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1. Introduction

The rank-three tensor models were originally introduced as models for the three-dimensional
simplicial quantum gravity [1, 2, 3]. The dynamical variable of the rank-three tensor models is a
rank-three tensor,Mabc (a,b,c= 1,2, . . . ,N), which satisfies the generalized Hermiticity condition,

Mabc= Mbca= Mcab= M∗
bac= M∗

acb= M∗
cba. (1.1)

The symmetry of the rank-three tensor models is the orthogonal group symmetry,

M′
abc= Oaa′Obb′Occ′Ma′b′c′ , O∈ O(N). (1.2)

The relation of the tensor models to the simplicial quantum gravity was given by the correspon-
dence between the Feynman diagrams of the tensor models and the diagrams dual to the simplicial
manifolds [1, 2, 3]. In this correspondence, the ranks of the tensor variables are directly related to
the dimensions of the simplicial quantum gravity. This seems to be an unfavored property of the
tensor models as quantum gravity, since the dimensions of spaces should be dynamical quantities
rather than input parameters. Moreover, since one has to take the limit of infinite numbers of ver-
tices of the Feynman diagrams to take the continuum limit of the simplicial quantum gravity, the
tensor models must be computed non-perturbatively to obtain physical results of quantum gravity.
There have recently been some major developments in this direction [4, 5], but they are still limited.

These difficulties may be circumvented by regarding the tensor models from another perspec-
tive. The rank-three tensor models, which have a rank-three tensor as their only dynamical variable,
may be interpreted as models of dynamical fuzzy spaces [6, 7]. Since fuzzy spaces can in principle
approximate any dimensional spaces, the rank-three tensor models should be able to describe any
dimensional spaces. Moreover, semi-classical treatments of the rank-three tensor models can be
interpreted physically; classical solutions correspond to emergent background fuzzy spaces, and
the perturbations around them to emergent field theories on the background fuzzy spaces. In fact,
numerical semi-classical studies have shown emergent spaces [8] and emergent (Euclidean) general
relativity for a few fine-tuned rank-three tensor models [9, 10].

While a classical space is described by a manifold, a fuzzy space is described by an algebra of
functions on it as

φaφb = fab
cφc, (1.3)

where{φa |a= 1,2, . . . ,N} are the bases of functions on a fuzzy space, andfab
c are the structure

constants which define the function algebra. One can consider various fuzzy spaces by changing
the values offab

c. Noncommutative associative algebras define noncommutative spaces [11, 12],
while one can also get nonassociative spaces [13, 14, 15, 16]. Another ingredient of the fuzzy
spaces in this paper is the inner product [7],

⟨φa|φb⟩= gab, (1.4)

which is assumed to be bi-linear, symmetric and real.
The correspondence between the rank-three tensor models and the fuzzy spaces is assumed to

be given by the following relation between the dynamical variable of the rank-three tensor models
and the parameters of the fuzzy spaces as

Mabc= fab
c′gc′c. (1.5)
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Then the generalized Hermiticity condition (1.1) can be converted to the following properties of
the fuzzy spaces,

⟨φaφb|φc⟩= ⟨φa|φbφc⟩= ⟨φb|φcφa⟩, (1.6)

(φaφb)
∗ = φbφa, (1.7)

where∗ denotes complex conjugation, and the functions are assumed to be real,

φ ∗
a = φa. (1.8)

The equation (1.6) is a cyclic property of the algebra of the functions, which will play essential
roles in the following discussions.

To balance the degrees of freedom of the rank-three tensor models with those of the fuzzy
spaces, the inner product is assumed to be fixed by

gab = δab. (1.9)

This is always possible if the matrixgab in (1.4) is positive definite, since it can be transformed to
the form (1.9) by aGL(N,R) transformation of the basis functions{φa|a= 1,2, . . . ,N}. Then the
orthogonal symmetry (1.2) of the rank-three tensor models can be identified with the remaining
symmetry of the fuzzy spaces after the gauge-fixing (1.9).

2. Quantum mechanical properties

Associativity is a main feature of the algebras in quantum mechanics. However, the algebra
(1.3) is not associative in general. Therefore there arises a doubt whether the kind of fuzzy spaces
associated to the rank-three tensor models are physically sensible. In this section, it will be shown
that, essentially due to the cyclicity property (1.6), the fuzzy spaces indeed have various properties
in common with quantum mechanics.

Let me first define some basic objects. A state is defined by

|s⟩= sa|φa⟩, ⟨s|= sa⟨φa|, (2.1)

wheresa are complex numbers in general. Note that, to respect the bilinear property of the inner
product (1.4), the definition of⟨s| in (2.1) does not contain taking the complex conjugate ofsa. One
may instead define the usual bra-state of quantum mechanics by

⟨⟨s| ≡ ⟨s∗|= s∗a⟨φa|. (2.2)

An operator is defined by an expression,

O = vaφa, (2.3)

whereva are complex numbers in general, and is supposed to operate on a state as

O|s⟩= |Os⟩= vasb|φaφb⟩= vasb fab
c|φc⟩. (2.4)
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It is interesting to see the uniqueness of the matrix elements of the operator (2.3). Since one can
show from the cyclic property (1.6) and (2.4) that

⟨φa|O|φb⟩= ⟨φa|Oφb⟩= vc⟨φa|φcφb⟩= vc⟨φaφc|φb⟩= ⟨φaO|φb⟩, (2.5)

the matrix elements can uniquely be defined in either way as⟨φa|O|φb⟩= ⟨φa|Oφb⟩= ⟨φaO|φb⟩.
The matrix elements can compute ordered products of the operators. One can show from the

cyclic property (1.6) that

(O1O2 · · ·On)ab = ⟨φa|O1(O2(· · ·(Onφb)) · · ·)⟩
= ⟨((· · ·(φaO1)O2) · · ·)Op−1|Op(Op+1(· · ·(Onφb)) · · ·)⟩ (2.6)

= ⟨((· · ·(φaO1)O2) · · ·)On|φb⟩,

whereOi are the matrices which have the matrix elements(Oi)ab = ⟨φa|Oi |φb⟩.
The Hermitian conjugate of an operator can be discussed as follows. One can show from (1.7),

(2.1), (2.2) and (2.5) that

⟨⟨s1|Os2⟩= ⟨s∗1|Os2⟩= ⟨s∗1O|s2⟩= ⟨⟨O∗s1|s2⟩. (2.7)

Therefore the Hermitian conjugate of an operatorO is given by its complex conjugateO∗.

Then an observable can be defined byO =O∗. In fact, the mean value of an operator satisfying
O = O∗ is real as

⟨⟨s|O|s⟩∗ = ⟨⟨s|Os⟩∗ = ⟨⟨Os|s⟩= ⟨⟨s|Os⟩= ⟨⟨s|O|s⟩. (2.8)

In general, one can show forO = O∗ that

⟨⟨φa|O|φb⟩∗ = ⟨⟨φa|Oφb⟩∗ = ⟨⟨Oφb|φa⟩= ⟨⟨φb|Oφa⟩= ⟨⟨φb|O|φa⟩. (2.9)

This means that the matrix⟨⟨φa|O|φb⟩ is hermite and can be transformed by a unitary matrix to a
real diagonal matrix. The unitary matrix can be used to define the eigenstates,|si⟩ = uia|φa⟩, (i =
1,2, . . . ,N), which satisfy

O|si⟩= ei |si⟩, ⟨⟨si |sj⟩= δi j , ei : real. (2.10)

Thus an operator satisfyingO = O∗ can be diagonalized by the eigenstates with real eigenvalues,
and can be qualified as an observable as in quantum mechanics.

Let me next discuss an uncertainty relation on the fuzzy spaces. Let me consider an observable
O = O∗. As discussed above, a real value is obtained as its mean value,

⟨O⟩ ≡ ⟨⟨s|O|s⟩, (2.11)

where the normalization⟨⟨s|s⟩= 1 is assumed. Then the mean-square deviation can be defined by

(∆O)2 ≡ ⟨⟨(O −⟨O⟩)s|(O −⟨O⟩)s⟩ (2.12)

= ⟨⟨Os|Os⟩−⟨O⟩2.
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The following quantity is obviously positive,

⟨⟨(O1−⟨O1⟩+ iλ (O2−⟨O2⟩))s|(O1−⟨O1⟩+ iλ (O2−⟨O2⟩))s⟩
= (∆O1)

2+ iλ ⟨⟨s|[O1,O2;s]⟩+λ 2(∆O2)
2 ≥ 0, (2.13)

whereOi are observables,λ is assumed to be real, and[ , ; ] denotes the commutation of two
ordered operations,

[O1,O2;s]≡ O1(O2s)−O2(O1s). (2.14)

In the derivation of (2.13), the cyclic property (1.6) has played essential roles. The fact that the
inequality (2.13) holds for anyλ leads to an inequality,

∆O1∆O2 ≥
1
2
|⟨⟨s|[O1,O2;s]⟩| . (2.15)

This is the uncertainty relation which holds generally on the fuzzy spaces that can be associated to
the rank-three tensor models.

The 3-bracket[ , ; ], which is defined in (2.14) and gives the lower bound for the uncertainty in
(2.15), is a quantity affected by both the noncommutativity and the nonassociativity of an algebra.
Indeed, if the algebra is associative,

[O1,O2;s] = [O1,O2]s. (2.16)

Therefore, from (2.15), the uncertainty is bounded by the noncommutativity betweenO1 andO2,
as in quantum mechanics. On the other hand, if the algebra is commutative, one obtains

[O1,O2;s] = O1(O2s)−O2(O1s) = O1(sO2)− (O1s)O2, (2.17)

which is the associator [17] amongOi ,s. Therefore the uncertainty is bounded by the nonassocia-
tivity of an algebra in this case.

Let me finally discuss the consequence, if a function algebra is neither noncommutative nor
nonassociative, namely,

[φa,φb] = 0, (2.18)

[φa,φb;φc] = 0, (2.19)

for any φa,φb,φc. Then (1.1), (1.3), (1.5) and (2.18) imply that Mabc is totally symmetric with
respect to the indices and real. Furthermore, (1.9) and (2.19) imply that the symmetric matrices
Ma, defined by(Ma)bc≡Mabc, are commutative among each other. Therefore these matricesMa can
simultaneously be diagonalized to real diagonal matrices by using the orthogonal group symmetry
(1.2). By taking also into account the total symmetry of the indices,Mabc is transformed to the
totally diagonal form,Mabc= maδabδbc with realma. This means that the function algebra can be
transformed to the form,

φaφb = maδabφa. (2.20)

This function algebra represents just a collection of independent points, but not a “fuzzy” space.

5



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
5
9

Fuzzy spaces from tensor models, cyclicity condition, and n-ary algebras Naoki Sasakura

3. Truncation of function algebras

In physics, there exist various occasions in which one takes a subset of functions. An example
is to consider a subspace. In this case, two functions which take the same values on the subspace
but may take different values outside are considered to be equivalent. Therefore it is enough to
take a part of them. The second example is a compactification of a space. In this case, one selects
out functions which satisfy a periodicity condition. The third is to construct a lattice theory from a
continuum theory. What is relevant is the functional values only on lattice points, and the situation
is similar to considering a subspace above. The last one is a coarse graining procedure. In a coarse-
graining procedure, one averages the values of dynamical variables over coarse-grained regions.
This process may be regarded as choosing out slowly varying functions. The theme of this section
is to formulate the general truncation procedure for the function algebras of the fuzzy spaces of the
kind which can be associated to the rank-three tensor models.

By appropriately taking the basis of the functions{φa|a = 1,2, . . . ,N} for each purpose of
problems in physics as illustrated in the preceding paragraph, a subspace of the functions can be
considered by taking a subset of the basis functions,

Ã= {φa|a= 1,2, . . . , Ñ}, Ñ < N. (3.1)

For the subset, let me define

g̃ab ≡ ⟨φa|φb⟩, (3.2)

M̃abc ≡ ⟨φaφb|φc⟩, (3.3)

wherea,b,c= 1,2, . . . , Ñ. SinceÃ is a part of the whole set, it is obvious that ˜gab is symmetric and
real, and thatM̃abc satisfies the generalized Hermiticity condition coming from (1.1), as

g̃ab = g̃ba = g̃∗ab, (3.4)

M̃abc= M̃bca= M̃cab= M̃∗
bac= M̃∗

acb= M̃∗
cba, (3.5)

wherea,b,c= 1,2, . . . , Ñ. Let me assume that ˜gab is an invertible matrix. Then one can define a
new algebra for the subsetÃ by

φ̃aφ̃b = f̃ab
cφ̃c (3.6)

f̃ab
c ≡ M̃abc′ g̃

c′c, (3.7)

whereg̃ab is the inverse of ˜gab. The inner product of̃A is defined by

⟨φ̃a|φ̃b⟩= g̃ab, (3.8)

which is bi-linear, symmetric and real. It is obvious to prove

⟨φ̃aφ̃b|φ̃c⟩= ⟨φ̃a|φ̃bφ̃c⟩= ⟨φ̃b|φ̃cφ̃a⟩, (3.9)

(φ̃aφ̃b)
∗ = φ̃bφ̃a, (3.10)

whereφ̃ ∗
a = φ̃a.

6
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A coarse-graining procedure of the fuzzy spaces may be considered as the following iterative
procedure. One first obtains a new algebraic structure by computing new structure constantsf̄ab

c

and inner product ¯gab from the originalfab
c andgab through an algorithm1. Then one selects out a

part of the new algebra which is considered to be important for the dynamics of a physical system.
It would not be possible to define such a selection procedure in general, but it would be instructive
to give an abstract example as follows. Let me assume that the matrix ¯gab is positive definite, and
define

Hab = ḡcd⟨φ̄cφ̄a|φ̄bφ̄d⟩, (3.11)

whereḡab is the inverse of ¯gab. It is easy to prove that the matrixHab is an Hermitian matrix which
is semi-positive definite. Therefore a criterion to choose an important part would be to select out
the directions which take relatively large lengths with respect to the measure defined byHab.

4. N-ary transformations as the symmetry of the rank-three tensor models

The symmetry of the rank-three tensor models is the orthogonal group symmetry (1.2). This
corresponds to the remaining symmetry of the fuzzy spaces after the gauge fixing (1.9), as ex-
plained in the last paragraph of Section1. The purpose of this section is to show that the symmetry
transformations can systematically be constructed byn-ary transformations [19, 20] on the fuzzy
spaces [7, 21]. The cyclic property (1.6) again plays essential roles.

Let me start with a simple example. Let me define an infinitesimal transformation,

δφa = φm(φaφn)−φn(φaφm), (4.1)

wherem,n are considered to be the label of the transformation. As explained in the last paragraph
of Section1, the symmetry transformations of the rank-three tensor models can be identified with
the transformations of the functions which are real and keep invariant the inner product (1.4) with
(1.9). Indeed one can show that the infinitesimal transformation (4.1) conserves the inner product
as

δ ⟨φa|φb⟩ = ⟨δφa|φb⟩+ ⟨φa|δφb⟩
= ⟨φm(φaφn)|φb⟩+ ⟨φa|φm(φbφn)⟩− (m↔ n)

= ⟨φa|φn(φbφm)⟩+ ⟨φa|φm(φbφn)⟩− (m↔ n)

= 0, (4.2)

where I have used the cyclic property (1.6) from the second to the third line.
The general procedure to construct ann-ary transformation which keeps invariant the inner

product can be described as follows. Let me consider a product ofφm1,φm2, . . . ,φmn,φa,

(φm1,φm2, . . . ,φmn,s;φa), (4.3)

where the labels is an abstract notation which dictates the order of the product ofφm1,φm2, . . . ,φmn,φa.
By using the cyclic property (1.6), one can always find a transpose product ¯s, which satisfies

⟨(φm1,φm2, . . . ,φmn,s;φa)|φb⟩= ⟨φa|(φm1,φm2, . . . ,φmn, s̄;φb)⟩. (4.4)

1An application of a coarse-graining procedure to the rank-three tensor models is discussed in [18].
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Then one can easily show that the infinitesimal transformation,

δφa = [φm1,φm2, . . . ,φmn,s;φa], (4.5)

where then+1-ary product is defined by

[φm1,φm2, . . . ,φmn,s;φa]≡ (φm1,φm2, . . . ,φmn,s;φa)− (φm1,φm2, . . . ,φmn, s̄;φa), (4.6)

keeps invariant the inner product as

δ ⟨φa|φb⟩ = ⟨δφa|φb⟩+ ⟨φa|δφb⟩
= ⟨[φm1,φm2, . . . ,φmn,s;φa]|φb⟩+ ⟨φa|[φm1,φm2, . . . ,φmn,s;φb]⟩ (4.7)

= ⟨(φm1,φm2, . . . ,φmn,s;φa)|φb⟩−⟨(φm1,φm2, . . . ,φmn, s̄;φa)|φb⟩
+⟨φa|(φm1,φm2, . . . ,φmn,s;φb)⟩−⟨φa|(φm1,φm2, . . . ,φmn, s̄;φb)⟩

= 0.

To be consistent with the reality (1.8) of φa, the infinitesimal transformation (4.5) must be made
real, for instance, by adding its complex conjugate.

The results of this section can be generalized to the supersymmetric case [22].

5. Unbroken n-ary symmetry

A fuzzy space may be considered by taking a non-vanishing background value ofMabc, which
may be obtained as a classical solution of a rank-three tensor model. The symmetry of the rank-
three tensor model is spontaneously broken by theMabc. Let me suppose that there remains an
unbroken symmetry. A generatorTab of the remaining symmetry satisfies

Taa′Ma′bc+Tbb′Mab′c+Tcc′Mabc′ = 0, (5.1)

whereTab=−Tba. In most cases, one can represent such an infinitesimal symmetry transformation
by a linear combination ofn-ary transformations [21]. One can indeed discuss such general cases
of linear combinations, but for simplicity, in the following discussions, let me suppose that the
generator can be represented by a singlen+1-ary transformation,

Taa′φa′ = [φm1,φm2, . . . ,φmn,s;φa], (5.2)

which is the kind discussed in Section4. From (1.3), (1.5), (1.9), (5.1) and (5.2), it is easy to prove
the Leibnitz rule,

[φm1,φm2, . . . ,φmn,s;φaφb] = [φm1,φm2, . . . ,φmn,s;φa]φb+φa[φm1,φm2, . . . ,φmn,s;φb]. (5.3)

Furthermore, the fundamental identity,

[φm1,φm2, . . . ,φmn,s; [φp1,φp2, . . . , φpn′ ,s
′;φa]] = [[φm1,φm2, . . . ,φmn,s;φp1],φp2, . . . ,φpn′ ,s

′;φa]

+[φp1, [φm1,φm2, . . . ,φmn,s;φp2], . . . ,φpn′ ,s
′;φa]+ · · ·

+[φp1,φp2, . . . ,φpn′ ,s
′; [φm1,φm2, . . . ,φmn,s;φa]], (5.4)

8
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holds, where[φp1,φp2, . . . ,φpn′ ,s
′;φa] is an arbitraryn′ + 1-ary product of the kind discussed in

Section4, since[φp1,φp2, . . . ,φpn′ ,s
′;φa] is a sum of products to which the Leibnitz rule (5.3) is

applicable.
If [φp1,φp2, . . . ,φpn′ ,s

′;φa] in (5.4) is taken to be an unbroken symmetry transformation with
n′ = n, the fundamental identity (5.4) implies that the commutator of twon+1-ary transformations
of an unbroken symmetry is given by a linear combination ofn+1-ary transformations. This means
that the unbroken symmetry is represented by a Lien+1-algebra.

An example of an unbroken symmetry represented by 3-ary transformations [7] can be given
for a fuzzyD-dimensional flat space. The algebra of functions is assumed to be given by [16]

φp1φp2 = exp[−α((p1)
2+(p2)

2+(p1+ p2)
2)]φp1+p2, (5.5)

wherepi areD-dimensional momenta andα is a positive parameter. The algebra (5.5) is a nonas-
sociative deformation of the algebra of the plane waves on a usualD-dimensional flat space. The
algebra (5.5) obviously respects the Poincare symmetry.

Let me define the “coordinates” of the fuzzy flat space by

xµ ≡ −i
∂φp

∂ pµ

∣∣∣∣
p=0

. (5.6)

This definition comes from an expected identificationφp ∼ eipx. From explicit computations using
(5.5) and (5.6), one can show that

[xµ ,xν ;xρ ] = 4α(δ µρxν −δ νρxµ), (5.7)

[xµ ,φ0;xν ] = 4αδ µνφ0, (5.8)

whereφ0 ≡ φp=0, and the 3-ary product is defined by the associator,

[φa,φb;φc]≡ (φaφc)φb−φa(φcφb). (5.9)

One can see that (5.7) and (5.8) generate the rotations and the translations of the Poincare symmetry,
respectively. Therefore they form a Lie 3-algebra of the Poincare symmetry.

6. Spontaneously brokenn-ary symmetry

The gauge transformations are represented non-linearly with inhomogeneous terms. Therefore
the gauge symmetries and also the diffeomorphism symmetry as well have often been treated as
spontaneously broken symmetries [23, 24, 25]. In this section, the diffeomorphism will be dis-
cussed as 3-ary transformations of spontaneously broken symmetry on the fuzzy flat space defined
by the algebra (5.5).

The functions in (5.5) are labeled with momenta, but in the following discussions, it is more
convenient to label them with coordinates. By Fourier transformation of the momentum label,
φx ≡

∫
dD peipxφp, one obtains the function algebra in the coordinate representation as

φxφy =
∫

dDzexp[−β ((x−y)2+(x−z)2+(y−z)2)]φz, (6.1)

9
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whereβ is a positive constant. The usual space is obtained in the limitβ →+∞. Let me consider
the following infinitesimal transformation,

δΦ = const.
∫

dDx [φx,φx+ε(x);Φ], (6.2)

where the 3-ary product is defined in (5.9), andε(x) is an infinitesimal function ofx. An explicit
computation using (6.1) shows that the infinitesimal transformation (6.2) generates

δψ(x) = εµ(x)∂µψ(x)+
1
2
(∂µεµ(x))ψ(x)+O(β−1), (6.3)

whereψ(x) is a function ofx defined by

Φ =
∫

dDx ψ(x)φx. (6.4)

Physically,ψ(x) is a field on the fuzzy space.
In the limit of the usual spaceβ → +∞, the transformation (6.3) implies thatψ(x) is trans-

formed as a scalarhalf density rather than a scalar. This is consistent with the diffeomorphism
symmetry. If there are two scalar functionsh(x), f (x), the diffeomorphism invariant integration
over a space is given by

∫
dDx

√
g(x)h(x) f (x), whereg(x) is the determinant of the metric tensor.

On the other hand, (6.4) does not contain
√

g(x), but can be made diffeomorphism invariant by as-
suming thatψ(x) andφx be transformed in the same manner asg(x)1/4h(x) andg(x)1/4 f (x), which
are scalar half densities. Generally, the index contraction of the functions on the fuzzy flat space is
assumed to be given byha fa =

∫
dDxhx fx, which is invariant under the transformation (6.3).

7. Scalar field action

The algebraic framework presented in this paper can be applied to the construction of a scalar
field theory. Let me consider an action defined by

S=−⟨Φ∗φa|φaΦ⟩+m2
0⟨Φ∗|Φ⟩, (7.1)

whereΦ = ψaφa with complexψa. While the algebra ofφa determines a background fuzzy space,
ψa can be regarded as a field on the fuzzy space. As discussed in Section6, the field is expected to
become a scalar half density in the limit of a usual space.

An advantage of expressing the actionS in the form (7.1) is that it is obviously invariant
under the symmetry of the tensor models. Therefore, if the background fuzzy space can well be
identified with a usual space, the actionSshould become a usual scalar field action which respects
some symmetries. As for unbroken symmetries, the symmetries could be Poincare symmetries,
spherical symmetries and/or supersymmetries, and as for spontaneously broken symmetries, the
action should be invariant under diffeomorphism. Therefore, if a fuzzy space which corresponds to
a curved space is considered, the actionSshould reproduce a scalar field action on a curved space.

One can obtain explicit forms of the actionSby specifying background fuzzy spaces. Let me
first consider the fuzzy flat space. By substituting the algebra (5.5) into (7.1), one obtains

Sf lat =
(
m2

0−c0exp(−3α p2)
)

ψ∗
pψp, (7.2)
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wherec0 is a positive number. In the low momentum regionα p2 ≪ 1, the dispersion can be
approximated by(m2

0−c0)+3αc0p2+ · · ·, which is the standard kinetic term of a scalar field on a
flat space.

To give an example of a curved space, let me consider a two-dimensional fuzzy sphere. It
is convenient to label the functions by( j,m), where j = 0,1, . . ., andm= − j,− j +1, . . . , j. The
algebra of functions is assumed to be given by

φ( j1,m1)φ( j2,m2) = ∑
j3,m3

∏3
i=1

√
2 j i +1D( j i)√

4π

(
j1 j2 j3
0 0 0

)(
j1 j2 j3

m1 m2 m3

)
(−1)m3φ( j3,−m3), (7.3)

whereD( j) is a damping factor which vanishes in the limitj → ∞. If one substitutes the constant
D( j) = 1 into (7.3), the algebra is that of the spherical harmonics on a two-sphere. The damping
factorD( j) introduces fuzziness to the sphere by cutting off higherj modes. Note that the fuzzy
space is a nonassociative two-sphere, since the algebra is commutative but nonassociative.

A physically reasonable choice of the damping factorD( j) would be to mimic the Gaussian
damping behavior of the flat coordinates in (6.1). So let me determineD( j) by

exp[β cos(θ)] = ∑
j,m

D( j)Ym
j (θ ,ϕ)Y−m

j (0,0), (7.4)

whereYm
j (θ ,ϕ) are the spherical harmonics, andθ ,ϕ are the angle coordinates on a two-sphere.

Here the left-hand side is a Gaussian-like damping function on a two-sphere, since exp[β cos(θ)]∼
const.exp(−βθ 2/2) at θ ∼ 0. Since the left-hand side does not depend onϕ , only the terms with
m= 0 contribute in the right-hand side. By using some identities of the spherical harmonics, one
obtains

D( j) = const.
∫ 1

−1
dzeβzPj(z) = const.(−1) j+ 1

2 I j+ 1
2
(−β ), (7.5)

wherePj andI j are the Legendre and the modified Bessel functions, respectively. By putting (7.5)
into (7.3) and computing (7.1), one can numerically check that the action behaves at lowj as

Ssphere= (co+c1 j( j +1)+ · · ·)ψ∗
( j,m)ψ( j,m), (7.6)

whereci are numerical constants. Therefore, at lowj, the scalar field action (7.1) reproduces the
standard Laplacian on a two-sphere, when a fuzzy two-sphere is taken as a background.

8. Summary and future prospects

The rank-three tensor models may be interpreted as models for dynamical fuzzy spaces. The
generalized Hermiticity condition on the rank-three tensor, which is the only dynamical variable
of the rank-three tensor models, corresponds to a cyclic property of the function algebras of the
fuzzy spaces. This paper has shown that, essentially due to this cyclic property, the fuzzy spaces
have various physically interesting properties. (i) Although the function algebras of the kind are
nonassociative in general, various properties analogous to quantum mechanics hold on the fuzzy
spaces. (ii) The symmetry of the rank-three tensor models can be shown to be represented system-
atically by n-ary transformations on the fuzzy spaces. The transformations contain, for instance,
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diffeomorphism on the fuzzy spaces. (iii) There exists a systematic procedure of truncating the
function algebras of the kind, and it can be used to consider subspaces, compactifications, lattice
theories, and coarse-graining procedures of fuzzy spaces in physical applications.

The discussions in this paper have been intended to be as general as possible without specifying
physical problems. Therefore the general implications obtained in this paper are expected to find
wide applications in the future study of the rank-three tensor models and the associated fuzzy
spaces.
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