore α/h̄ is defined only as a connection on p∗E⊗k, where p
is the projection from C = T N to N. The symplectic form ω is the canonical one for a particle on
N plus the curvature of A.

Another example is the WZW model, as discussed in [12] [14]. In this paper, for simplicity,
we will assume that the action is defined as a function.

9
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3.1 Reduction

If the two-form ωΣ is degenerate, one may perform reduction by its kernel. If the leaf space CΣ

is smooth it inherits a symplectic structure ωΣ. We may also project an evolution relation LM to the
reduction and denote this by LM. If it is a smooth submanifold of CΣ, it is automatically isotropic.
Actually, in all the examples at hand it is Lagrangian. (In example 3.2, this is trivial since the
reduction of C is zero-dimensional.) Finally, notice that at the reduced level limt1→t0 LΣ×[t0,t1] is the
graph of the identity on CΣ. In TFTs, this is so even without taking the limit.

Remark 3.6. In general we cannot expect αΣ to be horizontal with respect to the kernel of ωΣ,
even though this happens in most examples discussed in this paper (with the notable exception of
subsection 2.2). If this is not the case, we should regard αΣ as a connection one-form on the trivial
line bundle EΣ :=CΣ×C. Since, by definition, the restriction of this line bundle to each leaf is flat,
we may reduce to a line bundle with connection (EΣ,αΣ) if the holonomy of αΣ is trivial on each
leaf. Equivalently, we may think of αΣ as a contact form on the total space of EΣ. Its reduction,
if smooth, will be a contact manifold EΣ. Under the same conditions as above it will be the total
space of a line bundle with connection over CΣ.

Remark 3.7. In general the reduced space CΣ is singular and we want to avoid reduction. We will
see in the next Sections how to give a good cohomological replacement for it. However, some
partial reduction is very often possible and useful. See for example Remark 2.3. We will see
several other examples in the following.

3.2 Axiomatization

By the above discussion we see that a Lagrangian field theory in d dimensions induces the
following "categorical" description:

• The source category is a category of cobordisms: objects are (d− 1)-manifolds and mor-
phisms are d-manifolds with boundary. Depending on the theory there might be restriction
or additional data (e.g., a metric). Composition of morphisms is given by gluing along bound-
ary components; one way to make sense of this consists in putting a choice of collar of the
boundary in the additional data.

• The target "category" has (usually infinite-dimensional) presymplectic manifolds as its ob-
jects and correspondences with Lagrangian (or just isotropic) image as morphisms.

A few comments are in order.

1. What is actually important is not really gluing manifolds along common boundary, but cut-
ting manifolds along submanifolds. This structure is more relevant than the categorical struc-
ture and much less problematic.

2. In the case of a regular field theory, the dynamics of the problem on the space time M may
be recovered by choosing boundary conditions—viz., the choice of a submanifold L of the
symplectic manifold C∂M—and take the fiber of the evolution correspondence ELM over the
intersection points between L and the evolution relation LM as the space of solutions for these
boundary conditions. We might require for a field theory to be good that these fibers should

10
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be generically finite dimensional; we call elements of these fibers the (classical) vacua of the
theory.

In order for the variational problem to be well-defined, we have to avoid boundary terms
and, as a consequence, require L to be such that the restriction of α∂M to it vanishes. This in
particular implies that L must be isotropic. In order to have, generically, solutions, we should
also require L to be maximally isotropic, i.e., Lagrangian.

3. In a non regular theory, boundary conditions are also given by the choice of a Lagrangian
submanifold L on which the one-form α vanishes. In the reduced theory, one considers
the intersection between the reduction of L and that of the evolution relation LM and the
fibers over them. In addition, one also has to consider a reduction of these fibers. This
is an additional piece of data (not contained in the Lagrangian function defining the field
theory). A more refined definition of the target category would then require endowing the
evolution correspondences ELM with an integrable distribution—the gauge symmetries
of the theory—with the consistency requirement that its image in the evolution relation LM

should coincide with the restriction of the characteristic distribution of the presymplectic
manifold.

4. The above setting might be too rigid as the one-form α∂M might not restrict to zero on the
Lagrangian submanifold L one wishes to consider. To add more flexibility, one can allow
changing α∂M by an exact term d f . By consistency with (3.1) we see that in the Lagrangian
field theory we started with we have to change the action by π∗M f . To preserve locality we
might want f itself to be a local functional. By using Stokes Theorem, we may also write
this as a bulk term. The original Lagrangian is changed by a total derivative (which is hence
invisible on a manifold without boundary).

5. In the target “category," we might also work in the more refined setting where objects are
endowed with a line bundle with connection whose curvature is the presymplectic form (a
prequantization bundle). The shift of α∂M by an exact form in the previous comment should
now be replaced by a gauge transformation for the connection one-form. In addition, we
may take care of the Hamilton–Jacobi action as a covariantly closed section of the pullback
of the flat line bundle from the evolution relation to the evolution correspondence. If the
fibers of the correspondence over the relation are connected, this defines a section of the flat
line bundle over the relation. In many relevant examples in addition the line bundle over
the presymplectic manifold is trivial; in these cases, the presymplectic form is exact and the
Hamilton–Jacobi action is a function.

6. It might also make sense to allow for singular presymplectic manifolds or for singular rela-
tions/correspondences.

3.3 Perturbative quantization

The perturbative functional integral may be extended in the presence of boundary.4 Assume

4What we call here perturbative perhaps should be called semiclassical. Strictly speaking the perturbative expansion
would be taking a formal power series expansion in coupling constants of the action.

11



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
4
4

Field Theories with Boundary Alberto S. Cattaneo

first that the theory is regular. For simplicity, assume that the symplectic manifold C∂M is endowed
with a Lagrangian foliation along which α∂M vanishes and with a smooth leaf space B∂M.5 Denote
by p∂M the projection C∂M→ B∂M. We then define the boundary vector space H∂M as the space of
functions on B∂M and the state ψM associated to the bulk M as

ψM(φ) =
∫

Φ∈π
−1
M (p−1

∂M(φ))
e

i
h̄ SM(Φ) [DΦ].

The integral is defined by the formal saddle point approximation around critical points. As ex-
plained in the previous subsection, we may allow for some finite-dimensional degeneracy. In this
case, we should think of ψM as a function on the total space of the bundle of vacua over B∂M. If this
makes sense, one could also eventually perform the remaining finite-dimensional fiber integration.

In non-regular theories we have two (related) problems. The first is that on the boundary
space of fields we only have a presymplectic structure. The second is that the critical points are
degenerate (with infinite-dimensional fibers). To approach this problem we have to require as an
additional piece of data the choice of gauge symmetries. The idea is that the situation reduces to
the regular one if we mod out by gauge symmetries in the bulk and by the characteristic foliation on
the boundary. However, this usually leads to singular spaces and, even when it is not the case, one
should make sense of the functional integral on the quotient. The way out is to replace reduction by
its cohomological version. When ∂M = /0 this goes under the name of BV formalisms [5] and it is
known as BFV formalism [4] in the case of boundary reduction by the characteristic foliation. The
goal of this note (and of [7]) is to show how the two formalisms fit together in a consistent way.

3.4 An alternative approach

Instead of introducing the space CΣ of Cauchy data directly, one can “derive" it from the
following construction which is somehow more natural and better fitted to the BFV formalism
which will be discussed in Section 4. The space of Cauchy data obtained in this way may not
coincide with the one introduced previously, but the two construction agree after reduction.

The main idea is to associate to a (d−1)-manifold Σ the space F̃Σ of germs of fields at Σ×{0}
on Σ× [0,ε]. We will call it the space of preboundary fields. The boundary term in the variational
calculus yields, as above, a one-form α̃Σ on F̃Σ and the fundamental equation (3.1) now reads

δSM = ELM +π̃
∗
Mα̃∂M, (3.2)

where π̃M is the natural surjective submersion from FM to F̃∂M.
We then introduce ω̃Σ := dα̃Σ. This two-form will have a huge kernel but is assumed to be

presymplectic. We denote by (F∂
Σ
,ω∂

Σ
) the reduced space, which we will call the space of boundary

fields. For the rest of the discussion, we are going to assume F∂
Σ

is a smooth manifold. In general,
we do not require α̃Σ to be basic. If the trivial line bundle with connection α̃Σ on F̃Σ may be reduced
to a smooth line bundle on F∂

Σ
, we will denote by α∂

Σ
the induced connection one-form.

For simplicity, we are now going to assume that α̃Σ is indeed horizontal, so α∂
Σ

is a one-form
on F∂

Σ
, and leave the general case to the reader. If we denote by πM the composition of π̃M with the

natural projection from F̃∂M to F∂

∂M, we get

δSM = ELM +π
∗
Mα

∂

∂M.

5A more general setting would require a discussion of geometric quantization.
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Out of it we get that LM := πM(ELM) is isotropic. We finally define the (new version of the) space
of Cauchy data CΣ as the space of points of F∂

Σ
that can be completed to a pair belonging to LΣ×[0,ε]

for some ε . Notice that we think of F∂
Σ

as a relation from the one-point manifold to F∂
Σ

and of
LΣ×[0,ε] as a relation from F∂

Σ
to itself, we may write

CΣ =
⋃

ε∈(0,+∞)

LΣ×[0,ε] ◦F∂
Σ .

Notice that F∂
Σ

is coisotropic in itself. If ∀ε we assume LΣ×[0,ε] also to be so—and hence to be
Lagrangian—, then each composition is coisotropic (up to some infinite-dimensional subtleties),
and so will be the union. However, it may happen that CΣ is coisotropic even if the Ls are not
Lagrangian.

3.4.1 Examples

Example 3.8. Consider a nondegenerate Lagrangian function on T N as at the beginning of Sec-
tion 2. The space F̃pt is just the infinite jet bundle over N. The one-form is given in (2.2). The
kernel of the corresponding two-form consists of all jets higher than the first, so F∂

pt = T N. Since
every point in it can be completed to a pair in L[0,ε], for ε small enough, we recover Cpt = T N.

Example 3.9. In the case discussed in subsection 2.2, F̃pt is the open submanifold in the infinite
jet bundle over R2 obtained by requiring the first jet to be different from zero. The reduced space
F∂

pt is T S1 with symplectic form obtained by pullback from the cotangent bundle using the metric
and LI is the graph of the identity for every interval I; hence, Cpt = F∂

pt = T S1. Notice that in this
example the space of Cauchy data given by this construction is different from the previous one,
thought their reductions are obviously the same. Moreover, in this example the one-form α̃pt is not
basic. The induced one-form connection α∂

pt is the one discussed in remark 2.1.

Example 3.10. We now work out the new description of example 3.2. Here F̃pt is the infinite jet
bundle over R2 and α̃pt = yvxdx. The kernel of the two-form is given by all jets higher than the
first for x, by all jets higher then the zero jet for y, and by X := y ∂

∂y − vx
∂

∂vx
. So in this case the

form is not presymplectic. To solve this problem we assume (vx,y) 6= (0,0). This means that the
original space of fields FI has to be defined as paths in R2 that can hit the x-axis only with non
zero x-velocity. The reduction is then F∂

pt = R2. If we denote by (p,q) its coordinates we have
α∂

pt = pdq. Moreover, π[t0,t1](x(·),y(·)) = (y(t0)ẋ(t0),x(t0),y(t1)ẋ(t1),x(t1)). Since ELI consists of
paths that are constant in the x-direction, we get L[t0,t1] = {(0,q,0,q), q ∈ R} which is clearly not
Lagrangian. On the other hand, we have Cpt = {(0,q), q ∈ R} which is coisotropic.

Example 3.11 (Electrodynamics). We now discuss the case of electrodynamics (we leave to the
reader the generalization to nonabelian Yang–Mills theory). The space of fields on a manifold M
is the space AM of connection one-forms for a fixed line bundle over M. The action is SM(A) =
(dA,dA) =

∫
M dA∧∗dA, where ( , ) is the Hodge pairing of forms for a fixed metric on M and ∗

is the Hodge ∗-operation. The EL equations are d∗dA = 0, where d∗ is the formal adjoint of d with
respect to the Hodge pairing.

For simplicity of exposition, we now reformulate electrodynamics in the first-order formalism
(and leave to the reader its study in the usual second-order formalism). Namely, we enlarge the
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space of fields to FM := AM×Ωd−2(M) and extend the action to

SM(A,B) =
∫

M
B∧dA+

1
2

B∧ ∗B

The EL equations are dA+∗B = 0 and dB = 0. Hence, B is completely determined by A and then
A must satisfy d∗dA = 0.

On the space of preboundary fields F̃Σ we have the one-form α̃Σ =
∫

Σ
B∧ δA. It then follows

that the space of boundary fields is F∂
Σ
=AΣ×Ωd−2(Σ) with one-form α∂

Σ
=

∫
Σ

BδA and symplectic
form ω∂

Σ
= dα∂

Σ
.

Let us now consider LΣ×[0,ε]. The equation dB = 0 restricts to the boundary, so it has to
be satisfied by a field in LΣ×[0,ε]. We will call the direction along [0,ε] vertical. The evolution
will impose some other conditions, but we claim that CΣ = AΣ×Ω

d−2
closed(Σ), namely that no other

conditions have to be imposed on the first boundary component. The reason is that A on the first
boundary can always be extended to a solution. In the axial gauge (i.e., when we require that the
vertical component of A vanishes), the solution is unique once we specify the vertical derivative of
A at the first boundary. But this first derivative may be chosen, actually uniquely, so as to yield the
given closed B on the boundary.

Notice that B—despite the notation—is the electric field on the boundary (or, better, the (d−
1)-form corresponding to the electric vector field using the metric) and the equation dB = 0 is just
the Gauss law (i.e., divergence of electric field equal to zero). The characteristic distribution on CΣ

consists of just the gauge transformations on A.

Example 3.12 (Abelian BF theories). We may consider the “topolological" limit of the first-order
formulation of electrodynamics, i.e., drop the term with the Hodge ∗ operator. This way we get
the action SM =

∫
M B∧dA on the same space of fields FM = AM×Ωd−2(M). This theory is called

abelian BF theory.
The space of boundary fields is the same as for electrodynamics. What changes are the La-

grangian submanifolds LM. Since the EL equations are just dA = 0 and dB = 0, we see that LM

consists closed A and B on the boundary that can be extended to closed A and B in the bulk. As
a result CΣ = A f lat

Σ
×Ω

d−2
closed(Σ). The characteristic distribution consists of gauge transformations

for A and shifts of B by exact forms.

4. The BFV formalism

In this Section we address the problem of reformulating the reduction of a presymplectic man-
ifold C cohomologically.

If we work in the setting of subsection 3.4, our presymplectic submanifold is actually given
as a coisotropic submanifold of a symplectic manifold. Otherwise, we first recall that Gotay [15]
proved that every presymplectic manifold (C,ωC) may be embedded into a symplectic manifold
(F,ωF) as a coisotropic submanifold such that ωC is the restriction of ωF to C. Moreover, such
an embedding is unique up to neighborhood equivalence. The existence part is simply proven by
taking F = D∗, where D is the kernel of ωC, and ωF = p∗ωC +σ∗ωcan, where p is the projection
D∗→C, ωcan is the canonical symplectic form on T ∗C and σ is a splitting of T ∗C→ D∗. Notice
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that ωcan is exact; so an exact presymplectic manifold can be coisotropically embedded into an
exact symplectic manifold6.

We are then led to consider the problem of how to describe symplectic reduction of a coisotropic
submanifold cohomologically. This goes under the name of BFV formalism [4].

We start with the finite dimensional setting. Locally, a coisotropic submanifold C of F can be
described as the common zero locus of some differentiably independent functions φi on F . The
characteristic foliation is then the span of the Hamiltonian vector fields Xi of the φis. The space
of functions on the quotient C, if it is smooth, is the same as (C∞(F)/〈φ1,φ2, . . .〉)(X1,X2,...), where
〈φ1,φ2, . . .〉 denotes the ideal generated by the φis and the exponent denotes taking the subalgebra
invariant under all the Xis. The goal is to describe this space (actually this Poisson algebra) as the
zeroth cohomology of a complex (actually the differential graded Poisson algebra of functions on
a graded symplectic manifold).

To do this we add to F new odd coordinates bi of degree −1 and define a vector field Q on
the supermanifold so obtained by imposing Q( f ) = 0 for any f ∈ C∞(F) and Q(bi) = φi. The
cohomology is concentrated in degree zero and yields C∞(F)/〈φ1,φ2, . . .〉. To select the invariant
part, we add more odd coordinates ci of degree +1 and extend Q to the supermanifold so obtained
F by requiring Q(bi) = φi, Q(ci) = 0 and Q( f ) = ciXi( f ). This Q is a Hamiltonian vector field on
F with respect to the symplectic form ωF +dbi dci and Hamiltonian function ciφi; yet, in general
it is not a differential on C∞(F ). However, using cohomological perturbation theory one can prove
[26] that the Hamiltonian function may be deformed in such a way this occurs. The construction
may also be globalized [6, 17, 22]. To summarize, we have the

Theorem 4.1. Let C be a coisotropic submanifold of a finite-dimensional symplectic manifold F.
Then one can embed F as the body of a supermanifold F with an additional Z-grading endowed
with an even symplectic form ωF of degree zero and an even function S of degree +1 such that
its Hamiltonian vector field Q squares to zero and its cohomology in degree zero is isomorphic
as a Poisson algebra to the algebra of functions on C that are invariant under its characteristic
distribution. This construction is unique up to symplectomorphisms of F if one requires it to be
minimal (in terms of the newly added coordinates).

In the case of field theory, the analogous result—with the additional condition that S and ωF

are local—was proved long ago by [4] (in the description above the index i is now replaced by a
worldsheet coordinate and the sum over i by an integral). Notice however that, in order to get S as a
local functional, one often has to add extra fields of degree greater than +1 (and consequently extra
fields of degree less than −1). In any case, the final result is what we will call a BFV manifold.

Definition 4.2. A BFV manifold is a triple (F,ω,Q) where F is a supermanifold with additional
Z-grading, ω is an even symplectic form of degree zero, and Q is an odd symplectic vector field of
degree +1 satisfying [Q,Q] = 0.

Remark 4.3. Recall that Q symplectic means LQω = 0. On the other hand the Z-grading amounts
to the existence of an even vector field E of degree zero (the graded Euler vector field) such that
the grading on functions, forms and vector fields is given by the eigenvalues of the Lie derivative

6In this note we will not focus on subtleties of this statement in the infinite dimensional setting.
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LE . We then have LEω = 0 and [E,Q] = Q. This then implies that Q is automatically Hamiltonian,
ιQω = dS, with S = ιE ιQω (this remark is due to Roytenberg [21]). Notice that the condition
[Q,Q] = 0 implies the “classical master equation" (CME) in the BFV formalism:

{S,S}= 0,

where { , } denotes the Poisson bracket induced by ωF .

The coisotropic submanifold C can also be recovered geometrically. Namely, one defines E L

as the zero locus of Q. More precisely (when EL is singular as is often the case), one considers the
ideal IE L generated by functions of the form {S, f} with f ∈C∞(F ). This ideal is clearly a Lie
subalgebra (with respect to the Poisson bracket) thanks to the CME. This amounts to saying that
E L is a coisotropic submanifold. The original C is just its body.

Remark 4.4 (Quantization). The (geometric) quantization of F is in this setting replaced by a
quantization of F with a compatible quantization of S. Namely, one has to produce a graded
vector space HF quantizing (F ,ωF ) together with an odd operator Ω of degree 1 quantizing S
and satisfying Ω2 = 0. Notice that the CME is the classical counterpart of the last equality and
there might be obstruction (“anomalies") in finding such an Ω. If everything works, however, one
can consider the cohomology of Ω. Its degree zero component may be thought of the quantization
of the reduction of C.

4.1 BFV as a boundary theory

In Section 3 we saw that a d-dimensional Lagrangian field theory associates a space CΣ with
a closed (often exact) two-form ωΣ to a (d− 1)-dimensional manifold Σ. It was part of the as-
sumptions that CΣ is a manifold and that ωΣ is presymplectic. Following the description above, we
now associate to Σ a BFV manifold (F ∂

Σ
,ω∂

Σ
,Q∂

Σ
). (The upper symbol ∂ is a reminder that this

is the boundary construction as in the following we will have a similar construction, with similar
notations, for the bulk.) If we work in the settings of subsection 3.4, then we take F∂

Σ
to be the

degree zero part of F ∂
Σ

.
An important remark is that other cohomology groups may turn out to be nontrivial. As an

example, consider first-order electrodynamics as in example 3.11. Recall that the space of boundary
fields on Σ is AΣ×Ωd−2(Σ) whereas CΣ =AΣ×Ω

d−2
cl (Σ). To implement the BFV construction we

add odd fields c ∈Ω0(Σ) of degree +1 and b ∈Ωd−1(Σ) of degree−1 and consider the BFV action
SΣ =

∫
Σ

cdB. The Hamiltonian vector field Q acts trivially on c and B. On the other hand Qb = dB
and QA = dc. So the BFV cohomology yields functions on H0(Σ)[1]×A f lat

Σ
/gauge×Ω

d−2
cl (Σ)×

Hd−1(Σ)[−1]. The extra factors, in degree 0 and d−1, express the stacky nature of the reduction
and become even more important in the nonabelian Yang–Mills case.

5. The BV formalism for manifolds with boundary

The BV formalism [5] deals with the degeneracy problem for an action in the bulk. In the BV
case, as in Sections 2 and 3, we have a d-dimensional Lagrangian field theory, i.e. the assignment
of a space of fields FM and an action SM =

∫
M L over FM to a d-manifold M. But in addition we have

a distribution DM ⊂ T FM on FM which describe the “symmetries’. This distribution does not have
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to be given by an action of a Lie group. It is involutive and of finite codimension when restricted to
ELM. The construction aims at cohomologically resolving the quotient of ELM by the symmetries.
Let us sketch the last point assuming at the beginning that our manifold M has no boundary. The
BV construction proceeds by

1. first extending the space of fields FM to the supermanifold DM[1]⊂ T [1]FM (i.e., one assigns
degree 1 and the according Grassmann parity to coordinates on fibers of DM),

2. extending the action SM to a new local functional SM on FM := T ∗[−1]DM[1] which has the
two following properties:

(a) It satisfies the classical master equation (CME) {SM,SM} = 0, where { , } is the
(degree +1) Poisson bracket associated to the canonical symplectic form (of degree
−1) on FM, and

(b) the restriction of DM to ELM is the same as the restriction of the characteristic distri-
bution of the coisotropic submanifold E L M of critical points of SM to its degree zero
part.

The solution can be found by cohomological perturbation theory. In order to preserve locality, it
is often necessary to extend the above procedure by allowing dependent symmetries and resolving
their relations by adding new variables of degree 2 (ghosts for ghosts) and so on. The final result is
anyway a supermanifold with odd symplectic form of degree −1 and a solution of the CME.

Remark 5.1. The CME is also the starting point for making sense of the integral of e
i
h̄ SM over FM.

In the saddle point approximation, one expands around critical points, i.e., points of ELM. If the
action is degenerate—namely, its Hessian at a critical point is degenerate—one cannot even begin
the perturbative expansion. However, if one quotients by a distribution as above, one saves the game
(or at least reduces the problem to a residual finite dimensional integration). This quotient might
be very singular; also notice that in general situations the distribution is not even involutive outside
of ELM; and even if everything worked out properly, it might be difficult to define the perturbative
functional integral on the quotient, which might have a much more involved manifold structure.
The way out is to extend SM to a (possibly h̄-dependent) solution S̃M of the quantum master
equation (QME) on FM. Namely, one picks a Berezinian ρ (formally, since we are working in an
infinite dimensional context) on FM and defines the BV Laplacian ∆ by ∆ f = 1

2 divρ X f , where X f

is the Hamiltonian vector field of a function f and divρ is the divergence operator with respect to ρ .
One requires ρ to restrict to the original measure on FM and to be compatible with the symplectic
structure: namely, one requires ∆2 = 0. The QME then reads 1

2{S̃M,S̃M}− ih̄∆S̃M = 0. The
limit of S̃M for h̄→ 0 solves the CME and is taken to be SM. One actually starts with SM

and tries to extend it to a formal power series in h̄ that solves the QME if there are no obstructions
(“anomalies"). A consequence of the QME is that the integral of e

i
h̄ S̃M on a Lagrangian submanifold

is invariant under deformations of the Lagrangian submanifold. One then replaces the originally ill-
defined integral over FM by the integral over a deformation of the Lagrangian submanifold DM[1]
where it is well-defined. We refer to [23] for a good introduction.
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Definition 5.2. A BV manifold is a triple given by a supermanifold with additional Z-grading, an
odd symplectic form of degree −1 and a function of degree 0 that satisfies the CME, i.e. Poisson
commutes with itself.

We may then formulate the result of the BV construction in d-dimensional Lagrangian field
theory as the assignment of a BV manifold (FM,ωM,SM) to a d-manifold M. Notice that as a
consequence of the CME the Hamiltonian vector field QM of SM,

ιQM ωM = δSM, (5.1)

is cohomological, i.e., it satisfies [QM,QM] = 0.

5.1 The case with boundary

Now let us allow M to have a nonempty boundary. Since the BV construction is local it still
assigns to M a quadruple (FM,ωM,SM,QM). It is still true that ωM is symplectic and that QM

is cohomological. On the other hand, SM is no longer its Hamiltonian. The problem is that (5.1)
involves integration by parts. We may overcome this problem working as in the previous Sections
(in particular, subsection 3.4).

Namely, we define the space F̃Σ of preboundary fields on a (d−1)-manifold Σ as the germs at
Σ×{0} of FΣ×[0,ε]. Integration by parts in the computation of δSΣ×[0,ε] yields a one-form α̃Σ on
F̃Σ. We denote by ω̃Σ its differential—which we assume to be presymplectic—and by (F ∂

Σ
,ω∂

Σ
) its

reduction. We also assume that α̃Σ reduces to a connection one-form α∂
Σ

on F ∂
Σ

. In most examples,
α∂

Σ
will be an actual one-form.
If we take care of boundary terms, instead of (5.1) we now get

ιQM ωM = δSM + π̃
∗
Mα̃∂M, (5.2)

where π̃M is the natural surjective submersion from FM to F̃∂M. If we denote by πM the composi-
tion of π̃M with the natural surjective submersion from F̃∂M to F ∂

∂M, we finally get the fundamental
equation of the BV theory for manifolds with boundary [7]:

ιQM ωM = δSM +π
∗
Mα

∂

∂M, (5.3)

To complete the description of the theory with boundary, we still have to study QM. The first
obvious remark is that it is π̃M-projectable. More precisely, for every Σ, there is a uniquely defined
vector field Q̃Σ (automatically cohomological) on F̃Σ such that for every M the vector field QM

projects to Q̃∂M: namely, Q̃∂M(φ) = d
φ̂

π̃M(QM(φ̂)), ∀φ ∈ F̃∂M and ∀φ̂ ∈ π̃
−1
M (φ).

Let us now differentiate (5.2). Using the fact that ωM is closed, we get LQM ωM = π̃∗Mω̃∂M

(which by the way proves that QM is not even symplectic). We now apply LQM to this equation.
Using the fact QM is cohomological and projectable, we get π̃∗MLQ̃∂M

ω̃∂M = 0. Since π̃M is a
surjective submersion, we conclude that LQ̃∂M

ω̃∂M = 0.

Actually, this proves that, for every Σ, ω̃Σ is Q̃Σ-invariant. This implies that Q̃Σ is projectable
to the reduction. To show this, we have just to check that [Q̃Σ,X ] belongs to the kernel of ω̃Σ for
every X in the kernel. This follows from the identities ι[Q̃Σ,X ]ω̃Σ = [LQ̃Σ

, ιX ]ω̃Σ = 0.

We conclude that, for every Σ, there is a uniquely defined vector field Q∂
Σ

on F ∂
Σ

(automatically
cohomological and symplectic) to which Q̃Σ projects. This has two fundamental consequences:
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1. To each (d−1)-dimensional manifold Σ, we now associate a BFV manifold (F ∂
Σ
,ω∂

Σ
,Q∂

Σ
),

see definition 4.2.

2. For each d-manifold M, QM πM-projects to Q∂
M.

These two final observations together with (5.3) constitute the framework of the BV formalism
extended to manifolds with boundaries [7], which we call the BV-BFV formalism.

Definition 5.3. We define a BV-BFV manifold over a given exact BFV manifold (F ∂ ,ω∂ =

dα∂ ,Q∂ ) as a quintuple (F ,ω,S ,Q,π) where F is a supermanifold with additional Z-grading, ω

is an odd symplectic form of degree −1, S is an even function of degree 0, Q is a cohomological
vector field and π : F →F ∂ is a surjective submersion such that

1. ιQω = dS +π∗α∂ ,

2. Q∂ = dπQ.

The definition may be extended to BV-BFV manifolds over a BFV manifold with connection α∂ .
This requires introducing a line bundle over F ∂ and viewing exp( i

h̄S ) as a section of the pulled-
back bundle.

Remark 5.4 (Axiomatization). We may now reformulate Lagrangian field theories axiomatically
as a "functor" from some "cobordisms category" to a category where the objects are BFV mani-
fold with connection and the morphisms are BV-BFV manifolds over the Cartesian product of the
objects.

Remark 5.5. Notice that using this method the BFV construction associated to the boundaries is
obtained from the BV construction in the bulk and does not have to be done independently. Also
recall that, by general principles [21], Q∂

Σ
is Hamiltonian with a uniquely defined odd Hamiltonian

function S ∂
Σ

of degree +1. This yields as a consequence the following generalization of the CME

QM(SM) = π
∗
M(2S ∂

∂M− ιQ∂

∂M
α

∂

∂M), (5.4)

which can be proved as follows. First differentiate (5.3) to obtain LQM ωM = π∗Mω∂

∂M. Then apply
ιQM to (5.3) and use the obtained equation and the fact that QM is cohomological and projects to
Q∂

∂M to obtain the differential of (5.4). Then observe that the differential of a function of degree 1
vanishes if and only if the function itself vanishes (we have no constants in degree +1).

Example 5.6 (First-order electrodynamics). We return to example 3.11 (first-order YM is ex-
plained in details in [7]; we leave the usual second-order formulation as an exercise to the reader).
Since we want to implement gauge transformations for A, we define DM[1] by adding the “ghost
field" c ∈ Ω0(M) which is odd and of degree +1. Gauge transformations are given by the vector
field dc in the A-direction (here d denotes the de Rham differential on M). The BV space of fields
FM = T ∗[−1]DM[1] is then

Ω
0(M)[1]×AM×Ω

2(M)[−1]×Ω
d−2(M)×Ω

d−1(M)[−1]×Ω
d(M)[−2].
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We add a superscript + to denote the canonically conjugate coordinates (a.k.a. antifields) to the
fields: namely, B+ ∈Ω2(M)[−1], A+ ∈Ωd−1(M)[−1], c+ ∈Ωd(M)[−2]. The BV action is just

SM =
∫

M
B∧dA+

1
2

B ∧∗B+A+∧dc.

The cohomological vector field QM acts as follows (we omit the terms where the action is zero):

QMA = dc, QMA+ = dB, QMB+ = ∗B+dA, QMc+ = dA+.

On the space of preboundary fields on a (d−1)-manifold Σ, we get α̃Σ =
∫

Σ
B ∧ δA+A+ δc. We

immediately see that the kernel of ω̃Σ consists of all jets of B+ and c+ and all jets higher then the
zeroth of A,B,A+,c. Moreover, α̃Σ is also basic. We then get

F ∂
Σ = Ω

0(Σ)[1]×AΣ×Ω
d−2(Σ)×Ω

d−1(Σ)[−1].

Projecting the cohomological vector field, we get the cohomological vector field Q∂
Σ
, which acts by

Q∂ A+ = dB and Q∂ A = dc and has Hamiltonian function S∂
Σ
=

∫
Σ

cdB.

5.2 EL correspondences

We now define the space E L M as the space of zeros of QM and L∂M as its image under πM.
This generalizes the classical story of evolution correspondences and evolution relations. Notice
that (5.3) implies that L∂M is isotropic, and we are going to assume that it is actually Lagrangian.
There are two problems to be tackled though: the first is that E L M is not smooth in general, the
second is that we are usually interested in reduction, which is even more singular in general.

One way to avoid the first problem is by working with an algebraic description only, but
we will often pretend that we are dealing with smooth manifolds. Namely, instead of E L M we
consider its vanishing ideal IE L M , i.e., the ideal generated by functions of the form QM f , with
f ∈ C∞(FM). This ideal is a Lie algebra with respect to the Poisson bracket, which amounts to
saying that E L M is coisotropic. If M has no boundary, this is obvious since QM is symplectic and
squares to zero. If M has a boundary, this is still true since, to generate it, it is enough to consider
functions f that “vanish near the boundary" (namely, functions in π∗M,UFU where U is compact in
the interior of M and πM,U is the restriction map). The characterstic distribution DM is generated
by the Hamiltonian vector fields of functions of the form Q f . If f is as above, we have Q f = {S, f}
and hence the characteristic distribution is generated by vector fields of the form [Q,X ] where X
is a Hamiltonian vector field vanishing near the boundary (we assume here that components of
Q on EL are differentiably independent). The reduction E L M of E L M by DM carries again a
symplectic form of degree −1 (if it is singular, this has to made sense of; e.g., by considering the
open smooth locus or using the language of derived algebraic geometry [27]).

If M has a boundary, it makes sense to consider another reduction, namely by the distribution
DQ

M ⊃ DM generated by vector fields of the form [Q,X ] where X is Hamiltonian (but with no
vanishing condition). More precisely, observe that, since QM projects to Q∂

∂M, we have that L∂M is
contained in E L ∂

∂M, the space of zeros of Q∂

∂M, which is also coisotropic. Hence its characteristic
distribution, generated by vector fields of the form [Q∂

∂M,X ] with X Hamiltonian, is tangent to L∂M.
Now let ` be a point in L∂M and let [`] denote its orbit. Then DQ

M restricts to π
−1
M ([`])∩E L M and
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we denote by E [`] its quotient. The union of the E [`]s over [`] ∈ L∂M is the quotient E L MQ of

E L M by DQ
M, which is by itself a quotient of the symplectic reduction E L M.

In [7] it is shown that each fiber E [`] carries a symplectic form of degree−1. This follows from
a different but equivalent description of this quotient. Namely, pick a Lagrangian submanifold L

of F ∂

∂M transversal to L∂M at `. Then one shows that π
−1
M (`)∩E L M is coisotropic in π

−1
M (L )

and that its reduction is E [`].
We call E [`] the moduli space of vacua at [`] and we assume it to be finite dimensional (if this

is not the case, it means that we have not considered enough symmetries).
Notice that there is in principle a second (usually coisotropic) submanifold C ′

Σ
of FΣ. Namely,

the elements of FΣ are zeroes of Q∂
Σ

which can be extended as zeroes of QΣ×[0,ε] for some ε > 0.
It is meaningful to require C ′

Σ
= CΣ. Otherwise, it again means that we have not taken enough

symmetries into account.

Remark 5.7 (Axiomatization). If reduction were always nice, we could get the following induced
axiomatization of a d-dimensional Lagrangian field theory in the BV-BFV formalism. To a (d−
1)-manifold Σ we associate a symplectic supermanifold E L ∂

∂M and to a d-manifold M we associate

the “evolution correspondence" E L MQ→ E L ∂
Σ which has a Lagrangian image and whose fibers

are finite dimensional symplectic manifolds in degree−1. If we cut a manifold M along a subman-
ifold Σ, we may try to recover E L M out of the composition of the evolution correspondences, and
some more data, for the two halves. This problem started to be addressed in [7].

Example 5.8 (Electrodynamics—continued). In [7], to which we refer for details, it is shown that,
in the case of first-order electrodynamics, for any ` we have

E [`] ' H1(M,∂M)⊕Hn−1(M)[−1]⊕H0(M,∂M)[1]⊕Hn(M)[−2],

which is indeed finite-dimensional. (Here H∗(M,∂M) denotes cohomology relative to the bound-
ary.)

5.3 Extended theories

The construction in subsection 5.1 may be applied iteratively to go to lower and lower dimen-
sion. Namely, there we have obtained a BFV structure (F ∂

Σ
,ω∂

Σ
,Q∂

Σ
), to which we canonically

associate a function S ∂
Σ

, for every (d− 1)-dimensional manifold Σ without boundary; yet, since
the construction is local, we can use these data on a (d−1)-dimensional manifold Σ with boundary.
Again what is not going to work is the condition that S ∂

Σ
is the Hamiltonian function of Q∂

Σ
. We

correct this equation using the induced one-form on the space of preboundary fields on ∂Σ and
reduce by the kernel of the two form. Since S ∂

Σ
has degree 1, this will also be the degree of the

induced symplectic form.
As a result, to a (d−2)-manifold γ we associate a triple (F ∂∂

γ ,ω∂∂
γ = dα∂∂

γ ,Q∂∂
γ ), where ω∂∂

γ

is an odd symplectic form of degree +1 and Q∂∂
γ is a cohomological, symplectic vector field (hence

automatically Hamiltonian with a uniquely defined even Hamiltonian function S ∂∂
γ of degree +2).

To a (d−1)-manifold Σ with boundary we now associate a quintuple (F ∂
Σ
,ω∂

Σ
,Q∂

Σ
,S ∂

Σ
,π∂

Σ
), where

ω∂
Σ

is an even symplectic form of degree 0, Q∂
Σ

is a cohomological vector field, S ∂
Σ

is an odd
function of degree +1 and π∂

Σ
: F ∂

Σ
→F ∂∂

∂Σ
is a surjective submersion such that
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1. ιQ∂
Σ

ω∂
Σ
= dS ∂

Σ
+(π∂

Σ
)∗α∂∂

∂Σ
,

2. Q∂∂

∂Σ
= dπQ∂

Σ
.

We can now consider the zero locus E L ∂∂

∂Σ
of Q∂∂

∂Σ
, which is coisotropic and contains L∂

Σ
:=

π∂
Σ
(EL∂

Σ
). Repeating the same analysis as above, we conclude that E L ∂

ΣQ
→ E L ∂∂

∂Σ
has fibers

with a symplectic structure in degree zero. Notice that in general these fibers will not be finite
dimensional (it would be too restrictive to ask for that).

The construction may now be iterated to (d− 2)-manifolds with boundaries. Every time the
degree of the symplectic form and of the action increase by 1. However, it probably makes sense
to continue this construction only as long as the E ∂∂ ...∂

[`] spaces are finite dimensional.
Typically, at some point we get S ∂∂ ...∂ = 0, so that E ∂∂ ...∂

[`] is the whole space of fields in
the bulk over a point on the boundary and this will usually be infinite dimensional.

On the other hand, in topological field theories of the AKSZ type [2], this construction can
be iterated down to dimension 0 always with finite dimensional E ∂∂ ...∂

[`] fibers; see [7] for details.
Hence we can speak of fully extended field theories. These looks like the BV-BFV version of [18].

Example 5.9 (Electrodynamics—continued). In example 5.6, we got the BFV structure for first-
order electrodynamics. Applying the above reasoning, we first consider the space of preboundary
fields with one-form α̃∂∂

γ =
∫

γ
Bδc. The kernel of its differential consists of all jets for A and A+

and and all jets higher than the zeroth for B and c, and α̃∂∂
γ is basic. Hence we get

F ∂∂
γ = Ω

0(γ)[1]×Ω
d−2(γ).

One can also easily realize that Q∂∂
γ = 0. Moreover, one can also compute, see [7],

E L ∂
ΣQ

= Ω
1(Σ)/Ω

1(Σ)exact ⊕Ω
d−2
closed(Σ,∂Σ)⊕H0(Σ,∂Σ)[1]⊕Hd−1(Σ)[−1],

which is infinite dimensional for d > 2. If d = 2, this space is finite dimensional, so it makes sense
to extend the theory down to codimension two. This is another way of observing that two-dimen-
sional electrodynamics is almost topological (this holds also for nonabelian Yang Mills theories).

5.4 Perturbative quantization

We may finally present the generalization of the formalism discussed in subsection 3.3 to
the case of degenerate Lagrangians in the BV-BFV formalism. For simplicity, we assume that
the boundary one-form α∂

∂M is globally well-defined and that F ∂

∂M is endowed with a Lagrangian
foliation on which α∂

∂M vanishes and which has a smooth leaf space B∂M. The space of func-
tions on B∂M defines the boundary graded vector space H∂M. Let p∂M be the projection F ∂

∂M →
B∂M. To produce a state ψM associated to the bulk M we first have to choose an embedding of
E L [p−1

∂M(φ)∩LM ] into π
−1
M (p−1

∂M(φ)) and a tubular neighborhood thereof. Then we have to pick a
Lagrangian submanifold Lφ in the fiber of this tubular neighborhood. Finally,

ψM(φ) =
∫

Lφ

e
i
h̄ SM(Φ) [DΦ].

Notice that ψM(φ) is also a function on the moduli space of vacua E L [p−1
∂M(φ)∩LM ]. As already

observed, each of these spaces carries a symplectic structure of degree −1 and is by assumption
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finite dimensional. The integral has to be computed perturbatively. One can then define a BV
operator ∆ on the moduli spaces of vacua and (if the theory is not anomalous) a coboundary operator
Ω on H∂M. By general BV arguments we expect that ψM satisfies the following generalization of
the QME

h̄2
∆ψM +ΩψM = 0, (5.5)

whose classical limit should correspond to (5.4).
An example where this kind of quantization has been performed and a solution to (5.5) has

been explicitly obtained is described in [1]. Other examples are currently being studied [8].

A. Some useful facts

A relation from a set X to a set Y is just a subset of X ×Y . If R1 is a relation from X to Y and
R2 is a relation from Y to Z, the composition R2 ◦R1 from X to Z is defined as

R2 ◦R1 = {(x,z) ∈ X×Z : ∃y ∈ Y (x,y) ∈ R1, (y,z) ∈ R2}.

The composition is associative. If φ : X→Y and ψ : Y → Z are maps, then graph(ψ)◦graph(φ) =
graph(ψ ◦φ).

If X and Y are symplectic manifolds, a relation from X to Y is called canonical if it is a
Lagrangian submanifold. A map φ : X → Y is a symplectomorphism iff graph(φ) is a canonical
relation. The composition of of two canonical relations in general is not a submanifold. On the
other hand, being Lagrangian is preserved if X and Y are finite dimensional; otherwise one can
only ensure being isotropic in general. A composition of isotropic relations is again isotropic.

In this paper, we often work with presymplectic and weakly symplectic forms. Recall that a
closed two-form ω is presymplectic if it has constant rank and is weakly symplectic if it defines
an injective linear map from the tangent to the cotangent bundle (in finitely many dimensions, this
implies that the form is also symplectic).

The notion of Lagrangian submanifold naturally extends to presymplectic and weakly sym-
plectic manifolds. A submanifold L of (M,ω) is called Lagrangian, if TxL⊥ = TxL ∀x ∈ L. Here

TxL⊥ := {v ∈ TxM : ωx(v,w) = 0 ∀w ∈ TxL},

which makes sense also if ωx is degenerate. Similarly, L⊂M is coisotropic if T L⊥ ⊂ T L and it is
isotropic when T L⊂ T L⊥. Here ⊥ means orthogonal subbundle with respect to the two-form ω .
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