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1. Introduction

During the last decade cosmological and astrophysical precision data seriously questioned the
whole standard framework of General Relativity (GR) and its applications to scales much bigger
than the solar system. GR is very well tested at solar system scales. All classical tests (deflection
of lightrays, precession of perihelia, echo radar delays) thoroughly confirm standard GR based on
Hilbert-Einstein dynamics. Also binary pulsar emission rate does confirm precisely standard GR,
(despite these are outside the solar system they are in fact star system scale systems as well).

When GR models galactic systems the first mismatch is found. The rotation profile of galaxies
shows an anomalous plateau at boundaries which cannot be explained in terms of the gravitational
sources which are correlated to light emission. In order to maintain standard GR one is forced to
introduce dark sources of the gravitational field (called dark matter) which modify the radial mass
profile and make it uncorrelated to the radial light profile. One can phenomenologically shape the
distribution of dark matter so that it affects rotation profile and fit the observation. Some theoretical
model has been proposed to model dark matter. Despite the lack of direct evidence for dark matter
at fundamental level, the model for it meets most reasonable constraints from particle physics.
Similar phenomena are encountered at the bigger scale of cluster and superclusters of galaxies.

At cosmological scales, a mismatch between luminosity and Hubble distances of far standard
candles (SNIa) as well as correlations among anisotropies of cosmic background radiation (CMB)
seem to indicate that recently (in the scale of few billion years) the universe expansion rate has
started to accelerate, contrarily to the general expectation which, based on attractive nature of
gravity, points to a ever slow expansion rate. Again new gravitational sources are introduced to fit
data, this time called dark energy. Currently one of the best models resorts to a small cosmological
constant and dark matter. According to this model the standard matter we see in the universe that
makes stars, galaxies and clusters is just a small fraction of the gravitational universe out there.
Dark matter represents about 30% of the total matter in the universe, dark energy is about 70%
while stardard matter makes just few percent of the universe.

Moreover, models for dark energy usually produce a number of problems at fundamental level,
from instabilities to fine tuning. Furthermore, despite models account quite well for the current
observations of the universe, more problematic is defining a dynamics able to account for past and
future observations.

A different approach for explaining these observations is to modify the dynamics of the grav-
itational field. This can be done by considering more general Lagrangians to replace Hilbert-
Einstein Lagrangian and without introducing (or reducing the need of introducing) dark matter
or dark energy. A popular class of models considers the Lagrangian L =

√
g f (R), where f is a

generic analytic function of the scalar curvature R. One can either assume a Lorentziam metric
g of spacetime and consider the purely metric scalar curvature R(g) or assume a metric g and a
(usually torsionless) connection Γ and consider the metric affine R(g,Γ) = gµνRµν(Γ) curvature
which depends both on the metric and the connection. The first approach is called purely metric
f (R)-theories; the second is called metric affine (or Palatini) f (R)-theories; see [1], [2], [3].

Then one can choose the function f to fit the observations. The fitting is in some case quite
good (as good as for dark matter/dark energy models). Again it is not known if there exists a
single choice of f able to account for effects at all scales and at all times. Sometimes fundamental
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problems have been highlighted (again instabilities, renormalization, . . . ) though these are not
showed to be generically present. Modifications of these types of Hilbert-Einstein Lagrangian is
also justified as effective theories of string theory and supergravity as well from other approaches
to quantum gravity; [3].

However, once one starts to generalize gravitational dynamics it is not clear how to limit
modifications and it is quite hard to find properties which are generic in the class of modified
theories of gravity; [4], [5]. Even keeping stuck to dynamics based on a generally covariant action
principles one has to face a huge class of models which risk to be able to fit anything just in view
of the huge number of models available. For example, one can consider geometric invariants other
than the scalar curvature, e.g. RµνRµν , Rαβ µνRαβ µν or Weyl tensor invariants. The request of
respecting solar system tests puts some constraints but freedom is still huge.

Also, f (R)-theories (in both purely metric or metric-affine formulation) are quite naturally
described in terms of a new metric g̃ conformally equivalent to the original metric g. This usually
produces doubts about the physical interpretation of the theory, namely, which is the metric which
is used to define distances and clocks? In standard GR there is one canonical metric structure on
spacetime so there is not much to discuss. In (Palatini) f (R) theories there is a conformal gauge
symmetry which must be fixed somehow to define observational protocols for distances and clocks.

A somehow analogous issue arises about how to couple to matter fields. Minimally coupling
is in fact not preserved by conformal transformations since in f (R)-theories the conformal factor
is determined as a function of the scalar curvature, i.e. g̃µν = f ′(R) · gµν (in dimension m = 4).
Accordingly, if matter is minimally coupled to gravitational sector in one conformal gauge, in
general it is not in another; see [6], [7]. All these problems point to mismatches in definition of
masses and distances of a conformal nature which is precisely what have been first detected as
mismatches in new precision observations.

As a matter of fact standard interpretation of standard GR is based on a purely Lorentzian
metric. In most models, also using standard Palatini framework, field equations for the connection
force the connection to be the Levi-Civita connection of the original metric g. On the contrary, in
f (R)-models the connection is usually forced to be the Levi-Civita connection of another metric g̃
conformal to g. With two metrics in the game (luckly enough both defining the same lightcones in
spacetime) one has to decide which one (if any) describes free fall of massive test particles.

In the 70s Ehlers-Pirani-Schild (EPS) proposed an axiomatic approach to gravitational theories
based on particles and lightrays worldlines (see [8], [9], [10]). In this approach the geometric
structure of spacetime is not assumed but it is defined on the congruence of potentially observable
worldlines. Hence EPS provides a natural interpretation of spacetime geometry and gravitational
physics. As a matter of fact, EPS shows that gravitational systems are naturally described by a
conformal class [g] of metrics (which defines lightcones) and a projective class [Γ] of connections
(which defines free fall of massive particles). The projectively equivalent connections define the
same congruence of autoparallel trajectories then the same free fall; accordingly, there is no way to
observe a representative of projective class and projective trasformations are gauge transformations;
[11].

Of course, the conformal and projective structures have to obey some compatibility condition
since they are not expected to be completely unrelated. EPS proposed to assume that null geodesics
of the conformal structure (which are conformally invariant unlike the timelike geodesics) are a
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subset of autoparallel congruence of the projective structure. In view of the compatibility condi-
tion then the projective gauge can be canonically fixed to define a Weyl geometry (M, [g],Γ) on
spacetime where

Γ
α

β µ
= {g}α

β µ
+
(

gαεgβ µ −2δ
α

(β δ
ε

µ)

)
Aε (1.1)

for some covector Aε , which can be thought to parametrize extra degrees of freedom other then
the metric ones. Standard GR is recovered for Aε = 0. General Weyl geometries are known to
be affected by holonomy problems (length of rules does in general depend on the path). A par-
ticular class of Weyl geometries which do not exhibit these holonomic problems are metric Weyl
geometries in which there exists a metric g̃ which represents both the conformal structure and the
connection, i.e. Γ = {g̃}. This is more general than standard GR, still there is single metric g̃ which
both determines lightcones and free fall. Metric Weyl geometries corresponds to exact covectors
A = d lnΦ(x) where Φ is in fact related to the conformal transformation connecting g and g̃.

Metric Weyl geometries represent a natural extension of Hilbert-Einstein gravity. Although
there is nothing in EPS really constraining Weyl geometries to be metric if one considers f (R)-
theories in metric affine formulation then (for matter coupling to g and not to Γ) field equations
force the spacetime geometry to be described by a metric Weyl geometry, though in general not by
standard GR; see [9], [10].

If matter is allowed to couple to the connection a more general situation is obtained in which
more general (non-metric) Weyl geometries can be enforced by field equations; see [7], [4], [5].
To the best of our knowledge not much is known for a generic modification of gravitational theory;
when other invariants or generic coupling between matter an connection are allowed dynamics will
fail to enforce EPS compatibility between conformal and projective structure, with all interpretation
and fundational problems one can imagine to show up in these cases.

One should not need to remark that electromagnetic field is deeply entangled with our pro-
tocols for observation. We rely on the properties of electromagnetic field to measure distances
and to build clocks. All physical experiments use electromagnetic field in quite a peculiar way.
Although this issue was usually overlooked (and practically irrelevant) at the time of mechanical
experiments, it was finally stressed during 19th and 20th centuries when Physics recognized to be
working in terms of fields.

With special relativity (SR) Einstein realized that the physical properties of the electromag-
netic field are fundamentally entangled with our notion of space and time (or, more correctly,
spacetime) on which our observational protocols rely, for example through synchronization. SR is
in fact a good model of spacetime and electromagnetic field in which observational protocols are
made explicit. As such, and in view of later studies of general relativity (GR), SR is fundamentally
a theory of empty space, with electromagnetic field but no other matter.

In f (R)-theories the electromagnetic field is described equivalently by g and g̃ (as well as by
any conformal representative). Accordingly, no purely electromagnetic measure can observe any
difference between any conformal gauge fixing. Also no purely electromagnetic measure can fix a
scale of our observations. In the Dirac notations scales are not gauge invariant and hence are not
observable at fundamental level. Thus one could ask what we are measuring in astrophysics and
cosmology?
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This issue is well known (see [12]). Also, in GR there is no non-trivial generally invariant
observable or at least no such quantity is known. In GR also the value of scalars at a fixed point
is not gauge invariant (the Lie derivative of a scalar at a point does not vanish in general). This
is essentially the starting point of the celebrated hole argument in GR which shows that there is
no physical meaning in fixing a point in spacetime. Rovelli proposed that matter basically breaks
the gauge invariance and allows to define observable which are observed against the matter back-
ground; see [12]. This is philosophically (if not technically) quite close to the EPS approach; it is
matter and light which allows to infer a description of gravitational field. It is matter (and masses)
which allows to break the conformal gauge. For example, in order to know the mass of the sun one
has to use (in the classical limit) the Kepler laws. It is a measure of orbit size r and orbit period T
which allows to measure the mass of the sun

4π2

MG
=

T 2

r3 ⇒MG =
4π2r3

T 2

Of course none of this is conformally invariant; neither the size of the orbit nor the orbit period.
Accordingly, the mass MG does scale non trivially under conformal transformations. If one defines
the unit for masses so that G = 1 as it is often done then the mass M itself is not a conformally
invariant quantity. On the other hand the mass is the source of gravitational field and as such it must
be somehow observable. And there are other hints that support the fact that traditional observation
in astrophysics and cosmology are in fact held in a specific conformal gauge fixing. The traditional
astronomical observational protocols do in fact define a space distance (which depends on the
conformal gauge fixing). Also in standard GR, asymptotics of the metric does in fact freeze the
conformal degrees of freedom of the metric.

Hereafter we shall discuss the conformal origin of the mass in a Weyl universe. We shall
review some models in which we showed that one can take advantage of the freedom in Weyl
geometries to describe a fluid on an arbitrary (e.g. flat) metric. In these models the gravitational
field is described by the connection (or equivalently by the covector A) while the metric structure
g describes the metric protocols (distances and clocks) and the electromagnetic field, which is in
fact conformally invariant. We shall also show that conservation laws of the fluid (which are in
the end the foundation of mass) do in fact break conformal invariance and one obtains the standard
relations obtained in standard GR, though in this more general setting, provided that the conformal
gauge is fixed accordingly; see [13] and [14].

This toy model also shows how one could describe masses in some sense without curvature
(of course masses do produce gravitational field which is encoded in some curvature, namely the
curvature of the connection which is encoded by Aε ) but in a (possibly flat) metric background
which is fairly decoupled by the gravitational phenomenology. The metric (i.e. a given gauge fixing
of the conformal gauge) is in fact endowed with a physical meaning once one defines distances and
clocks (which also breaks the conformal gauge).

They also shows that Einstein had other possibilities to extend SR to describe masses which
unfortunately where out of reach for the geometrical technology of his time since a theory for
general connections was still on the way. When Einstein was led to consider the gravitational field
he was forced to take the only direction that his contemporary geometric technologies allowed to
use. Gravitation was identified with the curvature of a spacetime metric, leading to standard GR.
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At that time, general connections were still on the way of being invented and the only curvature
known was metric curvature.

When general connections were finally invented (maybe feeling something to be improved in
GR in the relation among electromagnetic field, gravitational field and matter) Einstein tried the
way of a unifying theory of electromagnetic and gravitational fields in which both fields were the
output of a connection. Einstein could not reach a satisfactory solution to this problem (later solved
in [15]).

2. Mathematical vs. Physical equivalence

EPS clearly points towards a framework a là Palatini in which dynamics enforces EPS com-
patibility of metric and connection. The metric g and the connection Γ are, by construction, related
to lightcones and free fall, respectively. We shall assume also that g is the metric related to dis-
tances and clocks (also in view of the fact that lightcones determine the conformal class [g], not a
representative g).

Palatini f (R) gravity has been often considered trivial in view of equivalence to scalar-tensor
gravity which is well understood. In some sense, since the connection is metric, it is described by a
metric g̃ which being conformally equivalent to g describes lightcones on equal footing of g. Then
g̃ describes both lightcones and free fall. One metric (namely, g̃) describes both structures as it is
assumed in standard GR.

Before discussing how matter can fix the conformal gauge, let us discuss in a simple mechan-
ical example how mathematical equivalence can or cannot be extended to a full physical equiva-
lence. Here the point is that even in view of a mathematical equivalence which in principle allows
to map one description into the other, observational protocols may break the equivalence. This may
happen especially when observations are difficult and one is unable to measure everything but just
some quantities can be measured more or less directly, as it happens in astrophysics and cosmology.

Imagine we are given a material point constrained on a straight line free to move under un-
known forces to be studied. We know that one can measure the position x and the the momentum
π . We can easily plot x and π in their time evolution.

One question which is easily asked is whether the system can be described as a Hamiltonian
system. For it, one should identify two quantities q and p, give a Hamiltonian function H(q, p) and
relate the evolution of the system and the solutions of the Hamilton equations

q̇ = ∂H
∂ p

ṗ = − ∂H
∂q

By observing the motion of the point in the range (a) t = 10..20 one could make an educated
guess for a harmonic oscillator. By a closer look one could fit the data very well by a function

x = Acos(ω(t + t0))+λ

with A = 10,ω = 3,λ = 1, t0 = 0.
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Figure 1: x(t) in the time range a) t = 10..20. b) t =−3..10.

The system is thence described by the Hamiltonian

H̄ =
1
2

p2 +
ω2

2
q2−λω

2q

Accordingly, one can guess the force to be a harmonic force plus a constant force.
After that one obtains a bigger dataset (b) which includes the time range t =−3..10. The new

dataset clearly disagrees with previous guesses. It seems that something awkward happened at time
t = 0. One could either suppose some extra temporary force acted and it is then switched off, or
look for as single time dependent force explaining both datasets.

In fact a very good fit can be obtained by choosing a Hamiltonian

H =
α2

2
p2 +

ω2

2α2 q2−λ
ω2

α
q+

α̇

α
pq

for a parameter function α(t) = 1− e−(t+2). Of course this model is a big step forward since it
perfectly describes the whole dataset.

Then one can try to look for a canonical transformation to simplify the model. In particular
one can define new (one parameter family of) canonical coordinates

Q = q
α(t) −λ

P = α(t)p

and check that the new Hamiltonian is simply

K =
1
2

P2 +
ω2

2
Q2

Obviously, the canonical transformation establishes a very well founded mathematical equivalence
between the two Hamiltonian systems describes by H and K (which is in fact one Hamiltonian
system with two different local representations).

To what extent though the system is a pure harmonic oscillator on the physical stance? To
answer the question maybe it is worth considering some remarks. First, the dynamics K is much
simpler than the dynamics of H. Second, in the K framework there is an observable x=α(t)(Q+λ )

which fits the dataset as perfectly as q does in the H framework. Third, in the H framework the
observable used for fitting is simply x = q.
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Accordingly, we have two mathematically equivalent frameworks, one in which the dynamics
is particularly simple, the other in which what we observe (i.e. our observational protocols) is
particularly simple. Because of the particular situation either we find a way of observing directly
the quantity Q (which would make the K framework superior under all viewpoints) or we have to
resign to have two frameworks each simpler under a different viewpoint.

Let us also finally remark that the transformation between the two frameworks, namely q =

α(t)(Q+λ ), can be directly related to a (time-dependent) mismatch of the protocol of measuring
the position. It is as if, besides changing the origin λ of the position reference frame, we did
change the unit of distances by a (time-dependent) factor α(t) (imagine for example we are using
ultrasounds to define distances and the speed of sound in changing with time (for example due
to a change in pressure); or imagine we are using a conformal metric and the conformal factor is
depending on the matter density which is changing in a ever expanding universe). The mismatch
does not emerge in datasets covering intervals in which the function α can be considered constant
(as it happens in the dataset (a)) while it becomes manifest once the dependence of α on time can
be appreciated.

Though we do not need to recall that in cosmology the protocols for defining and measuring
distances are quite obscure from a fundamental perspective and depend on many aspects of the un-
derlying model and many physical assumptions, we are not here claiming that a similar mechanism
can explain cosmological observations. However, one should understand in details how this is not
the case.

This rather trivial example in any event shows how one should not use mathematical equiv-
alence to dismiss a framework without carefully review the observational protocols and verifying
their compatibility with the equivalence transformations, especially in cosmology where we know
from the very beginning that most of the time we are measuring quantities that are not gauge co-
variant.

3. Fluids in a Weyl Geometry

In stadard GR spacetime geometry is a Lorentzian structure (M,g). The metric g determines
both lightcones and free fall of massive particles. While null geodesics are conformally invariant,
timelike geodesics are not. A conformal metric g̃ has the same null geodesics (possibly differently
parametrized but in any event the same worldlines) though different timelike geodesics worldlines.
Accordingly on a given metric background (M,g) not any timelike congruence of trajectories is
geodesic and one has strong constraints on possible motions of fluids’ particles.

Of course it is weird to regard as constraints the conditions which makes the motion of the
fluids’ particles determined by the metric structure (which in standard GR is the gravitational field).
However, in the wider framework of Weyl geometries the metric structure is a gauge fixing of
the conformal gauge freedom and the gravitational field is entirely encoded in the independent
connection (or equivalently the covector A). It would be equally weird in this context to select
the allowed fluids depeding on a gauge fixing. To be more precise this would make observable
(through the observations of fluids) a gauge fixing.

Thus it is precisely Dirac theory of observability which indicates that one should be able to
describing a fluid by any timelike congruences of curves. Then the gravitational field is described
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by the choice of a covector Aε and this selects a class of possible fluid motions. Also the other way
around; observing the motion of particles of a fluid one should be able to spot which gravitational
field influences the fluid, making the gravitational field clearly observable through its effects on
matter.

Let us hereafter briefly review the results of [13]. Let us consider, on a spacetime M of dimen-
sion m, a conformal structure (M,C). The conformal structure is a class of Lorentzian metrics

C≡ [g] = {g̃ = Φ
2 ·g}

Let us remark that the notion of tikelike (null or spacelike, respectively) does not depend on the
representative of the conformal class. Then we can consider a C-timelike vector field u. The
integral curves of u are C-timelike trajectories by construction. On the contrary, one can start from
any C-timelike congruence of worldlines and define the infinitesimal generator u of the family. For
any gauge fixing of the conformal structure g ∈ C ≡ [g] one can normalize u to be a g-unit vector.
Let us denote the normalized vector by n.

Let γ : R→M be an integral curve of the vector field n. We can arbitrarily reparametrize the
curve γ to obtain a different representative γ ◦ φ of the same trajectory, the change of parameter
being described by the diffeomorphism φ : R→R. If the original curve γ was a Γ-geodesic motion
(for a connection Γ) then γ ◦φ is a Γ-geodesic trajectory. Accordingly, one has

nµ
∇
(Γ)
µ nα = ϕ ·nα (3.1)

for some scalar field ϕ(x).
In standard GR one has no much choice for the fluid flow lines generated by n; the connection

is freezed to be the Levi-Civita connection of g and the vector field n has to be selected in the small
class of geodesic fields. In a Weyl setting one has a wider freedom in chosing the connection in the
class of EPS-compatible connections given by (1.1). One can rely on this freedom to show that for
any timelike vector field n there exists an EPS-compatible connection Γ for which n is Γ-geodesic,
i.e. (3.1) holds true. One can easily check that A has to fixed as

Aν = nµ
∇
(g)
µ nν +ϕnν (3.2)

Notice how, once u is given and a parametrization of curves is fixed by choosing the scalar field
ϕ , one can uniquely determine the covector A and thence the connection Γ. If one started from
a different conformal representative g̃ = Φ2 · g this would amount to redefine accordingly the
covector Ã = A+ d lnΦ to obtain the same Γ, the unit vector ñλ = Φ−1nλ and the scalar field
ϕ̃ = Φ−1(ϕ−nµ∇

(∗)
µ lnΦ), where ∇

(∗)
µ denotes the covariant derivative in the case it is independent

of the connection. We refer to [13] for details and proofs.

4. Fluid Conservation Laws

The fluid is described, besides by its flow lines which are generated by u, by two scalar fields
ρ(x) and p(x) describing particle density and pressure. The (symmetric) energy-momentum tensor
of the fluid is in the form

Tµν = pgµν +(p+ρ)nµnν (4.1)

9
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In standard GR, one has a strict relation between Bianchi identities (associated to field equa-
tions), conservation of energy-monentum tensor ∇νT µν = 0, matter field equations (which together
with fluid equation of state determine the evolution of the fluid) and conservation laws which are
associated to conservation of the number of particles (and the fluid energy).

In Weyl setting one should describe the same sort of relations, by suitably specifying when
covariant derivatives are induced by g and when they are induced by Γ.

The conservation of energy-momentum tensor is

∇
(Γ)
ν T µν = 0 ⇒ (4.2)

(p+ρ)∇
(Γ)
ν nν = (p−ρ)ϕ−nν

∇
(∗)
ν ρ

(gµν +nµnν)∇
(∗)
ν p = 2pnν

∇
(g)
ν nµ

where we used (1.1) and (3.2).
By starting from a different conformal gauge fixing g̃ = Φ2 ·g one has different pressure and

density, since physical rods and therefore measures depend on the choice of the conformal factor
Φ. In principle one sets p̃ = Φn p and ρ̃ = Φnρ (with the power n to be determined later in view of
conservation of the number of particles) and the energy momentum tensor is

T̃µν := p̃g̃µν +(p̃+ ρ̃)ñµ ñν = Φ
n+2(pgµν +(p+ρ)nµnν) = Φ

n+2Tµν (4.3)

Of course, unless n = −2 (as we shall see below this happens in dimension m = 3), the energy-
momentum tensor is not conformally invariant and, more importantly, its conservation is not pre-
served by conformal transformations. If Tµν is conserved then in general T̃µν is not. Accordingly,
one has to specify in which gauge the conservation of energy-momentum tensor has to be imposed.
We shall discuss this issue below in greater detail.

Also conservation of number of particles can be discussed at kinematical level. If ρ is related
to the density of particles of the fluid, then one would like to define a quantity Jµ which can be
integrated on a spatial region Σ to determine the number NΣ of fluid particles hitting Σ. The number
NΣ must be constant along the flow of n.

An object to be integrated along an hypersurface Σ is a (m−1)-form. There is a natural choice:

J =
√

gT µνnνdsµ =: Jµdsµ NΣ :=
∫

Σ

Jµdsµ (4.4)

The number of particles NΣ is conserved along the flow of n iff one has dJ = 0. The current J is
sensible to conformal transformations since measures are. It can be redefined out of any conformal
framework and one has

J̃ =
√

g̃T̃ µν ñνdsµ = Φ
m√gΦ

n−2T µν
Φnνdsµ = Φ

m+n−1J (4.5)

The integral NΣ counts how many fluid particles hit the region Σ and as such Physics imposes that
it has to be independent of the conformal framework. This forces n to be fixed as n = 1−m so that
J is conformally invariant and its integral is accordingly invariant.
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This thence prescribes the following conformal transformations

p̃ = Φ
1−m p ρ̃ = Φ

1−m
ρ (4.6)

This could be expected since ρ and p denote the spatial densities (of particles and pressure).

5. Conservation of Tµν

In a general Weyl context the conservation of energy-momentum tensor and its relation with
conservation of the current J needs to be deeply reviewed. One has in fact from conservation of
number of particles:

∂µJµ = ∇
(Γ)
µ (
√

gT µνnν) =
√

g(∇(Γ)
µ T µνnν +T µν

∇
(Γ)
µ nν)+∇

(Γ)
µ

√
g T µνnν = 0 (5.1)

In standard GR one has Γ = {g} and hence ∇µ

√
g = 0; if n is a Killing vector also T µν∇µnν = 0

and conservation of particles, dJ = 0, is implied by conservation of the energy-momentum stress
tensor (which, usually, is eventually implied by Bianchi identities). However, we have to observe
that conservation of J does not on the contrary imply conservation of energy-momentum tensor.
Only the projection of conservation laws along n is in fact used. Moreover, being n a Killing vector
is a sufficient but by no means necessary condition.

In a general Weyl context one has in fact

∂µJµ =
√

g(∇(Γ)
µ T µνnν +T µν

∇
(Γ)
µ nν)+m

√
gAµ T µνnν = 0 (5.2)

Thence one should somehow impose that in general one has

T µν
∇
(Γ)
µ nν = 0 T µνAµnν = 0 (5.3)

without being too demanding on the vector n.
Here the situation is easier for dust (p = 0). Accordingly, let us first consider this case.

T µν∇
(Γ)
µ nν = ρnµnν∇

(Γ)
µ (nαgαν) =

= ρ(nαnµ∇
(Γ)
µ nα −2nµAµ) = ρ(−ϕ +2ϕ) = ϕρ

(5.4)

Now we have to stress that the scalar ϕ can be chosen at will being related to the choice of a
parametrization of worldlines. Here of course we would like to fix ϕ = 0. This corresponds
to require that the integral curves of n are not only geodesics trajectories of Γ, but in fact they
are geodesic motions. We here started to be general enough but we are forced back to geodesic
motions.

As far as the second condition is concerned one has

T µνAµnν =−ρAµnµ = ρϕ = 0 (5.5)

which is also satisfied for ϕ = 0.
The situation with pressure is more complicated.
One can easily show that

T µν
∇
(Γ)
µ nν = p∇

(g)
µ nµ +(2ρ−mp)ϕ T µνAµnν = ρϕ (5.6)

11
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In fact one has:

T µν∇
(Γ)
µ nν = pgµν∇

(Γ)
µ nν +(p+ρ)nνnµ∇

(Γ)
µ nν =

= p∇
(Γ)
µ nµ +2pnµAµ +(p+ρ)nαnµ∇

(Γ)
µ nα −2(p+ρ)nµAµ =

= p∇
(Γ)
µ nµ −2pϕ− (p+ρ)ϕ +2(p+ρ)ϕ = p∇

(Γ)
µ nµ +2ρϕ =

= p∇
(g)
µ nµ + pnλ (gµεgλ µ −δ

µ

λ
δ ε

µ −δ
µ

µ δ ε

λ
)Aε +2ρϕ =

= p∇
(g)
µ nµ + pnλ (δ ε

λ
−δ ε

λ
−mδ ε

λ
)Aε +2ρϕ = p∇

(g)
µ nµ +(2ρ−mp)ϕ

(5.7)

and one has to face the incompressibility condition ∇
(g)
µ nµ = 0. This can be solved by using the

freedom in the conformal gauge fixing. One can show that there is always a conformal representa-
tive for which

∇
(g̃)
µ ñµ = 0 (5.8)

and then in this conformal frame we fix ϕ̃ = 0.
One has in fact

∇
(g̃)
µ ñµ = ∇

(g)
µ ñµ − ñλ (gµεgλ µ −δ

µ

λ
δ ε

µ −δ
µ

µ δ ε

λ
)∂ε lnΦ =

= ∇
(g)
µ ñµ − ñλ (δ ε

λ
−δ ε

λ
−mδ ε

λ
)∂ε lnΦ = ∇

(g)
µ ñµ +mñε∂ε lnΦ =

= 1
Φ
(∇

(g)
µ nµ +(m−1)nε∂ε lnΦ)

(5.9)

Now, as a matter of fact whaterver ∇
(g)
µ nµ is, one can always find a conformal factor Φ such

that
nε

∂ε lnΦ =− 1
m−1

∇
(g)
µ nµ (5.10)

(fix coordinates in which n = ∂0). Using such a conformal factor to change conformal representa-
tive, in the new conformal frame one has ∇

(g̃)
µ ñµ = 0.

For the second condition to hold one has

T µνAµnν = −(ρ + p)Aµnµ + pAµnµ =−ρAµnµ = ρϕ (5.11)

which also vanishes under the same condition.
Thus in general one needs not to require that n is Killing. In fact the fluid (with pressure)

selects a preferred conformal frame g̃. In that preferred frame one has a preferred Weyl connection
with

Ãν = ñµ
∇
(g̃)
µ ñν (5.12)

for which ñµ∇
(Γ)
µ ñν = 0. With these choices, not only the fluid velocities are a geodesic field, but

the conservation law dJ = 0 is equivalent to the conservation of fluid energy-momentun tensor,
∇
(Γ)
µ T µν = 0.

6. Conformal transformations

If we have to take seriously Weyl geometry and EPS framework, once matter is added then it
must be free falling along geodesics of Γ, not along geodesics of {g} as in standard GR.

Now it is well known that massive particles move along the eikonal approximation of the cor-
responding field (e.g. Klein-Gordon field). Thus in turn the EPS request is in fact a prescription to

12
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fix matter-gravity coupling so that it finally results that massive particles do move along geodesics
of Γ.

This has longly been discussed in literature (see [6]), whether minimal coupling should be
imposed in the Einstein frame or in the Jordan frame, i.e. whether matter coupled naturally to the
metric g or to the connection Γ.

Let us here consider the special case of Klein-Gordon matter field. We shall show that Klein-
Gordon equations are almost covariant with respect to conformal transformation (which in f (R)
models connect g to the connection Γ which is in fact the Levi-Civita connection to a conformal
metric g̃).

In fact, a conformal transformation maps a Klein-Gordon equation into a similar equation
with a point-dependent mass (actually a function of the conformal factor). Thus in most situations
(i.e. in regions where the conformal factor is almost constant as in virtually all cases regarding tests
of GR) the conformal transformations finally amounts to a rescaling of effective masses. When the
conformal factor is near 1 (as in standard GR or in the Solar system) then the conformal transfor-
mation leaves Klein-Gordon equation approximately invariant and the rescaling can be hidden by
observation errors.

Still when gravity-matter interactions are important (as in non-vacuum solutions, e.g. Friedman-
Robertson-Walker cosmological solutions) or when the conformal factor is non-trivial (e.g. in
strong coupling regime) then the mass rescaling can be important.

Let us fix dimension m = 4. The transformation rules of the Klein-Gordon equation with
respect to conformal rescaling of the metric and the scalar field can be easily obtained using a
simple fact concerning the conformal Laplacian operator �=�− 1

6 R.
One can easily see that in view of the transformation g 7→ g̃ = Φg, ϕ̃ = Φnϕ (for n =−1

2 ) one
has:

�ϕ +µ
2
ϕ = Φ

3
2 �̃ϕ̃ +µ

2
Φ

1
2 ϕ̃ = Φ

3
2

(
�̃ϕ̃ +

µ2

Φ
ϕ̃

)
= 0 (6.1)

If one starts from a Minkowski spacetime, then R = 0 and � = �. In this case, a conformal
spacetime g̃µν = Φ ·ηµν is conformally flat and one has the scalar field to obey the equation

�̃ϕ̃− 1
6

R̃ϕ̃ +
µ2

Φ
ϕ̃ = �̃ϕ̃ +

(
µ2

Φ
− 1

6
R̃
)

ϕ̃ = 0

This is again a Klein-Gordon-like equation with an effective mass

µ̃
2 =

µ2

Φ
− 1

6
R̃

Let us remark that even starting from a massless Klein-Gordon field (µ = 0) the final effective mass
receives a contribution from the curvature of the conformal metric. Second, the curvature itself can
be expressed in terms of the conformal factor (since the original metric is flat) and one has

µ̃
2 =

µ2

Φ
− 1

6Φ

(
−3� lnΦ− 3

2Φ
∇̃µΦ∇̃

µ
· Φ

)
=

µ2

Φ
+

1
2Φ2�Φ− 1

4Φ2 ∇̃µΦ∇̃
µ
· Φ (6.2)

As a side effect, a solution of Klein-Gordon coupled with a metric g is a solution of a Klein-
Gordon (with an effective mass depending on the conformal mass) for any conformal metric g̃. This

13
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is a first evidence that one can eventually have matter fields coupled with the Einstein metric and
hence in eikonal approximation, test particles free falling along geodesics of g̃. All these effects are
completely trivial in vacuum models when Φ = const, though they are switched on within matter.

7. Klein-Gordon Lagrangian

It is also interesting the transformation laws for Klein-Gordon fields at the Lagrangian level.
Let us consider a spacetime of dimension m in which a Klein Gordon field ϕ is described by the
matter Lagrangian

LKG =

√
g

2
(∇

(∗)
µ ϕ∇

(∗)µ
ϕ−µ

2
ϕ

2) (7.1)

where ∇
(∗)
µ denotes the covariant derivative when it is independent of a connection and it reduces

to the ordinary partial derivative.
The conformal transformation acts on the metric

g̃µν = Φ ·gµν ⇒
√

g̃ = Φ
m
2
√

g gµν = Φ · g̃µν (7.2)

and on the Klein-Gordon field
ϕ̃ = Φ

n
ϕ (7.3)

with the exponent to be later determined so that the transformed field ϕ̃ is still described by a
Klein-Gordon-like Lagrangian.

By few simple manipulations one can show that fixing n = 1
2 −

m
4 one has

LKG =

√
g̃

2
(∇

(∗)
µ ϕ̃∇

(∗)µ
ϕ̃− µ̃

2
ϕ̃

2)+∇
(∗)
µ f µ (7.4)

where we set

µ̃
2 =

µ2

Φ
+

(m−6)(m−2)
16Φ2 ∇̃µΦ∇̃

µ
· Φ+

m−2
4Φ2 �Φ (7.5)

and

f µ =−
√

g̃
2Φ

(
1
2
− m

4

)
∇
(∗)µ

Φ ϕ̃
2 (7.6)

The mass µ̃2 in dimension m = 4 reduces to (6.2) while the divergence term does not contribute to
matter field equations.

Klein-Gordon matter then is not preserved by conformal transformations. A Klein-Gordon
field in one gauge is not strictly Klein-Gordon in a conformal gauge. Accordingly, if the dynamics
is imposed to be minimally coupled in one framework it is not in the other. It is though approx-
imately Klein-Gordon, for example in regions where µ̃2 is approximately constant. Also in these
cases the value of the actual mass µ is modified to a different effective mass µ̃ .

8. Conclusions and Perspectives

We showed that for any conformal structure [g] on a spacetime M and for any timelike vector
field u one can always determine an EPS-compatible connection Γ for which the vector field u is
geodesic. Then one can determine the conformal frame and parametrizations along worldlines so

14



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
5
4

Extended Theories of Gravity M.Francaviglia

that one has the standard relation among the different conservations associated to the fluid. We also
determined how matter Lagrangian and field equations behave under conformal transformations.

Of course we are not here suggesting that the model we presented here is physically sound.
One should specify a dynamics and then investigate the relation with Bianchi identities. We chose
this model to show that had Einstein known it, he could have possibly tried this way to model
matter and gravity and make them compatible with SR.

This research is part of a larger project aiming to model a generic self-gravitating fluid in EPS
formalism. One can specify the conformal structure to be the Minkowskian one by setting g = η

and still be free to model any congruence of (timelike) worldlines as the flow of a fluid. In this
framework the gravitational field is encoded into the covector A which in turn determines the Weyl
connection Γ.

More investigations are required in this direction to show that in fact one can set the coupling
with matter so that the dynamics in fact realized what prescribed in EPS (i.e. free falling determined
by Γ). We here first sketched this at the level of field equations and Lagrangian for a Klein-Gordon
field while it should be worked out more generally.

Moreover, all observational protocols commonly used in GR rely on uniqueness of parallel
transport. When conformal transformations are considered one has automatically a whole family
of parallel transports. What impact have these on observational protocols (and then on GR tests)
are to be discussed in details as well.

Let us stress that in the EPS setting there is no freedom in choosing the connection associated
to free fall. In EPS framework the free fall of particles is by construction described by the connec-
tion Γ while the Levi-Civita connection of g plays just the kinematical role of reference frame in
the affine space of connections (which is moreover conformally covariant since one can start from
any representative of the conformal structure).

The extra degrees of freedom to determine in Γ are thence encoded into the covector A which
is kinematically free to be generic. The dynamics of the theory determines then the connection Γ

fixing the covector A in terms of matter fields and g.

Of course Weyl geometries are affected by physical interpretation problems mainly related to
the (possibly non-trivial) holonomy of the connection Γ; see [8]. However, these problems arise
only if Γ is not metric while metric connections do not generate any physical problem of this kind
and have just to be interpreted correctly. We stress that in all f (R) models with non-exotic matter
(or in vacuum) dynamics forces a posteriori the connection Γ to be automatically metric (and in fact
to be the Levi-Civita connection of a metric conformal to the g originally entering the Lagrangian;
see [9] and [10]), unless one introduces a matter Lagrangian in which matter couples directly with
the connection Γ (a case in which the connection can be also not metric; see [7]).
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