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1. Introduction

In this proceedings article I will report on a joint work with Paolo Aschieri [1] aimed at under-
standing better the mathematical structures behind noncommutative gravity. Our work is based on
the approach initiated by Julius Wess and his group [2, 3], in which a particular emphasis is given
to the deformed Hopf algebra of diffeomorphisms. For exact solutions of the noncommutative Ein-
stein equations see [4, 5, 6] and for quantum field theory on noncommutative curved spacetimes
based on this formalism see [7, 8, 9, 10]. Other recent mathematical developments in noncommu-
tative (and also nonassociative) differential geometry and Riemannian geometry can be found in
the papers of Beggs and Majid [11, 12].

Let us briefly review the basic idea of the approach of Wess et al. [2, 3]: The starting point is a
smooth manifold M, which will be later subject to deformation quantization. Associated to M there
is the algebra C∞(M) of smooth complex-valued functions and the C∞(M)-modules Ξ := Γ∞(T M)
and Ω := Γ∞(T ∗M) of smooth complex-valued sections of the tangent bundle T M and cotangent
bundle T ∗M, respectively. In fact, Ξ and Ω are C∞(M)-bimodules and this bimodule structure is
essential for considering tensor fields, which are tensor products over C∞(M) of C∞(M)-bimodules.
The infinitesimal diffeomorphisms of M are described by the Lie algebra of vector fields (Ξ, [·, ·]),
or equivalently by the universal enveloping algebra UΞ, carrying a canonical Hopf algebra struc-
ture. The Hopf algebra UΞ acts canonically via the Lie derivative on C∞(M), Ξ and Ω, giving
C∞(M) the structure of a left UΞ-module algebra and Ξ, Ω the structure of a left UΞ-module
C∞(M)-bimodule. Based on this algebraic formulation of classical differential geometry, the basic
idea of [2, 3] is to use well-known Hopf algebra deformation methods (see e.g. [13]) to go over
to the realm of noncommutative geometries. In short, the Hopf algebra of diffeomorphisms is de-
formed by a Drinfel’d twist F [14] resulting in a new Hopf algebra UΞF . Demanding covariance
under UΞF requires us to deformed all spaces the Hopf algebra UΞ acts on, in particular C∞(M),
Ξ and Ω are respectively deformed into a left UΞF -module algebra C∞(M)? and left UΞF -module
C∞(M)?-bimodules Ξ?, Ω?. This deformation induces a quantization in the sense that, in general,
the resulting deformed algebra C∞(M)? is not commutative. Based on these basic deformed ob-
jects a noncommutative gravity theory is constructed, in particular, covariant derivatives, metrics,
torsion and curvature are introduced.

As a mathematical abstraction of the setting above we may study general Hopf algebras H
and general left H-module algebras A, which we shall interpret as noncommutative symmetries
and spaces. Noncommutative vector bundles (equipped with a left H-action) over these noncom-
mutative spaces are then described by left H-module A-bimodules. There are different choices
for morphisms between noncommutative vector bundles: We could in principle consider the set of
morphisms respecting all module structures, i.e. left H-module A-bimodule homomorphisms. This
choice is inconvenient for gravity theories, since if we interpret the metric field as a morphism from
the module of vector fields to its dual (the module one-forms), it is certainly not a UΞ-equivariant
map and thus not part of this set of morphisms. A convenient and much more flexible alternative is
to consider the set of right A-linear homomorphisms between left H-module A-bimodules (equiv-
alently we could also consider left A-linear homomorphisms). Let us use the short notation HomA

for right A-linear homomorphisms between left H-module A-bimodules.
Given the fact that the noncommutative gravity theory in [2, 3] is obtained by deforming
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classical gravity it is interesting to study the behavior of HomA-morphisms under twist deforma-
tions. On one hand, we can apply general Hopf algebra deformation methods in order to deform
HomA-morphisms and on the other hand we can consider HomA?-morphisms on the deformed left
HF -module A?-bimodules. We relate these a priori different constructions via a structure pre-
serving isomorphism, thus showing that up to isomorphism there is only one twist quantization of
HomA-morphisms. A consequence of this isomorphism is a quantization map, yielding a bijective
correspondence between HomA and HomA?-morphisms. As a remark, our isomorphism agrees with
the one recently found by Kulish and Mudrov [15], which is a generalization of the isomorphism
D in [3].

In addition to HomA-morphisms also connections on noncommutative vector bundles play a
prominent role in noncommutative gravity. Again, assuming these connections to be compatible
with the complete left H-module A-bimodule structure is too restrictive. Because of this we make
the convenient choice of connections compatible with only the right A-module structure, i.e. con-
nections satisfying a Leibniz rule with respect to the right A-action. We use the short notation ConA

for these connections. We also construct a quantization map in this case, yielding a bijective corre-
spondence between ConA and ConA?-connections, the latter satisfying a Leibniz rule with respect
to the right A?-action on the deformed left HF -module A?-bimodules.

Given HomA-morphisms and ConA-connections on left H-module A-bimodules it is important
to understand their lifts to tensor product modules. Since our homomorphisms and connections
are not assumed to be H-equivariant, these lifting prescriptions become more complicated and we
require further structures. For quasitriangular Hopf algebras we have a braiding isomorphism on
tensor products of left H-modules allowing us to define a tensor product of linear maps, which
is compatible with the H-action. For H-equivariant maps this tensor product reduces to the usual
tensor product of linear maps. Our tensor product restricts to a well-defined tensor product of
HomA-morphisms on tensor product modules over A, if we assume A and the left H-module A-
bimodules to be quasi-commutative. Similarly, we can define a sum of ConA-connections giving a
prescription to associate to two ConA-connections a ConA-connection on the tensor product module
over A. This also requires a quasitriangular Hopf algebra and quasi-commutative algebras and
bimodules. For the special case of H-equivariant connections we recover the well-known tensor
product connection of [16, 17, 18]. In this sense we provide a generalization of the usual lifting
formula, which is also applicable to non H-equivariant connections. In the language of [16, 17, 18]
we can say that our sum of connections can not only be applied to right bimodule connections, but
also to generic right connections on bimodules.

The organization of this paper is as follows: In Section 2 we fix the notation and review
some basics on modules, algebras, Hopf algebras and twist deformations required for the main
text. Extensive reviews can be found for example in the monographs [13, 19]. In Section 3 we
focus on the twist deformation of module homomorphisms and endomorphisms. In particular we
provide a quantization map from HomA-morphisms to HomA?-morphisms. The twist deformation
of connections is discussed in Section 4 and a quantization map is explicitly constructed. In Section
5 we provide a covariant lifting prescription for homomorphisms to tensor product modules. For
quasi-commutative algebras and bimodules we show that the lifting prescription induces a well-
defined tensor product of HomA-morphisms on tensor product modules over A. The sum of ConA-
connections is discussed in Section 6.
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2. Preliminaries on modules, algebras, Hopf algebras and twist deformations

2.1 Algebraic preliminaries

We fix the notation and introduce the algebraic structures relevant for this article. We denote
by K a fixed commutative and unital ring. This in particular includes the case of K = C used
in commutative differential geometry and K = C[[h]] (the formal power series extension of the
complex numbers in an indeterminate h) used in deformation quantization.

A K-module is an abelian group A with an action K×A→ A , (λ ,a) 7→ λ a, such that, for all
λ , λ̃ ∈K and a,b ∈ A,

(λ λ̃ )a = λ (λ̃a) , λ (a+b) = λ a+λ b , (λ + λ̃ )a = λ a+ λ̃ a , 1a = a . (2.1)

A K-module homomorphism (or K-linear map) between the K-modules A and B is a homomor-
phism ϕ : A→ B of the abelian groups, such that, for all λ ∈K and a ∈ A, ϕ(λ a) = λ ϕ(a).

An algebra is a K-module A with a K-linear map µ : A⊗A→ A (product). Here and in the
following⊗ is the tensor product over K. We denote by a⊗b the image of (a,b) under the canonical
K-bilinear map A×A→ A⊗A and simply write for the product µ(a⊗b) = ab. The algebra A is
associative if, for all a,b,c ∈ A, a(bc) = (ab)c and unital if there exists a unit element 1 ∈ A, such
that, for all a ∈ A, 1a = a1 = a. If not stated otherwise, algebras will always be associative and
unital.

Definition 2.1. A Hopf algebra is an associative and unital algebra H together with two algebra
homomorphisms ∆ : H → H⊗H (coproduct), ε : H → K (counit) and a K-linear map S : H → H
(antipode), such that, for all ξ ∈ H,

(∆⊗ id)∆(ξ ) = (id⊗∆)∆(ξ ) , (coassociativity) (2.2a)

(ε⊗ id)∆(ξ ) = (id⊗ ε)∆(ξ ) = ξ , (2.2b)

µ
(
(S⊗ id)∆(ξ )

)
= µ

(
(id⊗S)∆(ξ )

)
= ε(ξ )1 . (2.2c)

The product in H⊗H is defined by, for all ξ ,ζ , ξ̃ , ζ̃ ∈ H,

(ξ ⊗ζ )(ξ̃ ⊗ ζ̃ ) = (ξ ξ̃ )⊗ (ζ ζ̃ ) . (2.3)

It is convenient to introduce a short notation (Sweedler’s notation) for the coproduct, for all
ξ ∈ H, ∆(ξ ) = ξ1⊗ξ2 (sum understood). The Hopf algebra properties (2.2) then read

ξ11⊗ξ12⊗ξ2 = ξ1⊗ξ21⊗ξ22 =: ξ1⊗ξ2⊗ξ3 , (2.4a)

ε(ξ1)ξ2 = ξ1 ε(ξ2) = ξ , (2.4b)

S(ξ1)ξ2 = ξ1 S(ξ2) = ε(ξ )1 . (2.4c)

Likewise we denote the three times iterated application of ∆ on ξ by ξ1⊗ ξ2⊗ ξ3⊗ ξ4. Further
standard properties of the antipode which follow from Definition 2.1 are (see e.g. [13]), for all
ξ ,ζ ∈ H, S(ξ ζ ) = S(ζ )S(ξ ), S(1) = 1, S(ξ1)⊗S(ξ2) = S(ξ )2⊗S(ξ )1 and ε(S(ξ )) = ε(ξ ).
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Definition 2.2. A left module over an algebra A (or a left A-module) is a K-module V together
with a K-linear map · : A⊗V →V satisfying, for all a,b ∈ A and v ∈V ,

a · (b · v) = (ab) · v , 1 · v = v . (2.5)

The class of left A-modules is denoted by AM .
Analogously, a right A-module is a K-module V with a K-linear map · : V⊗A→V satisfying,

for all a,b ∈ A and v ∈V ,

(v ·a) ·b = v · (ab) , v ·1 = v . (2.6)

The class of right A-modules is denoted by MA.
An A-bimodule is a left and a right A-module V satisfying the compatibility condition, for all

a,b ∈ A and v ∈V ,

(a · v) ·b = a · (v ·b) . (2.7)

The class of A-bimodules is denoted by AMA.

The algebra A can itself be a module over another algebra H. If H is further a Hopf algebra,
we have the notion of an H-module algebra, expressing a covariant transformation behavior of A
under H.

Definition 2.3. Let H be a Hopf algebra. A left H-module algebra is an algebra A that is also a
left H-module (with H-action denoted by .), such that, for all a,b ∈ A and ξ ∈ H,

ξ . (ab) = (ξ1 .a)(ξ2 .b) , ξ .1 = ε(ξ )1 . (2.8)

The class of left H-module algebras is denoted by H A .
Let A ∈ H A . A left H-module A-bimodule is an A-bimodule V that is also a left H-module

(with H-action denoted by .), such that, for all a ∈ A, v ∈V and ξ ∈ H,

ξ . (a · v) = (ξ1 .a) · (ξ2 . v) , ξ . (v ·a) = (ξ1 . v) · (ξ2 .a) . (2.9)

The class of left H-module A-bimodules is denoted by H
AMA.

An algebra E is a left H-module A-bimodule algebra, if E is a left H-module A-bimodule
and also a left H-module algebra. The class of left H-module A-bimodule algebras is denoted by
H

AAA.

The classes H
AM and H MA are defined analogously by restricting (2.9) respectively to the

first or second condition.

Example 2.4. Consider the universal enveloping algebra UΞ associated to the Lie algebra of vector
fields Ξ on a smooth manifold M. UΞ has a natural Hopf algebra structure as explained e.g. in [3].

The space of vector fields Ξ (and also the space of one-forms Ω) is a bimodule over C∞(M),
i.e. Ξ,Ω ∈ C∞(M)MC∞(M). The vector fields Ξ act as derivations on C∞(M), turning C∞(M) canon-
ically into a left UΞ-module algebra, i.e. C∞(M) ∈ UΞA . The Lie derivative L on Ξ and Ω turns
these modules canonically into left UΞ-module C∞(M)-bimodules, i.e. Ξ,Ω ∈ UΞ

C∞(M)MC∞(M).
The twist deformation procedure explained in the next subsection provides the examples rele-

vant for noncommutative gravity.
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2.2 Twist deformations

Definition 2.5. Let H be a Hopf algebra. A twist F is an element F ∈ H⊗H that is invertible
and that satisfies

F12 (∆⊗ id)F = F23 (id⊗∆)F , (2-cocycle property) (2.10a)

(ε⊗ id)F = 1 = (id⊗ ε)F , (normalization property) (2.10b)

where F12 = F ⊗1 and F23 = 1⊗F .

We frequently use the notation (sum over α understood)

F = f α ⊗ fα , F−1 = f̄ α ⊗ f̄α . (2.11)

The properties (2.10) and the inverse of (2.10a) read in this notation

f β f α
1 ⊗ fβ f α

2 ⊗ fα = f α ⊗ f β fα1⊗ fβ fα2 , (2.12a)

ε( f α) fα = 1 = f α
ε( fα) , (2.12b)

f̄ α
1 f̄ β ⊗ f̄ α

2 f̄β ⊗ f̄α = f̄ α ⊗ f̄α1 f̄ β ⊗ f̄α2 f̄β . (2.12c)

We now recall how a twist F of a Hopf algebra H induces a deformation HF of the Hopf
algebra and all its H-modules that become HF -modules. In particular, H-module algebras are
deformed into HF -module algebras and commutative ones are typically deformed into noncom-
mutative ones. In this sense F induces a quantization.

Theorem 2.6. Given a Hopf algebra H and a twist F ∈ H⊗H there is a new Hopf algebra HF

given by (
H,µ,∆F ,ε,SF

)
. (2.13)

As algebras HF = H and they also have the same counit εF = ε . The deformed coproduct is given
by, for all ξ ∈ H,

∆
F (ξ ) = F ∆(ξ )F−1 . (2.14)

The deformed antipode reads, for all ξ ∈ H,

SF (ξ ) = χ S(ξ )χ
−1 , (2.15)

where χ := f α S( fα) and χ−1 = S( f̄ α) f̄α .

A proof of this theorem can be found in textbooks on Hopf algebras, e.g. [13].

Remark 2.7. The Hopf algebra HF admits the twist F−1. The deformed Hopf algebra (HF )F−1

is equal to the original one H. Because of this we call the deformation F−1 of the Hopf algebra
HF dequantization.

6
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Theorem 2.8. Given a Hopf algebra H, a twist F ∈H⊗H and a left H-module algebra A ∈ H A ,
then there is a deformed left HF -module algebra A? ∈ HF

A . As a left H-module (and thus also as
a left HF -module, since H and HF are equal as algebras) A? is equal to A. The product in A? is
given by, for all a,b ∈ A,

a?b := µ?(a⊗b) = µ ◦F−1 . (a⊗b) = ( f̄ α .a)( f̄α .b) . (2.16)

Given also a left H-module A-bimodule V ∈ H
AMA, then there is a deformed left HF -module

A?-bimodule V? ∈ HF

A?MA? . As a left H-module (and thus also as a left HF -module) V? is equal
to V . The left and right A?-actions are given by, for all a ∈ A and v ∈V ,

a? v = · ◦F−1 . (a⊗ v) = ( f̄ α .a) · ( f̄α . v) , (2.17a)

v?a = · ◦F−1 . (v⊗a) = ( f̄ α . v) · ( f̄α .a) . (2.17b)

Given also a left H-module A-bimodule algebra E ∈ H
AAA, then there is a deformed left

HF -module A?-bimodule algebra E? ∈ HF

A?AA? . As a left H-module (and thus also as a left
HF -module) E? is equal to E, the product is given by (2.16) and the A?-actions by (2.17).

For a proof of this theorem we refer to [20, 1]. See also [21] for an early account of the results
in collaboration [1].

Analogously to Theorem 2.8 we can deform H
AM and H MA modules into HF

A?M and
HF

MA? modules by restricting (2.17) to (2.17a) and (2.17b), respectively.

Example 2.9. Deforming via the theorems above the Hopf algebra UΞ and its modules C∞(M), Ξ

and Ω (see Example 2.4) we obtain the deformed diffeomorphisms UΞF and its deformed modules
C∞(M)?, Ξ? and Ω?. These structures are the building blocks for noncommutative gravity [2, 3].

3. Quantization of module homomorphisms

3.1 Endomorphisms

We investigate the quantization of the endomorphisms of a module V . For this let us consider
first the case of a left H-module V ∈ H M and later introduce an additional A-bimodule structure
on V . The set of all K-linear maps from V to itself is denoted by EndK(V ). We can compose two
endomorphisms P,Q∈EndK(V ) with the usual composition product ◦, i.e. for all v∈V , P◦Q(v) :=
P(Q(v)). This turns EndK(V ) into an algebra. Furthermore, we have an induced left H-action on
EndK(V ) given by the adjoint action, for all ξ ∈ H and P ∈ EndK(V ),

ξ I P := ξ1 .◦P◦S(ξ2). . (3.1)

In this expression we have denoted, for all ξ ∈ H, by ξ. ∈ EndK(V ) the endomorphism v 7→ ξ . v.
The product ◦ and the adjoint action I are compatible, for all ξ ∈ H and P,Q ∈ EndK(V ),

ξ I (P◦Q) = ξ1 .◦P◦Q◦S(ξ2). = ξ1 .◦P◦S(ξ2).◦ξ3 .◦Q◦S(ξ4).

= (ξ1 I P)◦ (ξ2 I Q) , (3.2)

7
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where we have used the Hopf algebra properties (2.2). Thus, EndK(V ) ∈ H A is a left H-module
algebra.

If additionally V ∈ H MA is a left H-module right A-module we can consider the subset of
right A-linear endomorphisms EndA(V ) ⊆ EndK(V ), i.e. P ∈ EndA(V ) satisfies, for all a ∈ A and
v ∈ V , P(v · a) = P(v) · a. These endomorphisms form a left H-module subalgebra of EndK(V ),
i.e. EndA(V ) ∈ H A , with the usual composition product ◦ and the adjoint action (3.1).

Finally, if V ∈ H
AMA is a left H-module A-bimodule, then the left A-action on V induces an

A-bimodule structure on EndA(V ) and also on EndK(V ), for all a ∈ A and P ∈ EndK(V ),

a ·P := la ◦P , P ·a := P◦ la , (3.3)

where, for all a∈ A, la : V →V , v 7→ a ·v is the left multiplication map. Thus, EndK(V ),EndA(V )∈
H

AAA are left H-module A-bimodule algebras (the covariance of the A-bimodule structure under H
is an immediate consequence of the left H-module algebra homomorphism A→EndK(V ) , a 7→ la).

It is also possible to consider left A-linear endomorphisms AEnd(V ) of the module V ∈ H
AMA

and their deformation. The corresponding results follow from the discussion of right A-linear
endomorphisms and a mirror construction, see [1, 21]. Since this is rather technical we restrict
ourselves in this proceedings article to the right linear case EndA(V ).

Let H be a Hopf algebra with twist F ∈H⊗H. We consider from now on only the case of V ∈
H

AMA, since the results for modules with only a left or right A-module structure follow by simply
forgetting the unwanted structures. We are interested in the deformation of the endomorphism
algebras EndK(V ),EndA(V ) ∈ H

AAA. There are two options: Firstly, we can apply Theorem 2.8 to
the left H-module A-bimodule algebras EndK(V ),EndA(V ) ∈ H

AAA. The results are the left HF -
module A?-bimodule algebras EndK(V )?,EndA(V )? ∈ HF

A?AA? . There, the Hopf algebra action is
not deformed, the product is given by the ?-composition

P◦? Q = ( f̄ α I P)◦ ( f̄α I Q) , (3.4)

and similarly the A?-bimodule structure is given by

a?P = ( f̄ α .a) · ( f̄α I P) , P?a = ( f̄ α I P) · ( f̄α .a) . (3.5)

The elements of EndA(V )? are right A-linear and in general not right A?-linear. The second option is
to consider the endomorphisms of the deformed module V? ∈ HF

A?MA? , i.e. EndK(V?),EndA?(V?)∈
HF

A?AA? . Here the Hopf algebra action is the HF -adjoint action, for all ξ ∈ HF and P ∈
EndK(V?),

ξ IF P := ξ1F .◦P◦SF (ξ2F ). , (3.6)

with the deformed coproduct ∆F (ξ ) = ξ1F ⊗ ξ2F and the deformed antipode SF (see Theorem
2.6). The product is the usual composition ◦ and the A?-bimodule structure is induced by the left
HF -module algebra homomorphism A?→ EndK(V?) , a 7→ l?a given by, for all v ∈V?, l?a(v) = a?v,
i.e. for all P ∈ EndK(V?) and a ∈ A?,

a∗P = l?a ◦P , P∗a = P◦ l?a . (3.7)

The following theorem, which is proven in [1, 21], states that there is an isomorphism between
both options:

8
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Theorem 3.1. The map

DF : EndK(V )?→ EndK(V?) , P 7→ DF (P) = ( f̄ α I P)◦ f̄α . (3.8)

is a left HF -module A?-bimodule algebra isomorphism. It restricts to a left HF -module A?-
bimodule algebra isomorphism

DF : EndA(V )?→ EndA?(V?) . (3.9)

Notice that the elements of EndA(V )? are “classical” endomorphisms, i.e. right linear with
respect to the undeformed algebra A, while the elements of EndA?(V?) are right linear with respect
to the deformed algebra A?. Thus, we also have found a quantization map providing a bijective
correspondence between classical and deformed right linear maps.

A similar map DF also exists for a variety of other examples, see [1, 21].

3.2 Homomorphisms

The results of the last subsection naturally generalize to module homomorphisms. To start, let
us clarify the relevant algebraic structures. Consider two left H-modules V,W ∈ H M . The space
HomK(V,W ) ∈ H M of K-linear maps from V to W is also left H-module by employing the adjoint
action I defined in (3.1). In contrast to the endomorphisms we do not have an algebra structure
on homomorphisms. However, if V,W ∈ H

AMA are left H-module A-bimodules with A ∈ H A then
HomK(V,W ),HomA(V,W ) ∈ H

AMA are left H-module A-bimodules with A-actions given in (3.3).
For the left A-linear homomorphisms AHom(V,W ) and their deformation we again refer to [1, 21].

Let now H be a Hopf algebra with twist F ∈ H ⊗H. Similar to the endomorphisms we
have two options to deform the homomorphisms: Firstly, we can apply Theorem 2.8 and obtain
the left HF -module A?-bimodules HomK(V,W )?,HomA(V,W )? ∈ HF

A?MA? . Secondly, we have
the homomorphisms between the deformed modules HomK(V?,W?),HomA?(V?,W?) ∈ HF

A?MA? .
Analogously to Theorem 3.1 these modules are related by an isomorphism:

Theorem 3.2. The map

DF : HomK(V,W )?→ HomK(V?,W?) , P 7→ DF (P) = ( f̄ α I P)◦ f̄α. (3.10)

is a left HF -module A?-bimodule isomorphism. It restricts to a left HF -module A?-bimodule
isomorphism

DF : HomA(V,W )?→ HomA?(V?,W?) . (3.11)

Example 3.3. Let V ∈ H
AMA. The dual module is given by V ′ := HomA(V,A)∈ H

AMA. The quan-
tization map of Theorem 3.2 leads to an isomorphism between the modules (V ′)? = HomA(V,A)? ∈
HF

A?MA? and (V?)′ = HomA?(V?,A?) ∈ HF

A?MA? . Thus, quantizing the dual module is (up to iso-
morphism) the same as dualizing the quantized module.

4. Quantization of connections

We extend the results on the quantization isomorphism DF obtained in Section 3 for endo-
morphisms and homomorphisms to connections on modules. For this we require some notations
from the theory of connections, see e.g. the lecture notes [18] for an introduction.

9
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4.1 Connections on modules

Definition 4.1. Let A be an associative and unital algebra. A differential calculus over A (or a
differential graded algebra) is an N0-graded algebra (Ω• =

⊕
n≥0 Ωn,∧), where Ω0 = A, together

with a K-linear map d : Ω•→Ω• of degree one, satisfying d◦d = 0 and

d(ω ∧ω
′) = (dω)∧ω

′+(−1)deg(ω)
ω ∧ (dω

′) , (4.1)

for all ω,ω ′ ∈Ω• with ω of homogeneous degree.

In the hypotheses above, the spaces Ωn ∈ AMA are A-bimodules, for all n∈N0. We denote Ω1

simply by Ω. In analogy to classical differential geometry, we call Ωn the module of n-forms and
denote the product by a wedge ∧. One has to be a bit careful with this notation, since in contrast to
the differential geometric wedge product, our product is not necessarily graded commutative.

Example 4.2. The exterior algebra of differential forms on a d-dimensional smooth manifold M
(together with the exterior differential) is a differential calculus according to Definition 4.1. There
A = C∞(M) and Ωn is the module of smooth n-forms. We have Ωn = 0 for n > d and (as a special
case) the wedge is graded commutative, for all ω,ω ′ ∈ Ω• of homogeneous degree, ω ∧ω ′ =
(−1)deg(ω)deg(ω ′) ω ′∧ω .

Definition 4.3. Let A be an associative and unital algebra and (Ω•,∧,d) be a differential calculus
over A. Let further V ∈ MA be a right A-module. A connection on V is a K-linear map ∇ : V →
V ⊗A Ω satisfying the Leibniz rule, for all v ∈V and a ∈ A,

∇(v ·a) = ∇(v) ·a+ v⊗A da . (4.2)

We denote the set of all connections on V by ConA(V ).

Notice that ConA(V ) is an affine space over HomA(V,V ⊗A Ω): Let ∇ ∈ ConA(V ) and P ∈
HomA(V,V ⊗A Ω), then for all v ∈V and a ∈ A,

(∇+P)(v ·a) = ∇(v) ·a+ v⊗A da+P(v) ·a = (∇+P)(v) ·a+ v⊗A da . (4.3)

The action of HomA(V,V ⊗A Ω) on ConA(V ) is clearly free and transitive.
In case V ∈ AMA is an A-bimodule a right connection on V is a K-linear map ∇ : V →V⊗A Ω

satisfying (4.2). The space of right connections on V is also denoted by ConA(V ). Notice that we
do not demand any compatibility conditions for a right connection with the left A-module structure
on V . This is different to the concept of bimodule connections proposed in [16, 17, 18]. We will
comment more on this later in Section 6 and argue that these conditions are too restrictive in our
setting.

For connections on left A-modules or left connections on A-bimodules and their quantization
we refer to [1, 21].

10
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4.2 Quantization isomorphism

Let H be a Hopf algebra and A∈ H A . Let further (Ω•,∧,d) be a left H-covariant differential
calculus over A, i.e. (Ω•,∧) ∈ H A is a left H-module algebra, the action . is of degree zero and
the differential is equivariant, for all ξ ∈ H and ω ∈Ω•,

ξ . (dω) = d(ξ .ω) , (4.4)

or equivalently ξ I d = ε(ξ )d. As a consequence, the modules of n-forms have the following
structure Ωn ∈ H

AMA, for all n ∈ N.
Given a twist, a left H-covariant differential calculus is deformed into a left HF -covariant

differential calculus:

Lemma 4.4. Let H be a Hopf algebra with twist F ∈ H⊗H, A ∈ H A and (Ω•,∧,d) be a left H-
covariant differential calculus over A. Then (Ω•,∧?,d) is a left HF -covariant differential calculus
over A?, where ∧? is the deformed product obtained in Theorem 2.8.

Consider also a left H-module right A-module V ∈ H MA. If V ∈ H
AMA we simply forget

about the left A-module structure. Since ConA(V ) ⊆ HomK(V,V ⊗A Ω) we can apply the quan-
tization isomorphism DF of Theorem 3.2 to any connection ∇ ∈ ConA(V ) in order to obtain a
map DF (∇) ∈ HomK(V?,(V ⊗A Ω)?). This can not yet be a deformed connection, i.e. a K-linear
map V? → V?⊗A? Ω? satisfying the Leibniz rule (4.2) with respect to ?-multiplication, since the
codomain of DF (∇) is not V?⊗A? Ω? but (V ⊗A Ω)?.

Lemma 4.5. Let H be a Hopf algebra with twist F ∈ H ⊗H and let A ∈ H A , V ∈ H MA and
W ∈ H

AMA. Then the K-linear map ϕ : V?⊗A? W? → (V ⊗A W )? defined by, for all v ∈ V? and
w ∈W?, ϕ(v⊗A? w) := ( f̄ α . v)⊗A ( f̄α . w) is a well-defined left HF -module right A?-module
isomorphism.

The strategy to obtain the quantization map D̃F for connections is to compose DF with ϕ−1:

V?
D̃F (∇) //

DF (∇) ((PPPPPPPPPPPPPP V?⊗A? Ω?

(V ⊗A Ω)?

ϕ−1

OO
(4.5)

To be precise, we define the left HF -module isomorphism

D̃F : HomK(V,V ⊗A Ω)?→ HomK(V?,V?⊗A? Ω?) , P 7→ D̃F (P) = ϕ
−1 ◦DF (P) . (4.6)

This map induces the quantization isomorphism for connections:

Theorem 4.6. The left HF -module isomorphism (4.6) restricts to the left HF -module isomorphism

D̃F : HomA(V,V ⊗A Ω)?→ HomA?(V?,V?⊗A? Ω?) (4.7)

and to the affine space isomorphism

D̃F : ConA(V )→ ConA?(V?) , (4.8)

where ConA(V ) and ConA?(V?) are respectively affine spaces over the isomorphic HF -modules
HomA(V,V ⊗A Ω)? and HomA?(V?,V?⊗A? Ω?).

The proof of this theorem can be found in [1, 21].
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5. Tensor product of module homomorphisms

Given two K-modules V and W we can consider the tensor product V ⊗W (over K). By
construction, V ⊗W is again a K-module and we denote the image of (v,w) ∈ V ×W under the
canonical K-bilinear map V ×W →V ⊗W by v⊗w. Given two further K-modules Ṽ , W̃ and also
two K-linear maps P : V → Ṽ and Q : W → W̃ there is the tensor product map P⊗Q : V ⊗W →
Ṽ ⊗W̃ defined by, for all v ∈V and w ∈W ,

P⊗Q(v⊗w) := P(v)⊗Q(w) (5.1)

and extended to all V ⊗W by K-linearity. This tensor product of K-linear maps is associative,
i.e. for Z, Z̃ being K-modules and T : Z→ Z̃ being K-linear, we have on V ⊗W ⊗Z

P⊗ (Q⊗T ) = (P⊗Q)⊗T . (5.2)

It also satisfies the composition law, for V̂ , Ŵ being K-modules and P̃ : Ṽ → V̂ , Q̃ : W̃ → Ŵ being
K-linear,

(P̃⊗ Q̃)◦ (P⊗Q) = (P̃◦P)⊗ (Q̃◦Q) . (5.3)

Let H be a Hopf algebra and let us consider left H-modules V,W ∈ H M . Then we can define
a left H-module structure on V ⊗W by, for all ξ ∈ H, v ∈V and w ∈W ,

ξ . (v⊗w) := (ξ1 . v)⊗ (ξ2 .w) . (5.4)

The first question that now arises is the following: Is the tensor product ⊗ of K-linear maps com-
patible with this H-action? To answer this question we calculate the adjoint action of ξ ∈ H on
P⊗Q and find

ξ I (P⊗Q) = (ξ1 .◦P◦S(ξ3).)⊗ (ξ2 I Q) . (5.5)

In case of a noncocommutative Hopf algebra, i.e. ξ1⊗ξ2 6= ξ2⊗ξ1, and a nonequivariant map Q,
i.e. ξ I Q 6= ε(ξ )Q, the right hand side of (5.5) is not equal to (ξ1 I P)⊗ (ξ2 I Q), meaning that
the tensor product of K-linear maps is not compatible with the H-action. This can be understood
as follows: The ordering on the left hand side of (5.1) is P,Q,v,w, while on the right hand side
we have P,v,Q,w, thus Q and v do not appear properly ordered. This issue can be resolved if
the Hopf algebra comes with a quasitriangular structure, which allows us to define braiding maps
interchanging in a controlled way the ordering of Q and v.

5.1 Quasitriangular Hopf algebras

Definition 5.1. A quasi-cocommutative Hopf algebra (H,R) is a Hopf algebra H together with
an invertible element R ∈ H⊗H (called universal R-matrix) such that, for all ξ ∈ H,

∆
cop(ξ ) = R ∆(ξ )R−1 , (5.6)

where ∆cop(ξ ) = ξ2⊗ξ1 is the coopposite coproduct.

12
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A quasi-cocommutative Hopf algebra is called quasitriangular if

(∆⊗ id)R = R13 R23 , (id⊗∆)R = R13 R12 , (5.7)

and triangular if additionally R21 = R−1, where R21 = σ(R) with the transposition map σ(ξ ⊗
ζ ) = ζ ⊗ξ .

Example 5.2. The Hopf algebra UΞ of diffeomorphisms on a smooth manifold M is triangular
with trivial R-matrix R = 1⊗ 1. The Hopf algebra of twist deformed diffeomorphisms UΞF is
triangular with R-matrix RF = F21 F−1.

In general, the twist deformation of a (quasi)triangular Hopf algebra (H,R) is (quasi)triangular
(HF ,RF := F21 R F−1).

Standard properties of quasitriangular R-matrices are (see e.g. [13])

(ε⊗ id)R = 1 , (id⊗ ε)R = 1 , (5.8a)

(S⊗ id)R = R−1 , (id⊗S)R−1 = R , (5.8b)

and the quantum Yang-Baxter equation

R12 R13 R23 = R23 R13 R12 . (5.8c)

It is convenient to introduce the notations R = Rα ⊗Rα and R−1 = R̄α ⊗ R̄α (sum over α under-
stood) for the R-matrix and its inverse.

Let (H,R) be a quasitriangular Hopf algebra and V,W ∈ H M be left H-modules. Then we
can define a left H-module isomorphism (called braiding) between the left H-modules V ⊗W and
W ⊗V . The braiding map τR : V ⊗W →W ⊗V is defined by, for all v ∈V and w ∈W ,

τR(v⊗w) := (R̄α .w)⊗ (R̄α . v) . (5.9)

The property (5.6) ensures that τR is a left H-module homomorphism. Furthermore, it is invertible
via the map τ

−1
R given by τ

−1
R (w⊗ v) = (Rα . v)⊗ (Rα . w). From the quasitriangular properties

(5.7) we obtain the braid relations on the triple tensor product V ⊗W ⊗Z (with Z ∈ H M)

τR (12)3 = τR 12 ◦ τR 23 , τR 1(23) = τR 23 ◦ τR 12 , (5.10)

where the indices on τR label the legs of the tensor product on which τR is acting on, e.g. τR 23(v⊗
w⊗ z) = v⊗ (R̄α . z)⊗ (R̄α .w) and τR (12)3(v⊗w⊗ z) = (R̄α . z)⊗ R̄α . (v⊗w).

5.2 Tensor product over K

In order to resolve the H-noncovariance of the usual tensor product of K-linear maps (5.1) we
make the following

Definition 5.3. Let (H,R) be a quasitriangular Hopf algebra and V,W,Ṽ ,W̃ ∈ H M . The R-tensor
product of K-linear maps is defined by, for all P ∈ HomK(V,Ṽ ) and Q ∈ HomK(W,W̃ ),

P⊗R Q := (P◦ R̄α.)⊗ (R̄α I Q) , (5.11)

where ⊗ is defined in (5.1).

13
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This product already appeared in [13], Chapter 9.3, where however only some of its properties
have been studied. In particular, the twist deformation to be studied later in this subsection and the
reduction to tensor products over A in the next subsection is to our best knowledge new material,
which is for the first time presented in [1, 21].

We can rewrite (5.11) in terms of the braiding map (5.9) and its inverse as follows

P⊗R Q = (P⊗R id)◦ (id⊗R Q) = (P⊗ id)◦ τR ◦ (Q⊗ id)◦ τ
−1
R . (5.12)

From this expression we obtain that the lift of P to the tensor product module V ⊗W̃ is simply
P 7→ P⊗R id = P⊗ id, while the lift of Q, given by Q 7→ id⊗R Q = τR ◦ (Q⊗ id)◦ τ

−1
R , requires a

braiding of the module W to the very left before acting with Q.
The ordering problem (5.5) is resolved for the R-tensor product and furthermore ⊗R is asso-

ciative and satisfies a braided composition law.

Proposition 5.4. Let (H,R) be a quasitriangular Hopf algebra and V,W,Z,Ṽ ,W̃ , Z̃,V̂ ,Ŵ ∈ H M

be left H-modules. The R-tensor product is compatible with the left H-module structure, i.e., for
all ξ ∈ H, P ∈ HomK(V,Ṽ ) and Q ∈ HomK(W,W̃ ),

ξ I (P⊗R Q) = (ξ1 I P)⊗R (ξ2 I Q) . (5.13a)

Furthermore, ⊗R is associative, for all P ∈HomK(V,Ṽ ), Q ∈HomK(W,W̃ ) and T ∈HomK(Z, Z̃),

(P⊗R Q)⊗R T = P⊗R (Q⊗R T ) , (5.13b)

and satisfies the composition law, for all P ∈ HomK(V,Ṽ ), Q ∈ HomK(W,W̃ ), P̃ ∈ HomK(Ṽ ,V̂ )
and Q̃ ∈ HomK(W̃ ,Ŵ ),

(P̃⊗R Q̃)◦ (P⊗R Q) =
(
P̃◦ (R̄α I P)

)
⊗R

(
(R̄α I Q̃)◦Q

)
. (5.13c)

The tensor product ⊗R is also compatible with right A-linearity:

Proposition 5.5. In the hypotheses of Proposition 5.4 let W,W̃ ∈ H MA be left H-module right
A-modules with A ∈ H A . Then for all P ∈ HomK(V,Ṽ ) and all right A-linear Q ∈ HomA(W,W̃ )
we have

P⊗R Q ∈ HomA(V ⊗W,Ṽ ⊗W̃ ) . (5.14)

A proof of these propositions is given in [1, 21].
It remains to study the behavior of ⊗R under twist quantization. Let F ∈ H⊗H be a twist

of the quasitriangular Hopf algebra (H,R). Then the deformed Hopf algebra HF is again qu-
asitriangular with R-matrix RF = F21 R F−1. Given two left H-modules V,W ∈ H M , then V
and W are automatically left HF -modules, since H and HF are equal as algebras, V,W ∈ HF

M .
Analogously, V ⊗W ∈ H M is also a left HF -module. Notice however that the definition of the left
H-action (and thus also the left HF -action) on V ⊗W uses the coproduct in H, see (5.4). We can
induce another left HF -action (and thus also a left H-action) on the K-module V ⊗W by using the
coproduct in HF . To distinguish the resulting left HF -module from V ⊗W ∈ HF

M we denote it

14
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by V ⊗? W ∈ HF
M . The image of (v,w) under the canonical map V ×W →V ⊗? W is denoted by

v⊗? w. By definition, the left HF -action reads, for all ξ ∈ HF , v ∈V and w ∈W ,

ξ .F (v⊗? w) = (ξ1F . v)⊗? (ξ2F .w) , (5.15)

where we have used the notation ∆F (ξ ) = ξ1F ⊗ξ2F .
The left HF -modules V ⊗W ∈ HF

M and V ⊗? W ∈ HF
M are isomorphic via the map ϕ :

V ⊗? W →V ⊗W defined by, for all v ∈V and w ∈W ,

ϕ(v⊗? w) := ( f̄ α . v)⊗ ( f̄α .w) . (5.16)

Compare this also with Lemma 4.5 which discusses the corresponding induced map on the quo-
tient modules (i.e. tensor product over A, respectively A?). We obtain the following deformation
behavior of the R-tensor product:

Theorem 5.6. Let (H,R) be a quasitriangular Hopf algebra with twist F ∈H⊗H and V,W,Ṽ ,W̃ ∈
H M . Then for all P ∈ HomK(V,Ṽ ) and Q ∈ HomK(W,W̃ ) the following diagram commutes

V ⊗? W

ϕ

��

DF (P)⊗
RF DF (Q)

// Ṽ ⊗? W̃

ϕ

��
V ⊗W

DF

(
( f̄ αIP)⊗R ( f̄αIQ)

) // Ṽ ⊗W̃

(5.17)

where ⊗RF is the R-tensor product with respect to the Hopf algebra (HF ,RF ) and DF is the
quantization isomorphism of Theorem 3.2.

The proof can be found in [1, 21].

5.3 Tensor product over A

Let (H,R) be a quasitriangular Hopf algebra, A ∈ H A , V,Ṽ ∈ H MA and W,W̃ ∈ H
AMA. We

now investigate under which conditions the R-tensor product of K-linear maps (5.11) gives rise
to a tensor product of right A-linear maps P ∈ HomA(V,Ṽ ) and Q ∈ HomA(W,W̃ ) on V ⊗A W .
Remember that V ⊗A W can be defined as the quotient of V ⊗W by the submodule generated by
the elements v ·a⊗w− v⊗a ·w, for all v ∈V , w ∈W and a ∈ A.

It turns out that we require in addition to the quasitriangular structure on H a quasi-commutative
structure on A, W and W̃ .

Definition 5.7. Let (H,R) be a quasitriangular Hopf algebra. We say that a left H-module algebra
A ∈ H A is quasi-commutative if, for all a,b ∈ A,

ab = (R̄α .b)(R̄α .a) . (5.18)

A left H-module A-bimodule W ∈ H
AMA is quasi-commutative if, for all w ∈W and a ∈ A,

v ·a = (R̄α .a) · (R̄α . v) . (5.19)
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It can be shown that tensor products W ⊗A W̃ of, and homomorphisms HomA(W,W̃ ) between
quasi-commutative left H-module A-bimodules W,W̃ over quasi-commutative left H-module alge-
bras A are quasi-commutative left H-module A-bimodules [1, 21].

Example 5.8. Let UΞ be the Hopf algebra of diffeomorphisms on a manifold M. The R-matrix
in this case is R = 1⊗ 1, i.e. UΞ is cocommutative. The algebra of functions C∞(M) is a quasi-
commutative left UΞ-module algebra and the left UΞ-module C∞(M)-bimodules of one-forms Ω

and vector fields Ξ are quasi-commutative as well.
The twist deformed algebra of functions C∞(M)? and the twist quantized modules of one-

forms Ω? and vector fields Ξ? are quasi-commutative with respect to the deformed Hopf algebra of
diffeomorphisms UΞF and the R-matrix RF = F21 F−1.

In general, twist deformations of quasi-commutative algebras and bimodules are again quasi-
commutative.

Using quasi-commutativity we can restrict the R-tensor product to tensor product modules
over A.

Theorem 5.9. Let (H,R) be a quasitriangular Hopf algebra, A ∈ H A , V,Ṽ ∈ H MA and W,W̃ ∈
H

AMA. Let also A, W and W̃ be quasi-commutative. Then for all P ∈ HomA(V,Ṽ ) and Q ∈
HomA(W,W̃ ) the map P⊗R Q ∈ HomA(V ⊗W,Ṽ ⊗W̃ ) defined in (5.11) induces a well-defined
map between the quotient modules (which we denote with a slight abuse of notation by the same
symbol)

P⊗R Q ∈ HomA(V ⊗A W,Ṽ ⊗A W̃ ) . (5.20)

Explicitly, we have for all v ∈V and w ∈W,

P⊗R Q(v⊗A w) = P(R̄α . v)⊗A (R̄α I Q)(w) . (5.21)

This tensor product of right A-linear maps is compatible with the left H-action, it is associative
and it satisfies the composition property (5.13c).

Again, the proof is found in [1] and for the special case of triangular Hopf algebras in [21].
There we also studied the twist quantization and an analogous commuting diagram as in Theorem
5.6 is found for the R-tensor product of right A-linear maps:

V?⊗A? W?

ϕ

��

DF (P)⊗
RF DF (Q)

// Ṽ?⊗A? W̃?

ϕ

��
(V ⊗A W )?

DF

(
( f̄ αIP)⊗R ( f̄αIQ)

) // (Ṽ ⊗A W̃ )?

(5.22)

6. Connections on tensor product modules

Motivated by the investigations in the last section we now study the extension of connections to
tensor product modules. This is of particular importance in noncommutative gravity, since it allows
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us to define connections on noncommutative tensor fields in terms of a fundamental connection on
vector fields or one-forms.

We again require a quasitriangular Hopf algebra (H,R) and a quasi-commutative left H-
module algebra A ∈ H A . We further assume a graded quasi-commutative left H-covariant dif-
ferential calculus (Ω•,∧,d) over A, i.e. for all ω,ω ′ ∈Ω• of homogeneous degree we demand

ω ∧ω
′ = (−1)deg(ω)deg(ω ′) (R̄α .ω

′)∧ (R̄α .ω) . (6.1)

An example for a graded quasi-commutative left H-covariant differential calculus can be obtained
by deforming the classical differential calculus on a manifold (see Example 4.2) by using Lemma
4.4. This is the differential calculus of noncommutative gravity.

Before studying the extension of connections to tensor product modules it is instructive to
present and discuss the following

Lemma 6.1. Let (H,R) be a quasitriangular Hopf algebra, A ∈ H A be quasi-commutative and
let (Ω•,∧,d) be a graded quasi-commutative left H-covariant differential calculus over A. Then
any right connection ∇∈ConA(W ) on a quasi-commutative left H-module A-bimodule W ∈ H

AMA

satisfies the braided left Leibniz rule, for all w ∈W and a ∈ A,

∇(a ·w) = (R̄α .a) · (R̄α I ∇)(w)+(Rα .w)⊗A (Rα .da)

= (R̄α .a) · (R̄α I ∇)(w)+ τ
−1
R (da⊗A w) . (6.2)

Proof. The proof follows from quasi-commutativity (5.19), the right Leibniz rule of the connec-
tions (4.2), H-equivariance of the differential and the R-matrix properties (5.7) and (5.8),

∇(a ·w) = ∇
(
(Rα .w) · (Rα .a)

)
= ∇(Rα .w) · (Rα .a)+(Rα .w)⊗A d(Rα .a)

= (R̄β Rα .a) · R̄β .∇(Rα .w)+(Rα .w)⊗A (Rα .da)

= (R̄β R̄α .a) · R̄β .∇(S(R̄α).w)+(Rα .w)⊗A (Rα .da)

= (R̄α .a) · R̄α1 .∇(S(R̄α2).w)+(Rα .w)⊗A (Rα .da)

= (R̄α .a) · (R̄α I ∇)(w)+(Rα .w)⊗A (Rα .da) . (6.3)

Remark 6.2. Lemma 6.1 shows that a generic right connection on W is in general not a bimodule
connection in the sense of [16, 17, 18]. Remember that a right bimodule connection is defined to
be a right connection on an A-bimodule W , such that additionally, for all a ∈ A and w ∈W ,

∇(a ·w) = a ·∇(w)+σ(da⊗A w) , (6.4)

with some generalized braiding σ : Ω⊗A W →W ⊗A Ω. Comparing our expression (6.2) with this
equation we identify σ = τ

−1
R , but the first term does not match. Notice that in case the R-matrix

acts trivially on ∇, such that R̄α ⊗ R̄α I ∇ = 1⊗∇, the two formulae coincide. This shows that
equivariant connections are automatically bimodule connections. For nonequivariant connections
the R-matrix in the first term of (6.2) is naturally interpreted as a braiding between ∇ and a, taking
care of the reordering. Notice that we did not demand (6.2), but it is a consequence of quasi-
commutativity and holds for all connections ∇ ∈ ConA(W )!
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The main reason why in [16, 17, 18] the connections are assumed to be bimodule connections
is that (6.4) and the braiding property of σ allows one to define connections on tensor product
modules V ⊗A W in terms of connections on V and W . For equivariant connections we could use
the same extension formula as in [16, 17, 18].

In the following we show that in our setting there is a generalization of the tensor product
connection of [16, 17, 18], which is based on (6.2) and applies to all connections (in particular also
nonequivariant ones).

Theorem 6.3. Let (H,R) be a quasitriangular Hopf algebra and A ∈ H A , W ∈ H
AMA be quasi-

commutative. Let further (Ω•,∧,d) be a graded quasi-commutative left H-covariant differential
calculus over A and V ∈ H MA, ∇V ∈ ConA(V ) and ∇W ∈ ConA(W ). Then the K-linear map
∇V ⊕R ∇W : V ⊗A W →V ⊗A W ⊗A Ω defined by, for all v ∈V and w ∈W,

(∇V ⊕R ∇W )(v⊗A w) := τ
−1
R 23

(
∇V (v)⊗A w

)
+(R̄α . v)⊗A (R̄α I ∇W )(w) (6.5)

is well-defined and a connection on V ⊗A W.

Again, if we assume as a very special case that ∇W is equivariant, then our formula (6.5)
reduces to the one in [16, 17, 18]. The R-sum of connections (6.5) extends canonically to higher
tensor products of modules.

Theorem 6.4. In the hypotheses of Theorem 6.3 let also Z ∈ H
AMA be quasi-commutative and

∇Z ∈ ConA(Z). Then we have on V ⊗A W ⊗A Z

(∇V ⊕R ∇W )⊕R ∇Z = ∇V ⊕R (∇W ⊕R ∇Z) . (6.6)

The proof of the two theorems can be found in [1] and for the special case of triangular Hopf
algebras in [21].

To conclude this section we investigate the twist deformation of the R-sum of connections.

Theorem 6.5. In the hypotheses of Theorem 6.3 let F ∈ H ⊗H be a twist. Then the following
diagram commutes

V?⊗A? W?

ϕ

��

D̃F (∇V )⊕
RF D̃F (∇W )

// V?⊗A? W?⊗A? Ω?

ϕ

��
(V ⊗A W )? DF (∇V⊕R∇W )

// (V ⊗A W ⊗A Ω)?

(6.7)

where ϕ is the isomorphism of Lemma 4.5, D̃F is the quantization isomorphism for connections
of Theorem 4.6 and ⊕RF is the R-sum of connections with respect to the quasitriangular Hopf
algebra (HF ,RF ).

Also this theorem is proven in [1, 21].
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