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1. Introduction

General relativity and quantum mechanics together imply that space-timeusérat the
Planck scale is not described by conventional notions of geometry. HEsipwinted out by many.
In particular see Doplicher etal., [1] as well as Werner Nahm (see T2igse come about due to
appearance of null horizons. Interestingly extra dimensional spacetitiesigher dimensional
‘Planck scale’O(Tev) will require the extra dimensional space description to be fuzzy. Surpris-
ingly the difficulties in defining geometry at infinitesimal distances were antiadpatech earliar:
‘it seems that empirical notions on which the metrical determinations afespae founded, the
notion of a solid body and a ray of light cease to be valid for the infinitely smadlak' therefore
quite at liberty to suppose that the metric relations of space in the infinitely sfoadbt conform
to hypotheses of geometry; and we ought in fact to suppose it, if we cabyhabtain a simpler
explanation of phenomena’: Riemang]

Field theories on non-commutative geometries are inherently non-local ¢eadmixing of
the infrared and ultraviolet scales. This, in turn, is responsible for mewrngl states with spa-
tially varying condensates. Many non-perturbative studies have esiadblisat non-commutative
spaces, such as the Groenewold-Moyal plane and fuzzy sphiogsfa the formation of stable
non-uniform condensates as ground states. Exploring such implicafitims mon-local nature of
field theories is very important in many areas of quantum physics. [4, 5]

Since different phases are intimately connected with spontaneous symmestkyng (SSB),
the role of symmetries in noncommutative geometries themselves is subtle. Thisigspertant
in 2D because the Coleman-Mermin-Wagner (CMW) theorem states thatcthetse no SSB of
continuous symmetry on 2-dimensional commutative spaces. There is naislgéneralisation of
the CMW theorem for non-commutative spaces, since the theorem relieglgtom the locality of
interactions. Non-commutative spaces admit non-uniform solutions (in the fieéd) and one can
ask the question what happens to the stability of these configurationsumifamm condensates
naturally have an infra-red cut-off for the fluctuations. This cut-offests the otherwise divergent
contributions of the Goldstone modes[6, 7, 10, 11, 8, 13, 9, 14].

There have been various attempts to study gravity theories within the noncotmmireame-
work [15, 16]. This has led to a Hopf algebraic description of noncomnwethtack holes [17, 18]
and FRW cosmologies [19]. A large class of such black hole solutions, ingitide noncommuta-
tive BTZ [20, 21] and Kerr black holes, exhibits an universal featunere the Hopf algebra is de-
scribed by a noncommutative cylinder [22], which belongs to the genlaisd of thex-Minkowski
algebras [23, 24, 25, 26]. we shall take the noncommutative cylindetherassociated algebra as
a model for noncommutative black holes.

The study of quantum field theories in the background of black holes tas the discovery
of interesting features associated with the underlying geometry, such ldawieng radiation and
black hole entropy. In the noncommutative case, the black hole geometiplased with the al-
gebra defined by the noncommutative cylinder. In order to probe theésatfia noncommutative
black hole, it is useful to analyze the behaviour of a quantum fields coupléhe noncommuta-
tive cylinder algebra. Scalar field theories have been extensively dtodig-Minkowski spaces
[27, 28, 29, 30, 32], which has led to twisted statistics and deformed osciligebra for the
guantum field [29, 30, 31]. Theories on the noncommutative cylinder legddatization of the
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time operator [33, 34]. See Madore [35] or Balachandran et al [@6a#h introduction to fuzzy
geometries.

In this paper we discuss examples of fuzzy geometries in Sec 2. In Secdhsiger QFT’s on
such geometries. Following this in Sec 4 we take up aspects of numerical simsiletitutuations
of fields on fuzzy geometries and present our results. Lastly we camelitth discussions on
implications of our results in Sec 5.

2. Examples of fuzzy geometry

It has been well known that representation§bf2) Lie-algebra provide a basis for the study
of functions on a fuzzy spheres. This can be understood by the caiEoni®f coadjoint orbits
SU(2)/U(1). The generators of the Lie algebXasatisfy:

X)) = ek, S X =R (2.1)

The factS = CP! is a coadjoint orbit is useful in quantising this space. This can be extended
CP? = SU(3)/SU(2) ®U (1) and anyCP". The fuzzy torus is defined by the two generatdr¥
satisfyingu V = €% V U. Finite dimensional representations can easily be constructed for this
algebra for rationab. We will explain certain non standard ones.

2.1 Higgs algebra

The Higgs algebra is defined B¥,,X_] = aZ+BZ3 [X+,Z] = TX,. It can be easily
checked that the Casimir for this algebra is given by:
1
€ = S[{Xe. X} +9(2) +9Z-1)), (22)
whereg(Z) is
o
9(2) =Co+5Z(Z+1) +§zz(z+ 1)2. (2.3)

ForCo = u? a = —2(2u + 1), andf = 4 The Casimir reduces to the expressiott:+ Y2 +
(22 — p)?. Equating the Casimir to 1 and plotting the function for different valueg ofe see
interesting topology change [37]. Such changes in the topology wetredinsidered by Arnlind

Figure 1: Surface plots depicting the change in topologyfioe 0,1,1/2.

etal [38].
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2.2 Fuzzy cylinder
The NC cylinder is defined by the relation

[Z,€9] = a€? (2.4)

whereZ is hermitian and'? is unitary. Since we are interested in simulations, we have to discretise
the above NC cylinder.

In the rest of this paper, we will work witlr = 1 without loss of generality, since the simple
scalingZ — Z/a can scalex away in the commutation relation (2.4).

For this purpose consider the sgiirreducible representation (IRR) of ti$J(2) Lie algebra,
given by

[Xi Xo] = 2%, [Xe, X5 = F X (2.5)

Since the operataf generates rotations around the axis of the cylinder, it can be identified with
X3. But when we use the finite dimensional representatior8UgR) we cannot implement (2.4)
with unitarity for €?. For this purpose, we decompoXe as product of a unitary and a Hermitian

operator as given by
X, = R (2.6)

HereRis nf:cessarily singular and can not be inverted. However a partiasaReran be found
such thaRR = P, the projector such that-2 P projects to the kernel d®. Thus we get
2,9 P=¢dYP (2.7)
To find a representation f& ande'?, we can look at
RE=X_X, =0[2—Ls(L3+1) (2.8)

which commutes wittZ = L3. Remember that in the usual representation of angular momentum,
Lz|l,m>=m|l,m> with |m| <I. Shifting the indices from 0 tol2+ 1 = 2J, we havej = m+1 +1,
leading to

XX [lm> = [I(1+1) —m(m+ )]l m>= [(1 +1/2)? - (m+1/2)2)|l,m>

X X3 j> = [P == )FN,) >=i@-)P.j>

There is only one hermitian positive solution to this equation which takes the form

Rj = Vi(2—i) & (2.9)

which is diagonal as expected, and whose null space is along the topJsgite-. As a result,
P=1-J,20><J,2]|, and
21
R= 21 (23 —)]7Y?]3,i >< J,i]
1=
where the sum stops at 2] — 1 so that there is a zero in the last position on the diagonal. It is
now possible to deduce the first 2 1 lines of the unitary matrie'? from (2.6):

Xeldj> = ViI-)3j+1> o | |
. / ) - . , =d?1Jj>=3,j+1>, j<2J
X |3,j>=¢d?RJ,j>=+/j2I=))d?|3,| > 13, >=13,j+1>, ]
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Eqg. (2.6) yields no equation for the last column which is instead determinedifsaunitarity. The
columns 1.--,2J—1 of €%, given by|J, j+ 1 >, form an orthonormal set, as expected for a unitary
matrix. Then the last column will be a vector orthogonal to all these vectarshars can only be
proportional to]J, 1 >. After normalisation that still leavesl&(1) freedom so that

€?)ij = &j41 + &P 5152 (2.10)

wheref3 can be any real number. FBr= 0, €¢ is just a circular permutation of lengttd 2

2.3 Noncommutative BTZ blackhole

We briefly summarize the essential features of a noncommutative black halle istuseful
for our analysis. In the commutative case, a non-extremal BTZ black hdksisibed in terms of
the coordinatesr, @,t) and is given by the metric [20, 21]
2 2 2 2\ -1 2
dg — (M—Zz—jrz>dt2—<M—22—irz> dr2+r2<dqo—2‘:2dt> , (2.11)
where 0<r <o, —c0o <t <o 0< @< 2T, M andJ are respectively the mass and spin of the
black hole, and\ = —1/62 is the cosmological constant. In the non-extremal case, the two distinct

horizonsr.. are given by
M2 \E
2 _ Y
r{= > {11[1 <M£> } } (2.12)

An alternative way to obtain the geometry of the BTZ black hole is to quotient théfoic
AdS or SL(2,R) by a discrete subgroup of its isometry. The noncommutative BTZ black hole is
then obtained by a deformation 8dS or SL(2,R) which respects the quotienting [17]. In the
noncommutative theory, the coordinategp andt are replaced by the corresponding operators ~
@ andZ respectively, that satisfy the algebra

9 =ad? [f{=[f =0, (2.13)

where the constaru is proportional to€3/(ri —r?). We shall henceforth refer to (2.13) as the
noncommutative cylinder algebra. Furthermdreéenoting the operator corresponding the the axis
of the cylinder, it will be therefore identified as the operatan the following sections.

It may be noted that the operatois’in the center of the algebra (2.13). In addition, it can
be shown easily thag27t/a belongs to the center of (2.13) as well. Hence, in any irreducible
representation of (2.13), the element™/? js proportional to the identity,

e 2t/ — dvq), (2.14)

wherey € Rmod (2m). Egn. (2.14) implies that in any irreducible representation of (2.13), the
spectrum of the time operatfyror Z, is quantized [22, 33, 34] and is given by

ya
2m
In what follows we shall seg = 0 without loss of generality.

The noncommutative cylinder algebra (2.13) belongs to a special class- dflinkowski
algebra and it appears in the description of noncommutative Kerr black fi@gand FRW cos-
mologies [19]. We shall henceforth consider (2.13) as a prototype afigdheommutative black
hole.

sped=na—- 7=, neZ. (2.15)
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3. Scalar fields on fuzzy spheres/cylinder

We shall now present our analytic and numerical analysis of scalar fieldifferent fuzzy
geometries.

Let ® be a scalar field on a fuzzy sphere defined by gpia (N —1)/2 representation. It is
given by aN x N matrix. We consider the action given by:

s= T (oL o)) + R{re? + Aot (3.1)

Itis easy to see the ground states are characterised by
®=0, and D£0, but Trdo =0 (3.2)

which corresepond to the uniform and nonuniform or stripe phasesawebtain the continuum
limit by taking N — . The planar limit is obtained by taking —> «. One gets commutative
planar or noncommutative planar (Moyal) limit dependingR?r;(N — oo Or finite. If we have

a complex scalar field then globalU (1) symmetry can be broken contrary to the expectation
from Coleman-Mermin-Wagner theorem in the NC limit. This is due to the nonlocality®
geometries. This has been shown through simulations in [11].

3.1 Topological aspects on fuzzy spheres

But our interest in this work is to consider the topological aspects of nanliineds on fuzzy
geometries. For this, we consider three hermitian scalar figlagth globalO(3) symmetry. The
most general action upto quartic interactions takes the form,

S(®) = %ﬂTf Y |[Li, @] 2+ R (r|®? +iBeijx i@ P+ A (|P[2)? + p| [0, @] P) | (3.3)

In the mean-field the above theory admits a uniform condensate<od. However the fluctu-
ations of the Goldstone mode render this solution unstable. Apart from if@rarcondensate
the above model admits many meta-stable solutions. To simplify our argumentsgidarcthe
casef = O,u = 0: We are interested on those solutions which are stable due to topological

obstructions. For example,
2r|

O = alj, with a= % (3.4)
The analog of this configuration in continuum space is the hedgehog catf@uwhere thé®(3)
spin vector on the sphere is pointing radially outward. The spin is parallektpdkition vector
on the sphere. This configuration is topologically stable as it cannot betksinpaleformed to a
uniform one. Similarly the above configuration cannot be smoothly defotmeéd = | which is
also a solution. The above configuration corresponds to a winding nuonbanap from the phys-
ical spac& to the vacuum manifold which is alﬁ. All topologically stable configurations in
the continuum limit, can be characterised by the second homotopy grgl&f;). For a discussion
on topological classification of the magé — S see [12]. To study the net effect of topologi-
cal nature of the background configuration and non-locality on fluctusitiwe consider only the
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winding number one configuration which is given in Eq.(3.4). As mentioneglan is to compute
these fluctuations numerically. Even before computing the fluctuations amaale some general
remarks about the behaviour of the fluctuations [11]. The effect ofawality basically provides
anon-zero masS(a /N) to the Goldstone mode fluctuations. This puts an infrared cut-off for the
fluctutations. From our previous study [11] it seems that this mass/cutoff d& rdependent, as
only higher modes of the condensate survived the fluctuations. As weesifrem our results the
combined effect of topology and nonlocality, the infrared cut-off drafificeduce the contribution

of the fluctuations. Before presenting details of numerics let us also @rrssidlar field on fuzzy
cylinder.

3.2 The Action on the fuzzy cylinder

DefineTrO = Tr(POP) whereP is the projection operator defined in [Eq: No] This trace
Tr is equivalent to integrating over the whole cylinder in the continuum limit. We aésulthe
derivativesd, anddz. They are:

Op® = [Z,0] (3.5)
2 = e Y’ o) (3.6)

Then, apart frond-dependent normalisation factors, the action can be chosen as:
S=Tr(|[Z®] |2+ | e'?€? D] |2 + V(D)) (3.7)
whereV (@) is the potential which can be taken to be of the form,
V(®) = ud? 4 cd* (3.8)

for a hermitian fieldd.

This action has a problem of instability coming frofm(®*) = Tr((P®)®?(®P)) which
cannot contain any quartic (nor cubic) term for the variabjg,;. This makes the theory unstable
with respect to this variable. The simplest cure is to insist that this term is refrael of freedom
of the theory and constrain it to be zero. To keep the set of fields anralgeé set to zero the last
row ®,;; and columnd;,; of the field. As a result the hermitian fiett now only has(2J — 1)2
degrees of freedom, aril= POP.

3.3 Dimensional reduction

With this new choice of the field the action becomes

S=Tr(P|[Z,POP] |°P + P |e '?[€%,PDOP] |2 P+ V(D))
= Tr(| [PZR®] [* +| [PE’P,®] >+ V(@) (3.9)

which can be rewritten simply as the action for a hermitian matrix (BJa— 1) x (2J — 1) matrix
algebra of reduced dimension:

S = Try (|12,0]  +][6%,9] 2+ V(®)) (3.10)
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whered’ = J—1/2 is the reduced angular momentum, vﬂ@l@ andZ are the matrices obtained
from €% andZ by removing the last line and column. Fe?, it is equivalent to setting’® — 0

in its 2)'-dimensional expression (2.10). As fdr it is therefore the 2 x 2J’ diagonal matrix
obtained fromZ by removing its top eigenvaluk—1/2:

7 = Diag(—J+1/2,~-3+3/2,---,J—3/2) = Diag(—J, ~J +1,---,J — 1)
=Zj = (= -1+0)8;. (3.11)

Note thatZ andZ are defined by their commutation relation (2.4) and only appear in the action
throughd, as a commutator. As a result, they are only defined up to a translation by a matrix
proportionnal to the unit, and this= Diag(1,---,2J)) is another possible choice.

Although€? is not unitary, the equation

<m|[Z,69]m> = (M — M)Errme1 = Sy.mer =< M|E?m> if m< 27/
= 0=<nl|[Z,69)]2) > if m=2J
shows tha? ande® do satisfy the commutation relation (2.4) for= 1
The cylinder is also parametrised by its radiugccording to (2.13)r Commutes with bot&
and€?. It can therefore be considered as a pure number in the non-commutdihaer algebra.
The radius will appear as a simple scaling in the action. The volume of the aylifrd#)
depends linearly on, so the action should have an overall scale.dfhe derivative along the axis

dz does not scale with, whereas the angular derivatidg scales like 1r.
As a result, the action on a fuzzy cylinder of radius given by:

s Ti(4izol P+ e ¥le00) P+ V(o)
— ' Try <r12 Z,0] 2+ [€9,0] |2+ V(¢)> (3.12)

3.4 Spectrum of the Laplacian

The spectrum of the Laplacian can be obtained from:

~ o~ ~1 —~ —~ —~
220 = [2,12,0]] + (6% (99, 0]] + (69, 6¢ o]
1
= g§¢+§($_z+q>+g+z_¢) (3.13)
—~ —~*1
= L0+ L L D+ %[[ew,ecv |,®] = L0+ L L D+ %[Diag(—l,o,m,o, 1), 9]

The eigenmatrix equation for the Laplacian reads simply

— — —

L2P(d) = ADp(d) = Pn(Ad) = Myd = Ad

where

. . 2Y—m

® = Op(d) + D (d), with Dy(d) = zl difi ><i+m,0<m<2Y-1 (3.14)
i=
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for the eigenmatrices, and the vectbe (di)1<i<23—m is the unknown to be determined by the
eigenmatrix equations.
For the Laplacian on a cylinder of radiuswe get

1 -10 3/2-1 0

-1 2 -1 (0) -1 2 -1 (0)

(0) .2 -1 (0) .2 -1
-11 -13/2

These matrices are similar to the ones obtained for the Laplacian on a onesitingtattice and
can actually be diagonalised without much difficulty, taking good care to remethbtM, is a
matrix of dimension 2 —m.

Spectrum of My The eigenvalues d¥l; are:

A = 4sirf(km/4d), 0< k< 27. (3.16)

Spectrum of M, m# 0 Reparametrizing the eigenvalues as

A =2—2cog0) = 4sirf(8/2), (3.17)

We can solve for eigenvalues for aiy numerically. However for large matricéd$é > 1, it is
possible to find approximate ones:

o For8 < m ork< N, tan(rm—0)/2) ~2/6 > 1. ThereforeNO = krt+ /2 — py with
Pk < 1. The equation then becomes:

1 2N 3
o 3kmrmiz—p) - T o (k+1/2).

e For@~m ork~ N, tan(m—0)/2) ~ (m—0)/2 < 1, and thereforeN6 = krr+ px with
Pk < 1. The equation then becomes:

_ Nm—km— px N —k

oN P e T

Px

which is a small number, as expected, sikeeN.

4. Numerical Simulations and Results

Effects of the fluctuations beyond mean field are computed from the partitiatién, which
in the path integral approach is given by,

7 0 / Dbe @) 4.1)

The standard numerical methods adopted for this integration are MontesGatltations.
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4.1 The numerical scheme: pseudo heatbath

In the Monte Carlo algorithms, one generates an “almost” random seqoéeenatrices
by successively updating elements®ftaking into account the measure and the exponential in
the integral above. This sequenced®fis then used as an ensemble for calculating averages of
various observables. For a good ensemble the auto correlation betveeeonfigurations in the
sequence must be really small. Though this auto correlation can be reblyeesihg some over
relaxation programme [9], it is greatly reduced, however, when “hédfiseudo-heatbath” type
of algorithms are used. This method is very much common in the non-pertertsatisty ofd*
theories in conventional lattice simulations. It gives better sampling and iseeffiat least for
smallerA values. This is why we make use of “pseudo-heatbath” technique [10, 11

4.2 Topological stability and O(3) model

In our simulations, for each choice of parameters, we choose an initifijacettion given by
Eq. (3.4). Fluctuations around this configuration are then generatea layptive updating method.
Since this configuration is a variational solution to minimising the classical actiill thermalise
as we update/include the thermal fluctuations. Once the initial configuratioensatised we
compute the observable M. We make measurements after every 10 upd#ieseotire matrix.
We also use over-relaxation to reduce the auto correlation of the caatiigns generated in the
Monte-Carlo history.

In a numerical simulation, the condensate will not maintain its exact form as i(8&t) along
the Monte Carlo history. The configuration can evolve into differentoan8U(2) rotated config-
urations of Eq.(3.4) as we keep updating it. To overcome this, one neeutat®e the configuration
at each step of the Monte Carlo history so that the configuration takesrtheofceq. (3.4). But
this is a difficult and time consuming task. On the other hand one can havesarvable made of
®{s which is invariant under th8U(2) rotations, e.g basis independent. For this purpose we define
the following observable,

Aij = %Tr(LidDj),M = VATA (4.2)

M projects out thé = 1 angular momentum mode. Note that the initial configuration in Eq. (3.4)
projects out only thé = 1 mode. Analysing the statistical behaviorMfwill give us a definite
conclusion about the stability of the initial configuration. We mention here‘l‘tf({ ®?) is also an

|

SU(2) invariant. But the information on the amplitudes of differemiodes gets lost in this form.
Also comparatively the observabld may serve as an order parameter in the case of any phase
transition of the hedgehog configuration®p= 0 at high temperatures. We mention here thatl

is the lowest possible stable mode] asO mode will be unstable. One can consider configurations
with higher winding, instead of Eq.(3.4), however we expect them to be ntaibeeghan thé = 1
condensate. This is because the infrared cut off will rise with higheringncbnfigurations.

For practical reasons, the size of the mal¥ixin other words size of the resolution scale is
finite. So there are usually finite voluniB, N) effects. So a non-vanishing condensé@teloes not
mean there is SSB. One needs to define suitable observable dependgnibich should scale
with (R,N) appropriately in the thermodynamic linfil — oo, R — o) to conclude anything. Now
there are two possible thermodynamic limits. If in the thermodynamic limit the R&titl does

10
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not vanish then the space is described by a non-commutative algebréiniihis of interest to us,
as we expect that the CMW theorem will hold good in the commutative thermadgianit.

1.2
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Figure 2: Monte Carlo history for N=48
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Figure 3: Histogram H(M) for N=48

4.2.1 Results and discussions

In our calculations we fi)RZ/N = 10, r = —8. For simplicity we takeA; = 0.25. With
this choice of parameters we do our simulations for five different sizeseoftmatrices,N =
48,56,64,78,96. Fig.2 gives a typical Monte-Carlo history of our simulationsMot 48.

In Fig.2 M fluctuates around a value close to the initial value. Thesuddenly jumps to a
small value and settles down. A histogr&hiM) of M clearly shows two peakd as seen in Fig.3.
The peak on the left has larje- 0 and small = 1 component. The peak at higher valuevbhas
largel = 1 component and smdll= 0. This peak is close to the value of the initial configuration.
So in this state fluctuations modify the initial configuration slightly and retain its tgpedbnature.

In our Monte-Carlo history we observed the- 1 state decaying tb= 0 state but not vice-versa.
This implies that due to finite volume effects, the uniform condensate is mote #tab our initial
hedgehog configuration for this caseMf= 48.

To study the stability of thé= 1 configuration we considered both the commutative and non-

commutative limit. For the commutative limit we fixd&f and considered higher valuesNf We

11
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did not observe any change in the distributiorivbin thel = 1 state. The average value, and the
fluctuations ofM remain almost the same as we go frdin= 48 — 64, as can be seen in Fig.4.
As for N = 48 thel = 1 configuration also decays fof = 64. This result suggests that the- 1
topological configuration is not stable in the commutative continuum limit as éxgec

> 06
04|
:
o | neas . b L ek Rt
o N=64 b e i By i i
0 4000 8000 12000 16000 20000

M-C history

Figure 4: M-C history for fixedR?

04 r
N=48
N=56
0.2 I N=64
N=78
N=96 - i s
0 4000 8000 12000 16000 20000
M-C history

o ox +
e

Figure 5: M-C history for fixedRz/N

There is a complete change in the behavior as we consider the non-commliitatiy i.e
fixed R2/N as we increasdl. Except for the lowesN = 48 thel = 1 state did not decay during
the entire run for higheN. In Fig.5 we show the Monte-Carlo history bf= 48,64,96. Unlike
the commutative limit, the fluctuations df decrease witiN. In Fig.6, we give the average value
of M as a function ofN. The average value dfl increases slightly witiN, with the variation
decreasing witiN. This suggest® will reach a finite value in the continuum limit. We also
compute the fluctuations &fl to see any possible scaling with the cut-Nff In Fig.7, we show
X = (M?)—(M)?inthel = 1 state. The solid curve represents afffi\) ~ N* with a ~ —4.,
This clearly suggest that the= 1 state is stable in thd — o leading to spontaneous breaking of
the O(3) symmetry.

We also mention here that one can start with an initial unifboea® configuration and consider
fluctuations. We expect that the results be similar to that in ref.[11]. Inldfif was found that
only the highest modee= (N — 1) /2 condenses. The fact that we find the 1 mode stable clearly

12
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shows that the topological nature of the initial configuration complementsfit ef non-locality.
These two effects drastically reduce the fluctuations.

4.3 Fuzzy blackholes: NC cylinder

The model defined by the action Egs.(3.8,3.12) which we want to simulate bagdmameters
(u,c,r) plus the matrix sizd. The goal is to explore the parameter space for various phases of
The simulations are carried out using the "pseudo-heat bath" Monte-@4(C) algorithm [10, 11]
to reduce the auto-correlation along the MC history.

The field should also be allowed to explore the whole phase space anehmaihrtrapped in
local minima. To this end, an over-relaxation method, first suggested ims[8lso used. Let us
introduceSy (®;j) the dependence of the action on the field ediywhen the field takes the value
®. Itis a fourth degree polynomial. Therefore the equaBie(®i;) = So(Pij = a), which has an
obvious solution®jj = a, can be factorised into a degree three polynomial whigraysadmits
at least one real solution. The overrelaxation method consists in repkheirfggld entry®;; = a
by one of these real solutions, thereby moving the field in a differentmegfithe phase space. A
crosscheck is also used to verify that the field probability distribution oMuamte-Carlo runs are
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consistent. Let us split the terms in the action according to their scalings

S(9) = (@) + Su(9) with S(A @) = A'S(9).

Then one can define a modified partition function
Z(\) = /[d(p]efs(/\ ¢ — /[d(p]e,;\zsz((p),,\ﬁ(@ (4.3)
=2 [[dyle S, y = 2o, (4.4)

whereN is the number of degrees of freedom in the figlathich appear in the integration. Evalu-
ating
aIn(Z)
oA

= -2<S9>-4<S > from(4.3)
A=1
= —N from (4.4)

yields the check originally due to Denjoe O’Connor [39].
<9 >4+2<S>=N/2 (4.5)
In all simulations, this identity (4.5) is always satisfied to better than 1% relative e

4.3.1 The phase structure

The temperaturel)) is regulated by varying the paramejer

e 1 < 1 corresponds to low temperatures when the fluctuations are small. In teistoas
minimum of Sgives the most probable configuration of the phase. In Eq. (3.12),06siiple
to minimise the action by minimising separately the kinetic term, sodhat 1, and the
potential term so tha® = y/—pu/2cl, and this phase is therefore known as the uniform
phase.

o At high temperaturegs > 1, the thermal fluctuations lead the system to the disorder phase
® ~ 0.

e At intermediate temperatures, the competition between the action and the flucugtien
rise to new phases called the non-uniform or stripe phases. Thesehasespare specific to
non-commutative spaces. Various numerical studies have confirmedisienee of these
phases [6, 7, 9, 10, 11, 8, 14, 13] on the fuzzy sphere. A non-caativeicylinder will also
exhibit the non-uniform phases. However, due to the non-trivial tapotaf the cylinder
(the first homotopy group being non-trivial), one can have a more conmblage structure
described below.

For example there can be stripes going around the cylinder, or parallel aai#s These two
phases can be distinguished by their overlap with the operateté, ande”’T respectively. Stripes
going around the cylinder will have non-zero overlap with the opeatWhile a configuration of
stripes along the axis will have overlap wigh? andei‘/’T. We present our results in the following
subsection.
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4.3.2 Example numerical runs

For a given choice oN = 7, c = 0.36, andr = 1 the simulations are done for various values
of u. The various phases discussed above can be characterised bys¢neablesn, = Tr(®P),

m, = Tr(®Z), my = Tr((Dei“’). A finite m, with (m;,my) ~ O characterizes the uniform phase.
On the other handm,, my) ~ 0 with non-zeram, characterizes stripes going around the cylinder.
Stripes along the cylinder charactersied(by, m;) ~ 0 with non-zerary.

For u = —35.1, the data of a run are shown on Fig.8, and, as expected, we obse@fthrm
phase.

For u = —20.0, we observed the phase with stripes going around the cylinder. Thisfisde
on the histogram of the observed valueswgfm, plotted in Fig.9. It is clear from the figure that
the average value oy, is finite while the average value of, is vanishingly small.

Fig.10 shows the system in the disorder phase wirgren,, my all fluctuate around zero. We
did not observe the phase with stripes going along the cylinder as a gstatedfor any choice
of u forr ~ 1. One can expect to observe this state for very smathen the second term which
suppresses this state is made subdominant. For a very small radi@01,c = 36. andu =
—3.6x 10, this phase appears as meta-stable in Fig.11. This phase is stable w.r.t sritifins.
Only large fluctuations, which occur less frequently, can destroy sstitel

Uniform Phase

0 8000 16000 24000 32000 40000
Monte-Carlo History

PORPNWAMIIOOONO®

Figure 8: m,zx vs MC historyN =7,u = —-351,c= .36
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Figure 9: Histogram ofH (my),H(my) : N =7, u = —-20
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5. Conclusions

In this analysis we have shown that topologically non-trivial configuratamthe fuzzy sphere
avoid the CMW theorem much more dramtically than the non-topological symmeidakimg [40].
The mass gap or the infrared cut-off in this case is large enough to rérel#@uctuations of the
Goldstone modes finite. On the other hand for non-topological conderbat€soldstone modes
are large enough to destroy almost all the modes except the few highest.idelbave presented
the simulations wherein the cubic Chern-Simons (CS) term is absent in the Ecti($3). The
Chern-Simons term allows topological solitons even when the quadratic miamsis fgositive upto
some value. Interestingly with CS term the configuratiprn= a L; is preferred over symmetric
solution. On the otherhand, it is not expected to alter the picture of topolosjiiaility of the
solutions. This term plays an important role in the emergent geometry in N§ $pzces [41, 42].
What we find here in the simulations is that even in the absence of CS term egierzgy spaces
can be stable. The stabilty of higher dimensional fuzzy space<Cli¥eare of significance in
this context [43]. The implications of this stability for extra-dimensional fuspaces will be
considered later.

We have also considered a finite dimensional representations of themonutative cylinder
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algebra, which make it fuzzy. We study scalar field theory in the backgrofi this algebra both
analytically and using numerical simulations.

In the numerical simulations of scalar field with a generic potential we findxpscted in
noncommutative cylinder, novel stripe phases breaking translational syyniBet they have some
differences with the usual stripes on Moyal spacetimes. These aretalde due to topological
features arising in this fuzzy geometry.

It is well known that a large class of noncommutative black holes are idedcby a non-
commutative cylinder algebra. The fuzzy cylinder algebra derived ftaran therefore be used
to define a fuzzy black hole. From general considerations[1] we khatvsuch black holes can
arise at the Planck scale. Our results provide a first glimpse about the ptiacture of a quantum
scalar field theory in the background of a fuzzy black hole at the Plaralk $44].
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