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1. Introduction

The rank-three tensor models were originally introduced as models for the three-dimensional
simplicial quantum gravity] [, ). The dynamical variable of the rank-three tensor models is a
rank-three tensoMgapc (a,b,c=1,2,...,N), which satisfies the generalized Hermiticity condition,

Mabc = Mbca = Mcab = Mpac = Mach = Mcpa: (1.1)
The symmetry of the rank-three tensor models is the orthogonal group symmetry,
Mzpe = Oaar Oty OccMabyer, O € O(N). (1.2)

The relation of the tensor models to the simplicial quantum gravity was given by the correspon-
dence between the Feynman diagrams of the tensor models and the diagrams dual to the simplicial
manifolds [l @ 3. In this correspondence, the ranks of the tensor variables are directly related to
the dimensions of the simplicial quantum gravity. This seems to be an unfavored property of the
tensor models as quantum gravity, since the dimensions of spaces should be dynamical quantities
rather than input parameters. Moreover, since one has to take the limit of infinite numbers of ver-
tices of the Feynman diagrams to take the continuum limit of the simplicial quantum gravity, the
tensor models must be computed non-perturbatively to obtain physical results of quantum gravity.
There have recently been some major developments in this dirdG put they are still limited.

These difficulties may be circumvented by regarding the tensor models from another perspec-
tive. The rank-three tensor models, which have a rank-three tensor as their only dynamical variable,
may be interpreted as models of dynamical fuzzy sp&@&§.[Since fuzzy spaces can in principle
approximate any dimensional spaces, the rank-three tensor models should be able to describe any
dimensional spaces. Moreover, semi-classical treatments of the rank-three tensor models can be
interpreted physically; classical solutions correspond to emergent background fuzzy spaces, and
the perturbations around them to emergent field theories on the background fuzzy spaces. In fact,
numerical semi-classical studies have shown emergent sfgieesl[emergent (Euclidean) general
relativity for a few fine-tuned rank-three tensor mod@&4<I].

While a classical space is described by a manifold, a fuzzy space is described by an algebra of
functions on it as

G = far’ @, (1.3)
where{@|a=1,2,...,N} are the bases of functions on a fuzzy space, fagtare the structure
constants which define the function algebra. One can consider various fuzzy spaces by changing
the values off,,°. Noncommutative associative algebras define noncommutative sgabES||
while one can also get nonassociative spad@s[I4 [15 [I§. Another ingredient of the fuzzy
spaces in this paper is the inner prod{dt [

(@l @) = Yab, (1.4)

which is assumed to be bi-linear, symmetric and real.

The correspondence between the rank-three tensor models and the fuzzy spaces is assumed to
be given by the following relation between the dynamical variable of the rank-three tensor models
and the parameters of the fuzzy spaces as

Mabc = fabdgc’c‘ (1.5)
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Then the generalized Hermiticity conditidf.f) can be converted to the following properties of
the fuzzy spaces,

(| @) = (G| Bd@) = (B @), (1.6)
()" = By, (1.7)

wherex denotes complex conjugation, and the functions are assumed to be real,

@ = ¢ (1.8)

The equation[I.g) is a cyclic property of the algebra of the functions, which will play essential
roles in the following discussions.

To balance the degrees of freedom of the rank-three tensor models with those of the fuzzy
spaces, the inner product is assumed to be fixed by

Oab = Oab- (1.9)

This is always possible if the matrggy in (1.9 is positive definite, since it can be transformed to
the form L9 by aGL(N,R) transformation of the basis functiofgyja=1,2,...,N}. Then the
orthogonal symmetnfI(2) of the rank-three tensor models can be identified with the remaining
symmetry of the fuzzy spaces after the gauge-fiXihg)(

2. Quantum mechanical properties

Associativity is a main feature of the algebras in quantum mechanics. However, the algebra
(@3 is not associative in general. Therefore there arises a doubt whether the kind of fuzzy spaces
associated to the rank-three tensor models are physically sensible. In this section, it will be shown
that, essentially due to the cyclicity propeily®), the fuzzy spaces indeed have various properties
in common with quantum mechanics.

Let me first define some basic objects. A state is defined by

|S) = Sal@a), (S| = Sa(@l, (2.1)

wheres, are complex numbers in general. Note that, to respect the bilinear property of the inner
product [.4), the definition of(s| in (Z) does not contain taking the complex conjugats,0One
may instead define the usual bra-state of quantum mechanics by

(sl = (8" = sa( - (2.2)
An operator is defined by an expression,
O = \Va@n, (2.3)
wherev, are complex numbers in general, and is supposed to operate on a state as

O|8) = |0S) = VaS|Gath) = VaSh fan’| @) (2.4)
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It is interesting to see the uniqueness of the matrix elements of the op&a@orince one can
show from the cyclic propertyI(g and 2.9 that

(@0 @) = (G| O @) = Ve (@l @) = V(@) = (0| ), (2.5)

the matrix elements can uniquely be defined in either waysd® | @) = (@| O @) = (@O |@).
The matrix elements can compute ordered products of the operators. One can show from the

cyclic property [[.8) that

(0102---On)ab = (@] G1(O2(--- (Onh))---))
(¢ (@O1)02) ) Op-1|Op(Opia(--- (On)) ) (2.6)
(- (@01)02) ) On| @),

whereO; are the matrices which have the matrix elemé@tgap = (| i | @)
The Hermitian conjugate of an operator can be discussed as follows. One can shoill.om (

D, @2 and 2.3 that
(s1102) = (51|02) = (5,0]s2) = (0" s1]s2). (2.7)

Therefore the Hermitian conjugate of an operatois given by its complex conjugat&*.
Then an observable can be definedby: &*. In fact, the mean value of an operator satisfying
0 = 0" isreal as
((8l0]s)" = (809)" = (O8]s) = (8] 0s) = (5] O]s). (2.8)

In general, one can show far = &* that
(@l Olaw)" = (@l O)" = (O @] @) = (B O @) = (@] O] 0a)- (2.9)

This means that the matriX@| O'|@) is hermite and can be transformed by a unitary matrix to a
real diagonal matrix. The unitary matrix can be used to define the eigenstatesuia|@), (i =
1,2,...,N), which satisfy

Ols) =als), (slsj) = &;j, &: real (2.10)

Thus an operator satisfying = ¢* can be diagonalized by the eigenstates with real eigenvalues,
and can be qualified as an observable as in quantum mechanics.

Let me next discuss an uncertainty relation on the fuzzy spaces. Let me consider an observable
0 = 0*. As discussed above, a real value is obtained as its mean value,

(0)= (97019, (2.11)
where the normalizatiofis|s) = 1 is assumed. Then the mean-square deviation can be defined by

(AO)? = (0 —(0)s(0—(0))s) (2.12)
(09 0s) — (0)2.
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The following quantity is obviously positive,

(01— (01) +iA (02— (02)))s|(O1— (O1) +1A (02— (02)))s)
= (AOL)2+iA (][04, O2:9]) + A2 (D02)? > 0, (2.13)

where 0, are observables) is assumed to be real, afd ; ] denotes the commutation of two
ordered operations,
[ﬁl, ﬁz;s] = ﬁl(ﬁzs) — ﬁz(ﬁls). (2.14)

In the derivation of[Z.13), the cyclic property[l.6) has played essential roles. The fact that the
inequality 2.13 holds for anyA leads to an inequality,

AO1AOS > % (9)[On1, O2;9])]. (2.15)

This is the uncertainty relation which holds generally on the fuzzy spaces that can be associated to
the rank-three tensor models.

The 3-bracket, ; ], which is defined inZ.14) and gives the lower bound for the uncertainty in
(219, is a quantity affected by both the noncommutativity and the nonassociativity of an algebra.
Indeed, if the algebra is associative,

[01,02;8] = [01, O2]s. (2.16)

Therefore, from[2.15), the uncertainty is bounded by the noncommutativity betw@eand &>,
as in quantum mechanics. On the other hand, if the algebra is commutative, one obtains

(01, 02,9 = 01(028) — 02(015) = 01(s02) — (015) 02, (2.17)

which is the associatol[] amongdi,s. Therefore the uncertainty is bounded by the nonassocia-
tivity of an algebra in this case.

Let me finally discuss the consequence, if a function algebra is neither noncommutative nor
nonassociative, namely,

(@, @] =0, (2.18)
(@, @; @] =0, (2.19)

for any @, @, @. Then L), (13, @3 and I3 imply that My is totally symmetric with
respect to the indices and real. Furthermdied)(and imply that the symmetric matrices

Ma, defined by(Ma)pc = Mapc, are commutative among each other. Therefore these mattipesn
simultaneously be diagonalized to real diagonal matrices by using the orthogonal group symmetry
(@2. By taking also into account the total symmetry of the indiddg, is transformed to the
totally diagonal formMgpc = Madapdne With realm,. This means that the function algebra can be
transformed to the form,

@ = MaOap . (2.20)

This function algebra represents just a collection of independent points, but not a “fuzzy” space.
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3. Truncation of function algebras

In physics, there exist various occasions in which one takes a subset of functions. An example
is to consider a subspace. In this case, two functions which take the same values on the subspace
but may take different values outside are considered to be equivalent. Therefore it is enough to
take a part of them. The second example is a compactification of a space. In this case, one selects
out functions which satisfy a periodicity condition. The third is to construct a lattice theory from a
continuum theory. What is relevant is the functional values only on lattice points, and the situation
is similar to considering a subspace above. The last one is a coarse graining procedure. In a coarse-
graining procedure, one averages the values of dynamical variables over coarse-grained regions.
This process may be regarded as choosing out slowly varying functions. The theme of this section
is to formulate the general truncation procedure for the function algebras of the fuzzy spaces of the
kind which can be associated to the rank-three tensor models.

By appropriately taking the basis of the functiofgs|a = 1,2,...,N} for each purpose of
problems in physics as illustrated in the preceding paragraph, a subspace of the functions can be
considered by taking a subset of the basis functions,

A={@la=1,2,...,N}, N<N. (3.1)
For the subset, let me define

Gab = (al @), (3.2)
Mabc = <(Pa%’¢b>; (3.3)

wherea,b,c=1,2,...,N. SinceAis a part of the whole set, it is obvious thg s symmetric and
real, and thaM,, satisfies the generalized Hermiticity condition coming frél), as

Gab = Gba = Gan, (3.4)
Mabc = Mbca = Mcab = Mgac = I\7|;cb = M;:kbau (3.5)

wherea,b,c=1,2,...,N. Let me assume thats’is an invertible matrix. Then one can define a
new algebra for the subsatby

o® = fa'e (3.6)
fan® = Maped°e, (3.7)

whereg@? is the inverse of3,. The inner product of\ is defined by
(@al @) = G, (3.8)
which is bi-linear, symmetric and real. It is obvious to prove
(BRIR) = (@) = (@@ 39)
()" = G, (3.10)

where@ = @..
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A coarse-graining procedure of the fuzzy spaces may be considered as the following iterative
procedure. One first obtains a new algebraic structure by computing new structure cohstants
and inner produats, from the originalfa,® andga, through an algorithih Then one selects out a
part of the new algebra which is considered to be important for the dynamics of a physical system.
It would not be possible to define such a selection procedure in general, but it would be instructive
to give an abstract example as follows. Let me assume that the rggtiix positive definite, and
define

Hab = 0° (.00 @b )., (3.11)
whereg® is the inverse ofjap. It is easy to prove that the matrik,, is an Hermitian matrix which
is semi-positive definite. Therefore a criterion to choose an important part would be to select out
the directions which take relatively large lengths with respect to the measure defikizd by

4. N-ary transformations as the symmetry of the rank-three tensor models

The symmetry of the rank-three tensor models is the orthogonal group sym@&ryThis
corresponds to the remaining symmetry of the fuzzy spaces after the gauge f8@)opé ex-
plained in the last paragraph of SectifinThe purpose of this section is to show that the symmetry
transformations can systematically be constructed-hyy transformationdI, 2Q] on the fuzzy
spaced], [2]]. The cyclic propertyll.6) again plays essential roles.

Let me start with a simple example. Let me define an infinitesimal transformation,

O0%s = (n(@ath) — th(Pam), (4.1)

wherem, n are considered to be the label of the transformation. As explained in the last paragraph
of Sectiorll] the symmetry transformations of the rank-three tensor models can be identified with
the transformations of the functions which are real and keep invariant the inner pifdetith

(@.9. Indeed one can show that the infinitesimal transformalof) conserves the inner product

as

O(a| ) = (0| @) + (@a|Or)
(An(@am)| @) + (@l (@) — (M)

(@l (@) + (@al (@) — (M <> N)
0, (4.2)

where | have used the cyclic properfii§) from the second to the third line.
The general procedure to constructraary transformation which keeps invariant the inner
product can be described as follows. Let me consider a produst, o, , - - - , ¢, ¢,

(@, G-+ Gy S Ga) s (4.3)

where the labedis an abstract notation which dictates the order of the produgt,0tan, , - - ., ¢h,, G
By using the cyclic propertyI(§), one can always find a transpose prodyjethich satisfies

((@rys Brgy -+ By, S Ba) | @) = (@l (Brys By -+ By, S o)) (4.4)

LAn application of a coarse-graining procedure to the rank-three tensor models is discuB&kd in [
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Then one can easily show that the infinitesimal transformation,

0@ = [@ny, By - - - By S, (4.5)

where then+ 1-ary product is defined by

[@Gnys B+, B,y S Qo] = (G, By -+, B> S ) — (Bry, G -5 Py S o), (4.6)

keeps invariant the inner product as

O(u| @) = (0| @) + (@a|O@y)
(s @y - -, B, S @l [ @) + (@l [y, B - - P, S, ) (4.7)
<(§qn1a(nﬂ27"'7(ﬁfh75; (pa)|(lb> - <(%7%277%h75_1§0a)|%>

+(@a/ (g, By -+ s S ) — (@l (G, G- -+ B, S D))
= 0.

To be consistent with the realitfL® of ¢, the infinitesimal transformatiof{5 must be made
real, for instance, by adding its complex conjugate.
The results of this section can be generalized to the supersymmetri@gase [

5. Unbroken n-ary symmetry

A fuzzy space may be considered by taking a non-vanishing background valgpWhich
may be obtained as a classical solution of a rank-three tensor model. The symmetry of the rank:
three tensor model is spontaneously broken byMRg.. Let me suppose that there remains an
unbroken symmetry. A generatdy, of the remaining symmetry satisfies

Taa{ Iv'a’bc + Tbb’ MaUc + Tcd Mabd = 07 (5-1)

whereT,, = —Tpa. In Most cases, one can represent such an infinitesimal symmetry transformation
by a linear combination af-ary transformationgI]. One can indeed discuss such general cases
of linear combinations, but for simplicity, in the following discussions, let me suppose that the
generator can be represented by a simglel-ary transformation,

Tad%’:[(n'np(n'ﬂzv"'?%?s%]? (52)

which is the kind discussed in SectidnFrom [.3), (1.5, 0.9, &1 and £.2), it is easy to prove
the Leibnitz rule,

[@nys B+, B> S, Qa] = [y, B - -5 s S Pa) b + oGy, G- -5 By, S, - (5.3)

Furthermore, the fundamental identity,

(@, g+ By S [ By Doy -1 Poy» S5 @all = [Py, By -5 By S, Pyl B+ Py 5 S il
+[q0P17[m'ﬂp(n’ﬂzv"'7%78;%2]7“"%n/7sl;%]+"'
+[Pors Goos- > Poy s S [P P -+, B S (5.4)
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holds, where{@,, @p,.- .-, @,,S: @] is an arbitraryn’ + 1-ary product of the kind discussed in
Sectior@, since([@p,, @,, .-, P,,S; @) is @ sum of products to which the Leibnitz ruR.3 is
applicable.

If (@, Opps---» B, - S @] in (B9 is taken to be an unbroken symmetry transformation with
n’ = n, the fundamental identit§b(4) implies that the commutator of two+ 1-ary transformations
of an unbroken symmetry is given by a linear combination-gfL-ary transformations. This means
that the unbroken symmetry is represented by anliel-algebra.

An example of an unbroken symmetry represented by 3-ary transformdfocen be given
for a fuzzyD-dimensional flat space. The algebra of functions is assumed to be giviég]by [

Pp, P, = eXP—a ((P1)+ (P2)° + (P1+ P2)2)] Por-+ pos (5.5)

wherep; areD-dimensional momenta aralis a positive parameter. The alged&3 is a nonas-
sociative deformation of the algebra of the plane waves on a sdahensional flat space. The
algebraB.b) obviously respects the Poincare symmetry.

Let me define the “coordinates” of the fuzzy flat space by

W= _i9% (5.6)

This definition comes from an expected identificatigyr ePX. From explicit computations using
(.5 and E.9), one can show that

XM, x;xP] = 4a(dHPx¥ — 8YPxH), (5.7)
X, @;x"] = 4adt g, (5.8)

where@ = @,—o, and the 3-ary product is defined by the associator,

(@, s @] = () @ — Pa( @) (5.9)

One can see thdE{7) and £.8 generate the rotations and the translations of the Poincare symmetry,
respectively. Therefore they form a Lie 3-algebra of the Poincare symmetry.

6. Spontaneously brokem-ary symmetry

The gauge transformations are represented non-linearly with inhomogeneous terms. Therefore
the gauge symmetries and also the diffeomorphism symmetry as well have often been treated as
spontaneously broken symmetri@3[[24, 2. In this section, the diffeomorphism will be dis-
cussed as 3-ary transformations of spontaneously broken symmetry on the fuzzy flat space defined
by the algebrd®@.3).

The functions in[.5) are labeled with momenta, but in the following discussions, it is more
convenient to label them with coordinates. By Fourier transformation of the momentum label,
o= j’deépX(pp, one obtains the function algebra in the coordinate representation as

0 = [ dPzexd—p((x— Y7+ (x- 27+ (y- 2 (6.1
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wheref is a positive constant. The usual space is obtained in the Amit +. Let me consider
the following infinitesimal transformation,

oP = const/de [0 Berex); D, (6.2)

where the 3-ary product is defined B9, ande(x) is an infinitesimal function ok. An explicit
computation usinddJ) shows that the infinitesimal transformatid@d) generates

SY(X) = & ()2, W(X) + (3 (X)) +O(B ), 63)
where(x) is a function ofx defined by
D= /de W(X) . (6.4)

Physically,s(x) is a field on the fuzzy space.

In the limit of the usual spacB — +, the transformatiorl§3) implies thaty(x) is trans-
formed as a scaldnalf density rather than a scalar. This is consistent with the diffeomorphism
symmetry. If there are two scalar function&), f (x), the diffeomorphism invariant integration
over a space is given bfydPx./g(x) h(x) f (x), whereg(x) is the determinant of the metric tensor.

On the other handB(@) does not contair/g(x), but can be made diffeomorphism invariant by as-
suming thaty(x) andg be transformed in the same manneg@ag/*h(x) andg(x)/*f (x), which

are scalar half densities. Generally, the index contraction of the functions on the fuzzy flat space is
assumed to be given by fa = [ dPxhfy, which is invariant under the transformati@3).

7. Scalar field action

The algebraic framework presented in this paper can be applied to the construction of a scalar
field theory. Let me consider an action defined by

S= — (P @/ @P) + MG(P*|D), (7.1)

where® = (¢, with complexy,. While the algebra ofp, determines a background fuzzy space,
W, can be regarded as a field on the fuzzy space. As discussed in & dtierfield is expected to
become a scalar half density in the limit of a usual space.
An advantage of expressing the actiBnn the form [Z.]) is that it is obviously invariant
under the symmetry of the tensor models. Therefore, if the background fuzzy space can well be
identified with a usual space, the acti®should become a usual scalar field action which respects
some symmetries. As for unbroken symmetries, the symmetries could be Poincare symmetries,
spherical symmetries and/or supersymmetries, and as for spontaneously broken symmetries, the
action should be invariant under diffeomorphism. Therefore, if a fuzzy space which corresponds to
a curved space is considered, the acB&hould reproduce a scalar field action on a curved space.
One can obtain explicit forms of the acti®by specifying background fuzzy spaces. Let me
first consider the fuzzy flat space. By substituting the algdhf) into (Z), one obtains

Stiat = (MG — Coexp(—3a p?)) Y5 Wy, (7.2)

10
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wherecp is a positive number. In the low momentum regiop? < 1, the dispersion can be
approximated b;(m% —Co) +3acop? + - - -, which is the standard kinetic term of a scalar field on a
flat space.

To give an example of a curved space, let me consider a two-dimensional fuzzy sphere. It
is convenient to label the functions lgy, m), wherej = 0,1,..., andm=—j,—j+1,...,j. The
algebra of functions is assumed to be given by

_ =S M V2 +10(ji) (j1 iz s\ [ 1 iz is
(p(ll,ml)(p(lzmz) % \/ET 000 My My Mg

whereD(j) is a damping factor which vanishes in the liniit> . If one substitutes the constant
D(j) = 1into (ZJ), the algebra is that of the spherical harmonics on a two-sphere. The damping
factorD(j) introduces fuzziness to the sphere by cutting off higherodes. Note that the fuzzy
space is a nonassociative two-sphere, since the algebra is commutative but nonassociative.

A physically reasonable choice of the damping fa&dj) would be to mimic the Gaussian
damping behavior of the flat coordinatesf@l). So let me determinB(j) by

) (=D)™@j5 m).  (7.3)

explBcog )] = 3 D(j)V]"(6.4)Y, ™(0.0). (7.4)
J,m

whereij(B,cp) are the spherical harmonics, afdp are the angle coordinates on a two-sphere.
Here the left-hand side is a Gaussian-like damping function on a two-sphere, sirfees|)] ~
constexp(—362/2) at@ ~ 0. Since the left-hand side does not dependoonly the terms with

m = 0 contribute in the right-hand side. By using some identities of the spherical harmonics, one
obtains

D(j) = const /lldzeBZP,- (2) = const(~1)*21; 4 (-p), (7.5)

whereP; andl; are the Legendre and the modified Bessel functions, respectively. By pUffig (
into (Z3 and computind{.J), one can numerically check that the action behaves af las/

Ssphere= (Co+C1j(J + 1)+ )W m)W(jm), (7.6)

wherec; are numerical constants. Therefore, at lpvthe scalar field actioriZ(J) reproduces the
standard Laplacian on a two-sphere, when a fuzzy two-sphere is taken as a background.

8. Summary and future prospects

The rank-three tensor models may be interpreted as models for dynamical fuzzy spaces. The
generalized Hermiticity condition on the rank-three tensor, which is the only dynamical variable
of the rank-three tensor models, corresponds to a cyclic property of the function algebras of the
fuzzy spaces. This paper has shown that, essentially due to this cyclic property, the fuzzy spaces
have various physically interesting properties. (i) Although the function algebras of the kind are
nonassociative in general, various properties analogous to quantum mechanics hold on the fuzzy
spaces. (ii) The symmetry of the rank-three tensor models can be shown to be represented system-
atically by n-ary transformations on the fuzzy spaces. The transformations contain, for instance,

11
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diffeomorphism on the fuzzy spaces. (iii) There exists a systematic procedure of truncating the
function algebras of the kind, and it can be used to consider subspaces, compactifications, lattice
theories, and coarse-graining procedures of fuzzy spaces in physical applications.

The discussions in this paper have been intended to be as general as possible without specifying
physical problems. Therefore the general implications obtained in this paper are expected to find
wide applications in the future study of the rank-three tensor models and the associated fuzzy
spaces.
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