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1. Introduction

One of the main open issues in theoretical high energy physithe unification of all forces,
including gravity, so that all interactions correspond teanderlying symmetry. At low energy
scales, one can consider an effective theory with physicgliescribed by the sum of the Einstein-
Hilbert and the Standard Model action. However, while thst firart of this action is based upon
diffeomorphism invariance, the second one is based upemnialt symmetries of a gauge group.
This different nature of symmetries for the two parts of tifeaive action may be at the origin to
the difficulty of finding a unified theory of all interactioncluding gravity. As one approaches
the Planck energy scale the quantum nature of space-tirralgaitself and this simplistic effective
theory breaks down. Close to the Planck scale the apprepitanulation of geometry should
be within a quantum framework and the nature of space-timgldvchange in a way so that one
can recover the low energy picture of diffeomorphism andrmil gauge symmetries. A proposal
that could lead to a quantum nature of space-time has bemdited within noncommutative
geometry.

In the framework of noncommutative spectral geometry, itlyaand the standard model fields
were put together into matter and geometry on a honcommatapace made from the product
of a four-dimensional standard commutative manifold by aaeonmutative internal space. The
approach is based on a simple idea: using a very simple matfeahinput, namely the choice of a
finite dimensional algebra, one can derive [1] the full coexfil of the standard model Lagrangian
coupled to gravity, by employing the formalism of noncomative geometry and spectral action.

Noncommutative spectral geometry offers an elegant appréa unification, based on the
symplectic unitary group in Hilbert space, rather than oitdidimensional Lie groups. The model
offers a unification of internal symmetries with the gratidaal ones. All symmetries arise as
automorphisms of the noncommutative algebra of coordinate a product geometry. Due to
the lack of a full quantum gravity theory, which priori should define the geometry of space-
time at Planckian energy scales, we will follow an effectihieory approach and consider the
simplest case beyond commutative spaces. Thus, belowdsd t the Planck energy scale, space-
time will be considered as the product of a Riemanian spinifolanby a finite noncommutative
space. At higher energy scales space-time should beconwmmonutative in a nontrivial way,
while at energies above the Planck scale the whole conceggarhetry may altogether become
meaningless. As a next but highly nontrivial step, one sha@ainsider noncommutative spaces
whose limit is the almost commutative space considered here

Itis worth clarifying that the noncommutative spectral gextry approach discussed here, goes
beyond the noncommutative geometry notion employed initt@ture to implement the fuzziness
of space-time by means ¢f ,x1] =6/, where@'l is an anti-symmetric, reat| x d (d stands for
the dimension of space-time) matrix, axicddenote spatial coordinates.

In what follows, we briefly present the elements of nonconativg spectral geometry [2, 3]
as an approach to unification and highlight the relation betwthe doubling of the algebra and the
gauge fields [4], an essential element to make the link withstandard model of particle physics.
We then argue that the doubling of the algebra is related dsighition, which incorporates the
seeds of quantization [4]. After a short review on the phesooiogical predictions of this purely
geometric approach to the standard model, we discuss soitgeamismological consequences [5,
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6,7,8,9, 10].

2. Elements of noncommutative spectral geometry

We consider the geometry of space-time as being describéaettgnsor productZ x .% of
a four-dimensional smooth compacRiemanian manifold# by a tiny discrete finite noncom-
mutative space# composed of just two points. The geometry is thus descrilyethdo product of
a continuous geometry for space-time by an internal gegnietrthe standard model of particle
physics. The finite geometry will be chosen so that it is one of the simplest and most nktura
finite noncommutative geometries of the right dimensiondl@esthe fermion doubling problem.
The noncommutative nature of the finite discrete spacds given by the spectral triple
(d7,#7,2%), where all ingredients are finite dimensional. In the s@adhiple, <7z is an
involution of operators on the finite-dimensional Hilbgsase.7Z» of Euclidean fermions an@ &
a self-adjoint unbounded operator.i#z. The operatoZ # is such thallZ s = €' 243, whered
is an anti-linear isometry of the finite dimensional Hilbgptace, with the properties

P=¢, 6 Jy=¢"yJ;

y is the chirality operator and, ¢’,e” € {+1}.

Let us discuss the physical reason for introducing the diecspace#. There is a distinc-
tion between the metric (spectral) dimension, specifiedneyttehavior of the eigenvalues of the
Dirac operator, and the KO-dimension (K-theoretic dimenji an algebraic dimension based on
K-theory. We first start with the metric dimension. The raleivDirac operator for space-time is
the ordinary Dirac operator on a curved space-time, thusigic dimension is equal to four. The
internal Dirac operator consists of the fermionic mass ixaivhich has a finite number of eigen-
values, and therefore the internal metric dimension is ktpuzero. Thus, the metric dimension of
the.# x % geometry is just four, the same as that of the ordinary sfiazemanifold. We proceed
with the KO-dimension. There are 8 possible combinatiomgtfe numbers, ', ¢”, leading to a
KO-dimension modulo 8. To resolve the fermion doubling ealy by projecting out the unphysi-
cal degrees of freedom resting in the internal space, thetregture of the finite geometry turns
out to be such that its KO-dimension is equal to six, leadingete’, ") = (1,1,—1). Setting the
KO-dimension of the product spac# x .% to be 10~ 2 modulo 8, allows one to impose simul-
taneously the reality and Weyl conditions in the Minkowsk@ntinued forms. Thus, the reason
for introducing.% is to correct the KO-dimension from four to ten (modulo 8)other words, the
fermion doubling problem requires [11, 12] crossing theimady four-dimensional continuum by
a space of KO-dimension 6.

The spectral geometry is given by the product rules:

A =Co(M) DAy , H=\2(MOHs , D=DyD1+V%d Dz,

whereL?(.#,9) is the Hilbert space df? spinors andZ , is the Dirac operator of the Levi-Civita
spin connection on the four-dimensional manifodd. The chirality operator iy = @ y# and the

1The Euclidean space-time manifold is taken to be compadifoplicity.
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anti-unitary operator on the complex Hilbert spacéisJ , & J4, with J , the charge conjugation.
In order to avoid the fermion doubling problem, one must take

X=1,3:97 =257 , IzVr = V77 . (2.1)

In what follows we only consider the noncommutative disergpaces ; to simplify the notation
we omit the subscript:.

The main input of this purely geometric approach to the stashdnodel of particle physics is
the choice of a finite dimensional involutive algebra [2, B].the context of left-right symmetric
models, the algebra is a direct sum of the matrix algeMgsC) with N = 1,3 with two copies
H, ,HRg of the algebra of quaterniori§, namely

AR ZC@HL@HR@MQ,(C) ;

the left-right symmetric algebrarl he fermions of the standard model can be identified withsiésba
for a sum of 3 (i.e. the number of generations, which is carsid here to be equal to 3) copies of
the representation of the algeb#dr, which is the sum of the irreducible bimodules of odd spin.
The algebraz r admits a natural sub-algebta® M3(C), corresponding to integer spin.

However, our aim is to construct a model that accounts forsimasheutrinos and neutrino
oscillations, thus it cannot be a left-right symmetric mlodie will therefore select a sub-algebra
of the left-right symmetric algebra, which breaks lefthigsymmetry and leads to the involutive
algebra:

{A,qu,A,m) |AeC,q.eH, meM3(C)},

isomorphic toC @ H & M3(C). The algebra of quaterniortsil ¢ M,(C) is

{(5)mree

Consider a finite dimensional Hilbert spag€ of dimensionn, with an anti-unitary operatad,
such thatJ® = 1. Noncommutative geometry imposes constraints on thdlitive algebras of
operators in the Hilbert space. The involutive algebfanust be such that

@b’ =0, Vabe o,

whereb® = Jb*J~1 and the representation of andJ in # is an irreducible representation. To get
an irreducible solution, the dimensiormust be eithek? or 2k?. Classifying all irreducible finite
noncommutative geometries of KO-dimension six, it was sh{i] that onlyn = 2k? can avoid
fermion doubling. There are thus six possibilities for thgeara.e/, namely

{M(C) or M(R) or Ma(H)} & {Mk(C) or Mc(R) or Ma(H)} .

It turns out that five of these possibilities are ruled ouf[1ehposing an anti-linear isomettysuch
that!? = —1 in just one of the algebras and letting the other one freealf)ebracy must be then
the following one [15]:

o = Ma(H) @ My (C) with k=2a.

2To obtain the Lagrangian of the standard model of particksius we assume quaternion linearity.
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The choicek = 4 is the first one that produces the correct numbetcf 16 fermions in each of
the three generation’s the number of generations is a physical input.

For commutative geometries, a real variable described yabvalued function on a space
is given by the corresponding algebra of coordinates, wittenoncommutative geometries is
represented as operators in a fixed Hilbert space. Sinceoeallinates are represented by self-
adjoint operators, all information about space is encodetthé algebra of coordinates’, which
is related to the gauge group of local gauge transformationhile the choice of the algebra
constitutes the main input of this model, the choice of Hillspace is irrelevant.

The operatoZ corresponds to the inverse of the Euclidean propagatoraiiéms. It is given
by the Yukawa coupling matrix which encodes the masses otbmentary fermions and the
Kobayashi—-Maskawa mixing parameters. The commutta], with a € <7, plays the rdle of the
differential quotientda/ds, with dsthe unit of length. The familiar geodesic formula

d(x.y) = inf/ds 2.2)
Jy

(the infimum is taken over all possible paths connectingy), which is used in Riemanian geom-
etry to determine the distanckx,y) between two pointg andy, is replaced in noncommutative
geometry by

d(x,y) =sup{[f(x) — f(y)| : f € #,]|[D, f]|| <1} (2.3)

(whereD is the inverse of the line elemeds). To describe noncommutative geometry, we will
focus on the Dirac operata?, instead of the metric tensay,, which is used for spaces with
commuting coordinates. The standard model fermions peothé Hilbert space?” of a spectral
triple for the algebracs, while the bosons are obtained through inner fluctuationthefDirac
operator of the product geometry.

Since all experimental data are of a spectral nature, we aiexteacting information, from
our noncommutative geometry construction, which is of acspé nature. The spectral action
functional in noncommutative spaces is analogous to theiéotiansform in spaces for which
spatial coordinates commute. We then apply the spectrairaptinciple, stating that the bare
bosonic* Euclidean action is the trace of the heat kernel associattdtiae square of the Dirac
operator and is of the form Tf(Z/\)); f is a cut-off function and\ fixes the energy scale. This
action can be seed laWilson as the bare action at energy scaleThus, following the Wilsonian
approach, one can obtain physical predictions for the st@hohodel parameters by running them
down to low (present) energy scales through the renorntadizgroup equations. Let us emphasize
that this picture is only valid at high energies (at the segléaken to be the unification scale) and
the spectral action must be considered in the Wilsoniancgmby, where all coupling constants
are energy dependent and follow the renormalization grayaons. Since botty and A have
physical dimensions of a mass, there is no absolute scaldhimithey can be measured. The role
of the cut-off scale\ is equivalent to keeping only frequencies smaller than thesscalé\. Note

3|f at the CERN Large Hadron Collider new particles are digred, one may be able to include them by considering
a higher value fok.

4The fermionic term can be included by addifiy2)(Jy, 2), wherel is the real structure on the spectral triple
andy is a spinor in the Hilbert space of the quarks and leptons.
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that Tr(f(2/N)) is the fundamental action functional that can be used ngtatrthe classical level
but also at the quantum level, after Wick rotation to Eudidsignature.

The formalism of spectral triples favors Euclidean ratheart Lorentzian signaturg The
discussion of phenomenological/cosmological aspecthetheory relies on a Wick rotation to
imaginary time, into the Lorentzian signature. While sblesfrom the phenomenological point of
view, there exists as yet no justification on the level of thdarlying theory.

In conclusion, one can obtain the full standard model mitiyr@upled to Einstein and Weyl
gravity, plus higher order nonrenormalizable interacti@uppressed by powers of the inverse of
the mass scale of the theory, through the action functidijal [

y:Tr(f (%))Jr%uw,mm , West (2.4)

applied to uni-modular inner fluctuations
D — In=D+A+IN;
A= A* is a self-adjoint operator of the form

A:Za,-[@,bj] , aj,bjea .
J

Using heat kernel methods, the traceg fiza/A)) can be written in terms of the geometrical
Seeley-de Witt coefficients,, which are known for any second order elliptic differentiglerator,
asyem_oFs n/\*"a, , where the functior is defined such thdt(22) = f(Za). Thus, the bosonic
part of the spectral action can be expanded in powersiafthe form [16, 17]

@A>> k —K
Tr( f| — ~ fk\ 9, + f(0){ g0+ C(1) . 2.5
(1(R)~ il s 100+ 0 @5

The momentéfy are defined asx = [5” f (u)u*~1du for k > 0 and fo = f(0), the noncommutative
integration is defined in terms of residues of zeta functi@ygs) = Tr(|Za| ®) at poles of the zeta
function, and the sum is over points in the dimension specwotithe spectral triple.

For the four-dimensional Riemanian geometry, the tracsessed perturbatively in terms
of the geometrical Seeley-deWitt coefficieats as [18]:

9,
m <f (TA>> ~ 2N*f4a0 + 2N Foap + foaa+ -+ A F @ o+ (2.6)

The smooth even functioh, which decays fast at infinity, only enters in the multiptica factors:

f4:/ f(u)udu,
Jo

fp = ./Omf(u)udu,
f(0),

fo =

SThe issue of Euclidean versus Lorentzian signature is aisowuntered in the nonperturbative path-integral ap-
proach to quantum gravity.

£(29(0) . (2.7)
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Sincef is taken as a cut-off function, its Taylor expansion at zemoishes, therefore the asymptotic
expansion, Eq. (2.6), reduces to

Tr (f <%>> ~ 2N\* a9+ 2N\%foay + foaa ; (2.8)
the cut-off functionf plays a réle only through its momentg, f,, f4, which are three real parame-
ters, related to the coupling constants at unification, theitational constant, and the cosmological
constant, respectively. In the four-dimensional caseteima in/A* in the spectral action, Eq. (2.5),
gives a cosmological term, the term A? gives the Einstein-Hilbert action functional with the
physical sign for the Euclidean functional integral (pamad f, > 0), and the\-independent term
yields the Yang-Mills action for the gauge fields corresgngdo the internal degrees of freedom
of the metric. The scale-independent terms in the speattairahave conformal invariance.

The physical Lagrangian, obtained by applying the speetcsibn principle in the product
geometry, is entirely determined by the geometric inputnely the.# x .# space. It contains,
in addition to the full standard model Lagrangian, the EimsHilbert action with a cosmological
term, a topological term related to the Euler characteristithe space-time manifold, a conformal
Weyl term and a conformal coupling of the Higgs field to gravithe Higgs field is the vector bo-
son of the internal noncommutative degrees of freedom. Dertic action in Euclidean signature
reads [1]

1 1 o1
E * [k
54 :/<2—K§R+aoc,wpgc“”’“+yo+roR R +ZG'WG“V'+ZF,§’VF“V“
1 1
+ZB“"BW+§|D“H\2—N§\H\2 —&RIH2+AoH|Y) G d*x, (2.9)
where
) 121
KO = sarra 7
96f,A\2 — foc
3fo
@ = "o’
v — — (48f N~ A2t 10y
7_[2 4 2 4 )
11fo
0~ Gore
f ¢
2 212
= 2N\%-~2 -
1
EO - 1_2 )
b
Ao = W ; (2.10)

H is a rescaling
H=(Vafo/me,

of the Higgs fieldp to normalize the kinetic energy, and the momentigis physically related to
the coupling constants at unification.
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Notice the absence of quadratic terms in the curvaturegtiseonly the term quadratic in the
Weyl curvature and the topological tefRiR*. In a cosmological setting, namely for Friedmann-
Lemaitre-Robertson-Walker geometries, the Weyl termslzes. Notice also the term that couples
gravity with the standard model, a term which should alwag/ptesent when one considers gravity
coupled to scalar fields. It is important to emphasize thatrd#ations in Eq. (2.10) are tied to the
scale at which the expansion is performed. Thew ggiorino reason for the constraints to hold at
scales below the unification scale since they represent mere boundary conditfons

The geometric parameteasb, ¢, 0, ¢ describe the possible choices of Dirac operators on the fi-
nite noncommutative space. These parameters correspdimel Yokawa parameters of the particle
physics model and the Majorana terms for the right-handedrines. They are given by [1]

a=Tr (Y(*¢1>Y(m +Y(0) Yo + 3<Y(*T3)Y(T3> +Y<*i3>Y“3>>) ’

b=Tr ((Y(h)Ym))ZJr (Y(*ll)Y(ll))z—’_S (Y<73>Y<T3>>2+3 (Y<*i3>Y“3)>2> ’
c=Tr (YQYR) )
0=Tr ((YR*,YR)Z) ;

e = Tr (YR*,YRY(*“)Y(“)) : (2.11)

with Y1), Y(11), Y(13), Y(13) @andYr being (3 x 3) matrices, withYr symmetric. The¥ matrices are
used to classify the action of the Dirac operator and giveéidhaion and lepton masses, as well as
lepton mixing, in the asymptotic version of the spectralact The Yukawa parameters run with
the renormalization group equations of the particle prs/aiodel.

Itis worth noting that since running towards lower energpeglies that nonperturbative effects
in the spectral action cannot be any longer neglected, aujtsebased on the asymptotic expan-
sion and on renormalization group analysis can only holdefmty universe cosmology. Hence,
the spectral action at the unification scAleffers a framework to investigate early universe cos-
mological models. For later times, one should consider titlespectral action, a direction which
requires the development of nontrivial mathematical tools

3. Dissipation and the origin of quantization

The central ingredient of the noncommutative spectral gggnmodel, namely the doubling
of the algebra acting on the doubled Hilbert space, is alesgmt in the quantum mechanics for-
malism of the Wigner function

WPkt = g [ (6 9) [ gt o

and the density matrix

W(xe X1 = [POIXC) = W7 (WK D) (3.2)

60ne can find in the literature the unjustifiadsatzhat these boundary conditions are functions of the enargles
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Here we split the coordinatgt) of a quantum particle being into two coordinatest) andx_(t):

1

X () =X(0)+ Y0 and x (1) = x(t) — Hy(t) (32)

going forward and backward in time, respectively.
The forward and backward in time evolution of the density nradV(x,,x_,t) is then de-
scribed by two copies of the Schrédinger equation, as
O (X |p(t)|x-
RZOPONC) i o)) (3.3)
whereH = H, — H_ with H.. the two Hamiltonian operators.
Thus, the density matrix and the Wigner function requireitttieoduction of a doubled set of

coordinates and of their respective algebras. Equati@) {@plies that the eigenvalues Hif are
directly the Bohr transition frequencies

hVpm = En— Enm,

which was the first hint towards an explanation of spectrpigcstructure. This can be seen as
the connection between noncommutative algebra, speopimsexperiments and energy level dis-
cretization.

Moreover, the doubling of the algebra is implicit even in thessical theory when considering
the Brownian motion of a particle with equation of motion

mK(t) + yx(t) = £ (1) ; (3.4)
f(t) is a random Gaussian distributed force with
< FO)F(t') >noise= 2ykeT 3(t—t') . (3.5)

Equation (3.4) can be derived [19] from a Lagrangian in a o&a procedure, using a delta func-
tional classical constraint representation as a functlimegral. By averaging over the fluctuating
force f, one gets

. . i .
< O[MX+ yX— f] >noise= /DY< eXp[ﬁ/dt L (X,Y,X,Y)] >noise (3.6)
where
ZL(%Y%Y) = M+ 2 (9~ Y + Ty 37

Hence, the constraint condition at the classical levebohiced a new coordinajeand the standard
Euler-Lagrange equations are obtained:
do% 0% doss 075

dt 9y  dy ' dt ax  ox ' (3.8)

leading to
mX+yx=Ff, my—yy=0. (3.9)
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It is worth noting that the Lagrangian system, Egs. (3.79(3above was obtained in a completely
classical contexf in order to build a canonical formalism for a dissipativetsys. Thex-system
is anopen system; to set up the canonical formalism it is requiredlse it and this is done by
introducing its time-reversed copy, tlgesystem. The resultingx — y}-system is a closed one.

To highlight [4] the relation between the doubling of theeddga and the gauge field structure
let us consider the equation of the classical one-dimeatemped harmonic oscillator

MK+ yX+ kx =0 , (3.10)

with time independentn, y andk. As we have just discussed, in the canonical formalism fenop
systems the doubling of the degrees of freedom is requiredigh a way as to complement the
given open system with its time-reversed image, and thusimhtglobally closed system for which
the Lagrangian formalism is well defined. Considering thellagor in the doubled/-coordinate

my—yy+ky=0, (3.11)
and introducing the coordinates
x(t) +y(t) X(t) —y(t)
X (t) = ———= and x(t)= , 3.12
1(t) NG 2(t) NG (3.12)
the Lagrangian of this closed system takes the form
1, e, 1o e, @,
Z = ?n( 1+€A1) —fn(mxz—i-EAz) _2—mcz(A1 +A) —ed, (3.13)
where we have introduced the vector potential
B -
Ai:§5ijxj for i,j=1,2, (3.14)
with v
B= o (3.15)
and
&i=0 , é&np=-en=1; (3.16)

The Lagrangian Eq. (3.13) describes two particles with gfipaharge®; = —e, = ein the po-
tential

k
D= 2—e(x12 — X)) =Dy — Dy, (3.17)

with @; = (k/2/€)x;2, in the constant magnetic fieBldefined byB = [0 x A.

Thus, the doubled coordinate, e.g,acts as the gauge field componéatto which thex;-
coordinate is coupled, andce versa In conclusion, the energy dissipated by one of the two
systems is gained by the other, implying that the gauge figtkl @s the bath or reservoir in which
the system is embedded [4].

Following 't Hooft’s conjecture [20], stating that thereeaclassical deterministic models for
which loss of information might lead to a quantum evolutiae,argue [4] that the noncommutative

"Note thath has been introduced for dimensional reasons.

10
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spectral geometry classical construction carries imfglicits feature of the doubling of the algebra
the seeds of quantization. We will show that the Hamiltoroéa classical damped harmonie
oscillator and its time-reversed image, thescillator, belongs to the class of Hamiltonians for
which this conjecture was proposed.

The system’s Hamiltonian can be written as [21, 22]

2
H= Zx pi fi(a), (3.18)

with the functionsfy, f, given by

fi(q)=2Q , f(q)=-2r, (3.19)

Y oo S Y withks ¥
r_2m’Q_ m( 4m) with k>4m. (3.20)

The nonvanishing Poisson brackets &g pi} = 1.

The Hamiltonian Eg. (3.18) belongs to the class of Hamitiosiconsidered by 't Hooft. The
fi(q) are nonsingular functions of the canonical coordingtesd the equations for thggs, namely
G = {a,H} = fi(q)), are decoupled from the conjugate momemtan such a case, there is a com-
plete set of observables which Poisson commute at all tifibis implies that the system admits
a deterministic description even when expressed in ternmpefators acting on some functional
space of state§¥), such as the Hilbert space. Such a description in terms ohtgrs and Hilbert
space, does not implger se quantization of the system. Quantization is achieved oslgt eonse-
guence of dissipation.

Let us write the Hamiltonian as

where

H=H —-H,, (3.21)
with
Hi= =———=(2Q% —TX)? , Hy = r—2J2 (3.22)
' = 507 2)" s T =552 :
where the Casimir operat® and the (second) SU(1,1) generailpiare
1 2 2 2(2 2
= 2o [(PL—p2) +1PQ* (¢ —5)] . (3.23)
(taken to be positive) and
m; . . 2
b= 5 (XX —Xoxq) — %] (3.24)

respectively, and is given byr? = x2 — x2.
Let us then impose the constraib{¥) = 0, which defines physical states and guaranties that
H is bounded from below. This implies

1 K
HW) = H |W) = 2Q7|W) = <§npr2+§r2> W), (3.25)

with K = mQ?. HenceH, reduces to the Hamiltonian for the two-dimensional isdtr@pr radial)
harmonic oscillator 3+ Q?r = 0.

11
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The physical states are invariant under time-reversal ambglical with periodt = 211/Q.
The generic statg¥(t))y can be written as

Wt =T [exp(lﬁ/tot 2FJ2dt’>} IW(t))h, (3.26)

whereT denotes time-ordering and the consthntvith dimension of an action, is introduced for
dimensional reasons. The staté&t))y and|W(t))y, satisfy the equations:

RS0} = ()
and iﬁ%NJ(t))H, = 2QF W (t))H, , (3.27)
respectively. The periodicity of the physical states imply
i) = exp(ig - & [ RO ) wO)
= exp(—i2m) |¥(0)), (3.28)
or equivalently,
(WO)H[¥(T))

h
Usingt = 211/Q and¢$ = a T, whereq is a real constant, we thus obtain

T—¢=2m , n=0,12,.... (3.29)

(Wn(T)HWa(1) =R (n+ 3 ) . (3.30)

The indexn signals then dependence of the state and the corresponding energy. i&yat30)
gives the effectiva™ energy level of the system corrected by its interaction withenvironment.
In conclusion, the dissipation terda of the Hamiltonian is responsible for the zero point£ 0)
energyEy = (h/2)Qa, which is the signature of quantization. In conclusion, 2eeo point quan-
tum contributionEgp to the spectrum of physical states signals the underlyisgjipitive dynamics.

4. High Energy Phenomenology of the Noncommutative Spectral Geometry

Let us proceed with a short discussion on the phenomenalogimsequences [1] of the non-
commutative spectral approach to the standard model, ttst snocessful particle physics model
we have at hand.

As a consequence of the choilbl(H) & M4(C) for the algebraez of the discrete spacé,
the spectrum of the fermionic particles (the number of statethe Hilbert space) per famil§
is predicted to be 4= 16. Moreover, the selected (in order to be consistent wighakioms of
noncommutative geometry) algebra leads to the gauge grbtipecstandard model. Thus, the
16 spinors get the correct quantum number with respect tetireard model gauge group. The
gauge bosons of the standard model gauge group are the inotralions of the metric along
continuous directions. In addition, there is a Higgs doubteresponding to the inner fluctuations

8The number of families is a physical input.
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along the discrete directions. The spectral action appréeads to a mass of this Higgs doublet
with a negative sign and a quartic term with a plus sign, inmgythe existence of a mechanism of
spontaneous breaking of the electroweak symmetry.
Let us assume that the functidnis well approximated by the cut-off function and ignore
higher order terms. Normalization of the kinetic terms iragl
gfo

1 2
2 4 (4.1)

I
wl ul
Q
&

and gf = g5

leading to

Sir? By = g , (4.2)

a relation which was also found in the context of SU(5) and1®pgrand unified theories. Since

the predicted relations, Eq. (4.1b), from the noncommugtasipectral geometry are the ones that

hold for all grand unified theories, this implies that thectpa action holds at unification scale.
Assuming the big desert hypothesis, the running of the dogeb; = g?/(4m) withi=1,2,3,

up to one-loop correctiony is

B = ﬁbig? with b= <4€1,—1—§,—7> . (4.3)
Performing one-loop renormalization group analysis fa thnning of the gauge couplings and
the Newton constant, it was shown [1] that these do not mesepaint, the error being within just
few percent. The fact that the predicted unification of theptimg constants does not hold exactly,
implies that the big desert hypothesis is only approxinyatelid and new physics are expected
between unification and present energy scales. In termsrasaumption for the cut-off function,
the lack of a unique unification energy implies that even goilne functionf can be approximated
by the cut-off function there exist small deviations.

The noncommutative spectral geometry model predicts Als@xistence of a see-saw mech-
anism for neutrino masses with large right-handed neutnrass of the order of\. Moreover, it
predicts the constraint:

> ()2 + (¥3)+3(y0)* + +3(y§)* = 497 , (4.4)
g
on the Yukawa couplingg® with o = 1, 2,3, at unification scale.
The mass of the top quark is given from

1

= —uk', 4.5
Mop N (4.5)
with u = 2M/g the vacuum expectation value of the Higgs field &hdhe top quark Yukawa
coupling. We assume that at unification scale-af.1 x 10!’ GeV the value ofyis ~ 0.517 and
the T neutrino Yukawa coupling can be neglected. Then using thernealization group equations,
the model predicts a top quark mass-of79 GeV, compatible with the experimental value.

90nly at one-loop order the renormalization group equatfonshe coupling constantg are uncoupled from the
other standard model parameters.
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In the spectral action, the Higgs coupling is proportiondhe gauge couplings, which restricts
the mass of the Higgs. Using the cut-off function, this mgatelicts a heavy Higgs mass. In zeroth
order approximation, it predicts a mass of the Higgs bosamagmately equal to 170 GeV, which
is ruled out by current experimental data. However, thisnamgs very sensitive to the value of
the unification scale, as well as to deviations of the spkefurection from the cut-off function
we have used. The actual value of the Higgs mass will be detedhby considering higher order
corrections and incorporating them to the renormalizatjmyup equations. Nevertheless, itis quite
encouraging that this purely geometric approach to thedstahmodel predicted the right order of
magnitude for the Higgs mass. Given that this noncommaspectral geometry model has to be
seen as an effective theory, this result is quite remarkable

Since the predicted top quark mass is consistent with exgerial data while the predicted
Higgs mass is ruled out, one may deduce that the top quarkimiass sensitive to the ambiguities
of the unification scale than the Higgs mass. This conclusiag be understood in the following
way. We have splitted the action functional into the bosamd the fermionic parts. The bosonic
action has been then determined by an infinite expansionrasgwconvergence of higher order
terms. Thus, while for the bosonic part we have relied on thet ferms of the expansion in
inverse powers of the cut-off scale, the fermionic part geimuch simpler did not require such an
assumption.

Considering an energy scafe~ 1.1 x 10" GeV, the standard form of the gravitational action
and the experimental value of Newton’s constant at ordisagafes implyk, 1~ 243%x 108 GeV.

Let us also note that this approach to unification does notigigoany explanation of the
number of generations, nor leads to constraints on the safithe Yukawa couplings.

Finally, the parameteh which has been introduced as a free parameter in the spactrah,
can be seen as the vacumm expectation value of a dynamitato(ifield. Such a filed may
lead to cosmological consequences and it is worth examinhngther it could play the réle of the
inflaton field.

5. Cosmological consequences

The noncommutative spectral action lives by constructidrigh energy scales, thus providing
a natural framework to address early universe cosmologyestigating the cosmological conse-
guences of the model, one can test its validity and/or caimsits parameters. In what follows, we
review some cosmological aspects of this purely geomeppcaach to the standard model. Let us
first specify the notation and conventions we use. The sigeas taken—, +,+,+) and the Ricci
tensor is defined &,y = RP yvp, With Ryyp? Wo = [V, Vv | wp.

The Lorentzian version of the gravitational part of the apyatic formula for the bosonic
sector of the noncommutative geometry spectral actiomydhicg the coupling between the Higgs
field and the Ricci curvature scalar, reads [1]

YgLra\,: / <2—igR+ aoCpuvpsCHVP? + ToR'R* — &R|H |2) V=g d%, (5.1)

leading to he equations of motion [6]

1 1
RYY — Sg""R+ @5& [chj?K” +C“’\‘”‘RAK} = K& T Her (5.2)
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where

B?= and e = [1—2k3&H2 1. (5.3)

Let us first study the low energy regime and then proceed \Wwihigh energy regime. Depending
on whether we are in the former or the latter one, will spewifiether or not the coupling between
the Higgs field and the background geometry can be neglected.

4K§C¥o

5.1 Low energy regime

In the low energy weak curvature regime, the nonminimal dogperm between the back-
ground geometry and the Higgs field can be neglected, implgia = 1. For a Friedmann-
Lemaitre-Robertson-Walker space-time, the Weyl tensoistis, hence the noncommutative spec-
tral geometry corrections to the Einstein equation vant@§hThus for such a background, the con-
straint [23] Brz > 3.2 x 10-°m~%, imposed orad hoccurvature squared terms (of different form
but of the same order) does not necessarily hold within tmeammutative spectral action context.
It is however important to constraj since a lower limit tg3 can be equivalently seen as an upper
limit to the momentf, of the cut-off function used to define the spectral actiomc8ify can be
used to specify the initial conditions on the gauge couglirggconstraint o8 corresponds to a
restriction on the particle physics model at unificationlsca

Let us briefly summarize how one can constrgif9, 10] within the noncommutative spectral
geometry model. Consider linear perturbations around akblirski background metric in the
synchronous gauge. The perturbed metric reads

gIJV = dlag({a(t)}z [_17 (dj + hij (X))]) 3 (54)

with a(t) the cosmological scale factor. Since we only consider a #akground,a(t) = 1 and
a=da/dt = 0. The remaining gauge freedom can be completely fixed bipngefth'} = 0.
The linearized equations of motion derived from the noncanative spectral action for such

perturbations are
,16mG

ct
whereT} e iS taken to lowest order ih#V. It is thus independent ¢V and satisfies the conser-
vation equations

(O-p?Chv =g Tnatter» (5.5)

17}

oxH
Since 3 plays the role of a mas, it has to be real and positive, impglyig < 0. Forap > 0
the gravitational waves evolve according to a Klein-Gortilka equation with a tachyonic mass,
and hence the background, which has been considered to bakeawski space, is unstable. In
conclusion, we must restrict tmy < 0 for Minkowski space to be a (stable) vacuum of the theory.

Let us study the energy lost to gravitational radiation blgitong binaries. In the far field

limit, |r| = |r —r’| (wherer andr’ stand for the locations of the observer and emitter, resg},
the spatial components of the general first order solutisrafperturbation against a Minkowski
background are given in terms of the quadrupole moment,

TH=0. (5.6)

Dk (t) = C—B;/xikaoo(r,t) dr . (5.7)
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as

2GR [zl dt’
VIO

where_# is a Bessel function of the first kind, in terms of the quadfepooment.

While in the 3 — o limit the theory reduces to that of General Relativity ane familiar re-
sults for a massless graviton are recovered, for fifiiggavitational radiation contains both massive
and massless modes, both of which are sourced from the qa@dronoment of the system.

In the far field limit, the rate of energy loss for a binary pafiimassesm, n, in a circular (for
simplicity) orbit in the(xy)-plane, reads

hk (r,t)

g2 (B\/Cz(t—t’)2—|r|2> D*(t) , (5.8)

_EN%M hijh’, (5.9)
with
L 12812 p|[*wbG2B2 T, 2w ) 2w
ih. — = =
h h'J C8 1:(: B|r|7 BC + fs B|r|7 BC ) (510)

and the definitions

fe(x,2) = /:%/1(5) cos(z\/m) :
fs(x,2) E/Ooo\/%/l(S)Sin<Z 52+Xz) 7

The orbital frequencyw is constant and given by

w=|p| ¥?/G(m+my), (5.11)

with |p| the magnitude of the separation vector between the two bodie
The integrals in Eqg. (5.11) exhibit a strong resonance bhehavz = 1, which corresponds to
the critical frequency
2w = B¢, (5.12)

around which strong deviations from the familiar resultsGaeral Relativity are expected. This
critical (maximum) frequency comes from the natural lensghle (given by3~1), at which non-
commutative geometry effects become dominant. ot w, the B — oo limit reproduces the
General Relativity result, as it should. Since this is net tAse ifw > w., we conclude that the
critical frequency is the maximum one. Any deviation frone gtandard result is suppressed by the
distance to the source, at least for orbital frequenciedisroapared to3c.

The form of the gravitational radiation from binary systeoas be used to constraff. For
circular binary orbits we only need to know the orbital fregay and the distance to the binary
system. The parametgris then constrained by requiring the magnitude of deviatipom General
Relativity to be less than the uncertainty. Thus,dox «w. we get a lower limit or3 [10]:

B>755x10m™t. (5.13)
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Due to the large distances to these binary systems, theraomss almost exactly due tf >
2w/c. Thus, the strongest constraint comes from systems with bibital frequencies. Future
observations of rapidly orbiting binaries, relatively stéoto the Earth, could thus improve this
constraint by many orders of magnitude.

Let us go back to the background equations. In order for theections to Einstein’s equations
to be apparent at the level of the background, we need tosemanisotropic models. We will thus
derive the modified Friedmann equation for the Bianchi typsrodel, for which the space-time
metric in Cartesian coordinates reads

guv = diag[ 1, {au(t)}?e " {az(t) }?e >, {as(t)}?] (5.14)

wherea(t), b(t) andc(t) are, in general, arbitrary functions ands an integer.
Defining A (t) = Ing; (t) with i = 1,2, 3, the modified Friedmann equation reads [6]:

K§Too =
o B - o) P % )
212
B0 2[5 (4?5 ) — ()’
4C¥0Kg
3

—A1Ay — AoAg — AgAy — Ay — Ay — Ag+ 3] — {AlAZASAi

hh (A - A~ Ad) + (A+ (A)?) [—A- (A 5 (Aeat A
3 (s (Ai+2)2)] + |+ 3AA — (A + (A)7) (A - Ay - Az |
x [2A —Ai+1—Ai+2]} . (5.15)

The correction terms in this modified Friedmann equation eamtwo types. The first one con-
tains terms which are fourth order in time derivatives, amastfor the slowly varying functions,
usually used in cosmology, they can be taken to be small@iores. The second one occurs at the
same order as the standard Einstein-Hilbert terms, howssieig proportional ta?, it vanishes
for homogeneous versions of Bianchi type-V. Thus, althoagisotropic cosmologies do contain
corrections due to the additional noncommutative spegealimetry terms in the action, they are
typically of higher order. Inhomogeneous models do contairrection terms that appear on the
same footing as the original (commutative) terms. In cosioly, the corrections to Einstein’s
equations are present only in inhomogeneous and anisotsppce-times.

5.2 High energy regime

At energies approaching the Higgs scale, the nonminimagplouy of the Higgs field to the
curvature can no longer be neglected, leading to correztmen for background cosmologies. To
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understand the effects of these corrections let us nediectdnformal term in Eq. (5.2), i.e. set
B = 0. The equations of motion then become [6]
1 ) 1
RY =S¢ R=k3 [W] Tnater- (5.16)
Hence,|H| leads to an effective gravitational constant.
Alternatively, consider the effect of this term on the eduat of motion for the Higgs field
in a constant gravitational field. For constant curvatune, self interaction of the Higgs field is
increased, since

R
—HolH|* — - <uo+1—2> HI?. (5.17)

The nonminimal coupling between the Higgs field and the Ricecvature may turn out to
be particularly useful in early universe cosmology [7, 8JucB a coupling has been introduced
ad hocin the literature, in an attempt to drive inflation througte tHiggs field. However, the
coupling constant between the scalar field and the backdrgeometry is not a free parameter
which could be tuned to achieve a successful inflationargade, it should be instead dictated by
the underlying theory.

In a Friedmann-Lemaitre-Robertson-Walker metric, the M#ysor vanishes, while the non-
dynamical term is also neglected. Thus the Gravity-Higggmeof the asymptotic expansion of
the spectral action, in Lorentzian signature reads

1-2k2&H2 1
yGLH:/[iz’?ZO R—2(OH)?=V(H)|v=gdx. (5.18)
. 0
where
V(H) = AgH*— p3H? (5.19)

with g andAg subject to radiative corrections as functions of energy. |&ge enough values of
the Higgs field, the renormalized value of these parameterst be calculated, while the running
of the top Yukawa coupling and the gauge couplings must blregimultaneously.

At high energies the mass term is sub-dominant and can bedated| thus only the first term
in Eqg. (5.19) survives. For each value of the top quark médmsetis a value of the Higgs mass
where the effective potential is on the verge of developimgetastable minimum at large values
of the Higgs field and the Higgs potential is locally flatteri8fi Since the region where the
potential becomes flat is narrow, slow-roll must be very sloverder to provide a sufficiently long
period of quasi-exponential expansion and thus solve thecimings of the standard hot big bang
cosmological model. If the inflaton field is also going to smuthe initial density fluctuations then
besides the constraints on the slow-roll parametersto get sufficient number of e-foldings, one
should also check whether the amplitude of density pertinmaA% in the spectrum of the cosmic
microwave background temperature anisotropies is in agee¢ with measurements. Inflation
predicts that at horizon crossing (denoted by stars), thaiarde of density perturbations is related
to the inflaton potentiaV through

1
V. # 1
(-) = 2V3mmp A2, (5.20)

*
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whereeg, < 1 andmp, stands for the Planck mass. Its value, as measured by WMAR, Ag2juires

Vi i 2
<_> = (2.75+0.30) x 10 % mp; . (5.21)

*

We can then calculate the renormalization of the Higgs aalipling and construct an effective
potential which fits the renormalization group improvedeautal around the flat region. By doing
this calculation up to two-loops we have found [8] that ambdine plateau (the minimum of the
potential), there is a very good analytic fit to the Higgs ptitd, which takes the form

Vel — A8 (H)H* = [aIn?(bkH) + ¢c]H*, (5.22)

where the parametegsb are found to relate to the low energy values of top quark mass

m 2
a(my) = 4.04704x 103 — 4.41909x 10°° (—Gev) +1.24732x 1077 (—Gn;tv) ,
= —_— —_—
b(m) = exp[ 0.979261( GeV 172051)] . (5.23)

The third parameteg = c(m, my), encodes the appearance of an extremum and depends on the
values for top quark mass and Higgs mass. An extremum octargionly if c/a < 1/16, the
saturation of the bound corresponding to a perfectly flatoreg It is convenient to writec =
[(140)/16)a, whered = O saturates the bound below which a local minimum is formed.

These results have been obtained for the case of minimalingupvhereas in noncommu-
tative spectral action there is a small nonminimal couplifg= 1/12. The corrections due to
conformal coupling to the potential imply that flathess donesoccur atd = 0 anymore but for
fixed values ofd depending on the value of the top quark mass. More precigalynflation to
occur via this mechanism, the top quark mass fixes the Higgs mremely accurately. Scanning
through the parameter space it emerges that suffiedwitls are indeed generated provided there is
a suitably tuned relationship between the top quark masstendiggs mass. In conclusion, while
the Higgs potential can lead to the slow-roll conditionspesatisfied once the running of the self-
coupling at two-loops is included, the constraints impdsenh the cosmic microwave background
temperature anisotropies measurements make the predicifcsuch a scenario incompatible with
the measured value of the top quark mass.

Finally, running of the gravitational constant and con@ts$ by considering the more appro-
priate de Sitter, instead of a Minkowski, background do ngtriove substantially the realization of
a successful inflationary era [8].

The noncommutative spectral action provides in additiaiédHiggs field, another (massless)
scalar field [25], denoted by, which is unlike all other fields in the theory, such as thedsifeld
and gauge fields. Note thatdoes not exhibit a coupling to the matter sector.

Including this field, the cosmologically relevant termstie MWick rotated action read [25]

1

2(50)2 —V(H,0)| v/—gd*x,  (5.24)

1 2 2 1 2
Y:/[ﬁR—fHRH — £5R0?— ~(OH)?
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where
V(H,0) = AgH* — g3H? 4+ A50% + Aqg|H|?02 . (5.25)

The constants are related to the underlying parameterdlag$o

1 1
=2 fo =25 (5.26)
b 70
AH = m ; Ao- = W (527)
pr = 2n2 12 ; Ao = 2 : (5.28)
fo acfo

In conclusion, neither the field can lead to auccessfuslow-roll inflationary era, if the coupling
values are conformal [8].

One should then examine whether the dilaton field, a dyndri@d that can replace the cut-
off A, could play the role of the inflatol. Then the operato/A is replaced by ®/22e /2,
where @ stands for the dilaton field [18]. The action for the Gravdjlaton-Higgs sectors, was
then shown to be [18]

1 1 6
— \/ _ _ ___ HVY

+GHYD,H "D, H' — Vg (HH)} d*x, (5.29)

whereGy, is the metric in Einstein frame anfistands for the dilaton decay constant. The scale
f is of the order of the Planck scale. The dilatdrcan be related to a scalar fiefdof dimension
one through® = (1/f)d. It is worth noting that the difference between the abovéacind the
spectral one is that the latter has a conformal coupling éetwthe background geometry, in other
words the Ricci curvatur@&®(G), and the Higgs fieldd, which is required in order to get scale
invariant matter couplings.

Certainly, to investigate whether the dilaton fieldcould play the réle of the inflaton, one
should first calculate its potential.

6. Conclusions

In Connes’ formulation of noncommutative geometry, whiahtvave adopted here, mathemat-
ical and physical notions are described in terms of spept@berties of operators. By extending
the one-to-one correspondence between spaces and comenGtatlgebras to noncommutative
algebras, Connes’ approach aims at mapping notions ofeliffal geometry into algebraic terms.
The topology of space is described in terms of the algebrasjuaivalently, the properties of space
are encoded in some continuous fields. The model dependsigruan the choice of the algebra
o, represented on a Hilbert spag&, and the generalized Dirac operatdr These«', 5, ¥ form
a spectral triple, a fundamental ingredient of the wholenfaiism, which contains the information
on the geometry of space-time. The Dirac operatodescribes the metric aspects of the model
and the behavior of the fundamental matter fields repreddmgesectors of the Hilbert spac#”’.

10 particular on non-compact spaces where the Dirac openano longer a discrete spectrum.
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The fluctuations of the Dirac operaté contain the boson fields, including the mediators of the
forces and the Higgs field.

This noncommutative spectral geometry model has beerdintexd as an approach to the stan-
dard model of particle physics coupled to gravity. By coesiag the standard model of strong and
electroweak interactions as a phenomenological model trigseto retrieve the noncommutative
geometry of space-time. It turns out that the geometry cacobsidered as the produc# x .#
of a four-dimensional smooth compact Riemanian manifagtdoy a discrete finite noncommuta-
tive space# composed of just two points. The choice of the discrete spaespecified by the
symmetries of the Hilbert space in which quarks and leptoagpkced.

The physical picture is straightforward. The left- and tigjanded fermions are placed on two
different sheets. The Higgs fields are just the gauge fieltdsardiscrete dimensions. The inverse
of the separation between the two sheets can be interprstédteaelectroweak energy scale. It
is interesting to remark that this picture is similar to the Randall-Sundrum scenario, where a
four-dimensional brane is embedded into a five-dimensioraiifold as a three-dimensional brane
placed aks = 0 andxs = Trcomp, With reomp the compactification radius.

The choice of a discrete space consisting of only two poiatslie (naively) criticized as a
simplified approach. However, the two-sheeted constmdti@ms a deeper physical meaning. The
doubling of the algebra is related to dissipation and theygdield structure, required to explain the
standard model of particle physics. Moreover, by applyirtgdoft's conjecture, stating that loss of
information within completely deterministic dynamics daad to a quantum evolution, dissipation
may then lead to quantum features. Thus, the classicalraatieh of noncommutative spectral
geometry carries implicit in the doubling of the algebra seeds of quantization.

The noncommutative spectral geometry model lives by coostm at very high energy scales.
It hence provides a natural framework to study early unwexssmology. In other words, it moti-
vates a particular gravitational model which applied toaegicosmological background can lead
to interesting observational consequences.

It is a pleasure to thank the organizers of the Workshop on Glemmutative Field Theory
and Gravity, held in the beautiful island of Corfu, for inmig me to present this work during a
stimulating and interesting meeting.
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