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1. Introduction

Quantization of Poisson manifolds has been the main motivation for introducing the concept
of symplectic groupoid, see for instance in [12]. A symplectic groupoid is a Lie groupoid G

with a compatible symplectic form ΩG . This compatibility means that the graph of the groupoid
multiplication is a lagrangian submanifold of G ×G × Ḡ , where Ḡ means G endowed with −ΩG .
These data allow to define a Poisson tensor on the submanifold of unities; the converse procedure
of associating a symplectic groupoid to a given Poisson manifold is the analogue of integrating a
Lie algebra and shares with Lie theory important properties. For this reason a Poisson manifold
that is the space of unities of a symplectic groupoid is called integrable. According to the general
paradigma of quantization coming from semiclassical analysis (see [1]), lagrangian submanifolds
correspond to states of the Hilbert space, so that the quantization of the symplectic groupoid should
produce a given state of the triple tensor product, that endows the Hilbert space of states of an
algebra structure. This algebra must be seen as the quantization of the Poisson manifold.

Since then, the role of symplectic groupoids in the study of Poisson geometry has been more
and more relevant, but the original program of quantization remained in the background. The main
reason for this loss of interest lies in the intrinsic limitations of geometric quantization which is the
main tool for quantization. Indeed, there is a canonical procedure only for quantizing cotangent
bundles and Kahler manifolds, but the vertical polarization of the cotangent bundle is compatible
only with the trivial Poisson structure and a Kahler structure is not typical for symplectic groupoids.
As a result, the only concrete advancement has been the understanding of prequantization given in
[14] and the only worked out example has been that of irrational rotations on the torus in [13].

Very recently, E. Hawkins in [7] revived the subject. According to his proposal, geometric
quantization should produce a C∗-algebra on the space of states. A key concept is that of mul-
tiplicative polarization, i.e. a polarization which is compatible with the groupoid structure, such
that a convolution product can be defined on the space of polarized sections. Since a multiplicative
polarization is an ordinary polarization that is compatible with the groupoid structures, the main
difficulties of geometric quantization are still there. In [7] it is observed that the ideal case of
multiplicative real polarization is given by a groupoid fibration, i.e. the space of leaves is itself a
groupoid and the convolution algebra should be in that case its convolution algebra.

Our starting observation, is that thanks to the groupoid structure the usual path of geometric
quantization can be abandoned and resort to the theory of groupoid C∗-algebras, introduced by J.
Reanult in [9]. Indeed, the regularity that we have to demand is that the groupoid of leaves admits
an Haar system, i.e. a way of integrating along the fibres of the range map. With this structure at
hand, one can apply Renault’s construction and get the convolution algebra as the quantization of
the Poisson manifold. In order to do this, we can consider real polarization with singularities much
more severe than those allowed by geometric quantization. If the space of leaves is a Lie groupoid
then there is a canonical Haar system but in this case one needs the usual regularity conditions
for real polarization and the construction is the same as definining a convolution product on the
space of sections. Remarkably, another favourable situation is when the foliation admits Bohr-
Sommerfeld (BS) selection rules and the groupoid of BS-leaves is for instance r-discrete, i.e. it
has discrete range fibres. In this case the foliation can be rather crazy from the point of view of
smooth structure, even not anymore a distribution, but one can still apply Renault theory instead of
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geometric quantization.
One important ingredient is the quantization of the modular function. This function integrates

the modular vector field, introduced in [15] as an invariant measuring the obstruction to have a
volume form invariant with respect to the flow of hamiltonian vector fields. Most importantly, it
is the semicalssical analogue of the Tomita-Takesaki operator in Von Neumann and C∗-algebras.
Every quantization procedure should make them correspond and we have to require that our po-
larization allows the quantization of the modular function. It is tempting then to discuss the real
singular polarization in terms of integrability of the modular function. This brings us to formulate
the concept of multiplicative integral model.

There is an interesting class of examples where one can test these ideas, Poisson Lie groups
and their homogeneous spaces. Indeed, in a series of papers A. Sheu (see [10, 11]) showed that the
C∗-algebra of a compact quantum groups can be realized as a subalgebra of a groupoid C∗-algebra.
We claim that this groupoid appears as groupoid of Bohr-Sommerfeld leaves of some multiplicative
integrable model on the symplectic groupoid of the underlying Poisson manifold. This project
started from the simplest Poisson homogeneous space of Poisson Lie groups, the Podles̀ sphere in
[2], and will be continued in [3]. In this short note we present the case of the Podles̀ sphere studied
in [2] from the point of view of integrable models.

2. Symplectic groupoids

Let G = (G ,G0, lG ,rG ,mG , ιG ,εG ) be a groupoid over the space of units G0, where lG ,rG : G →
G0 are the source and target maps, respectively, mG : G2 → G is the multiplication, ιG : G → G is
the inversion and εG : G0 → G is the embedding of units. Our conventions are that (γ1,γ2) ∈ G2 if
rG (γ1) = lG (γ2). We will denote mG (γ1,γ2) = γ1γ2. We say that G is source simply connected (ssc)
if l−1

G (x) is connected and simply connected for any x ∈ G0. A real function f ∈C(G ) is 1-cocycle
if f (γ1γ2) = f (γ1)+ f (γ2), for (γ1,γ2) ∈ G2; we denote the set of real 1-cocycles as Z1(G ,R).

A groupoid is Lie when G and G0 are both smooth manifolds, all structure maps are smooth
maps and lG ,rG are surjective submersions. A symplectic groupoid is a Lie groupoid, which is
equipped with a symplectic form ΩG , such that the graph of the multiplication is a lagrangian
submanifold of G ×G ×Ḡ , where Ḡ means G with the opposite symplectic structure. An equivalent
characterization for a Lie groupoid G to be a symplectic groupoid is that the symplectic form
be multiplicative, i.e. ∂ ∗(ΩG ) = (m∗

G − pr∗1 − pr∗2)ΩG = 0, where pri : G2 ⊂ G ×G → G is the
projection on the i-th factor. There exists a unique Poisson structure on G0 such that lG and rG are
Poisson and anti-Poisson mappings, respectively. A Poisson manifold is said to be integrable if it
is the space of units of a symplectic groupoid.

Let (M,π) be a Poisson manifold, where we denote with π the bivector defined by the Pois-
son bracket as { f ,g} = πµν∂µ( f )∂ν(g). As a consequence of the Jacobi identity of the Poisson
brackets, dLP(X) = [π,X ] squares to zero; its cohomology is called the Lichnerowicz-Poisson co-
homology and is denoted with HLP(M,π). Two distinguished classes are relevant for what follows.
The first one is the class [π] ∈ H2

LP(M,π) defined by the Poisson tensor itself. Let us assume that
M is orientable, and let us choose a volume form VM on M. The modular vector field χVM = divVM π
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is dLP-closed; its cohomology class χVM ∈ H1
LP(M,π) does not depend on the choice of the volume

form and is called the modular class.
We can always associate to a Poisson manifold (M,π) a topological groupoid Σ(M) [4, 6].

The elements of Σ(M) are equivalence classes of cotangent paths under the cotangent homotopy.
A cotangent path is a C1–path c : I → T ∗M such that

π](c(t)) =
d
dt

p(c(t)) ,

with p : T ∗M → M is the cotangent projection and the sharp map π] : T ∗M → T M denotes the
contraction with π . The source and target maps l ,r : Σ(M)→ M are given by l([c]) = p(c(0)) and
r([c]) = p(c(1)), the multiplication in Σ(M) is defined by the concatenation of cotangent paths. In
general Σ(M) is a topological groupoid, but if it is smooth Σ(M) carries a symplectic structure that
makes it the unique (ssc) symplectic groupoid integrating (M,π).

Using this description of the symplectic groupoid, it is easy to see that any vector field χ of M
that is closed dLP(χ) = 0 can be lifted to a groupoid 1–cocycle Fχ defined as

Fχ([c]) =
∫ 1

0
〈χ(p(c(t))),c(t)〉dt . (2.1)

In particular the modular vector field χVM is lifted to the modular function FVM .

3. Geometric quantization of the symplectic groupoid

Let G (M) be a symplectic groupoid integrating the Poisson manifold (M,π). We recall in this
section known facts about its geometric quantization.

Let us consider first the prequantization, as studied in [14]. Let us assume that G (M) is pre-
quantizable as symplectic manifold and let (Λ,∇) be a prequantization, where Λ is an hermitian
line bundle over G (M) and ∇ a connection satisfying ∇2 =−i/h̄ ΩG . Let ∂ ∗Λ∗ denote the (hermi-
tian) line bundle pr∗1Λ∗⊗pr∗2Λ∗⊗m∗

G Λ over G2(M), where pri denote the projections from the i-th
factor of G (M)×G (M) and mG the multiplication on G (M). We give the following definition.

Definition 3.1. A prequantization of the symplectic groupoid G (M) consists of the triple (Λ,∇;ζ )
where ζ is a section of ∂ ∗Λ∗ such that:

i) ζ has norm one and is multiplicative, i.e. it satisfies for (γ1,γ2,γ3) ∈ G3(M)

ζ (γ1,mG (γ2,γ3))⊗ζ (γ2,γ3) = ζ (γ1,γ2)⊗ζ (mG (γ1,γ2),γ3) . (3.1)

ii) ζ is covariantly constant, i.e. if ΘG is a (local) primitive of ΩG , then ζ (locally) satisfies

dζ +(∂ ∗ΘG )ζ = 0 . (3.2)
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In [14] it is shown that if G (M) is prequantizable as a symplectic manifold then there exists
a unique groupoid prequantization in the sense of Definition 3.1. We call ζ the prequantization
cocycle; the set of two-cocycles with values in T is denoted as Z2(G ,T). It is determined by the
choice of a (local) primitive ΘG ; it is shown in [5] that ΘG can be chosen such that ∂ ∗ΘG = 0 (and
so ζ = 1) if and only if [π] = 0 in H2

LP(M,π).
The second step in geometric quantization is the choice of a polarization. We require the

compatibility with the groupoid structure expressed by the following definition given in [7] in
order to construct a convolution product between polarized sections.

Definition 3.2. For any distribution P ⊂ TCG (M), let us denote P2 = (P ×P)∩ TCG2(M).
Then P is called a multiplicative polarization if it is lagrangian and, for every (γ1,γ2) ∈ G2(M),

mG ∗ (P2)(γ1,γ2) = PmG (γ1,γ2).

We want to discuss the special case of real polarization for the symplectic groupoid given by
an integrable model, compatible with the groupoid structure.

Let {Fi}dimG /2
i=1 a maximal set of independent functions Fi ∈C∞(G (M)) in involution; i.e. we

require that {Fi,Fj} = 0 and that Pγ = 〈χFi(γ)〉 has dimension dimG /2 almost everywhere (i.e.
everywhere but in a set of measure zero). These functions must be multiplicative, i.e. we require
that the (singular) distribution P is multiplicative in the sense of definition (3.2). We require two
additional properties: i) the modular function F , if non vanishing, must be one of the hamiltonians
Fi (say F1); ii) there exists a choice of ΘG of the primitive of the symplectic form ΩG satisfying
∂ ∗ΘG ∈ P⊥

2 .
Let us stress that the modular function depends on the choice of a volume form on M. If

all these conditions are fulfilled, then we say that the modular function defines a multiplicatively
integrable dynamical system.

The leaves of this polarization are by construction the contour levels of the hamiltonians Fi;
the Bohr-Sommerfeld leaves are those lagrangian leaves L such that (ΘG )|L defines a class in
H1(L,Z). The set of Bohr-Sommerfeld leaves LBS inherits the structure of topological groupoid.
As a consequence of the above properties, LBS is equipped with a groupoid one cocycle (the
modular cocycle) and a two cocycle (the prequantization cocycle). In the next section we will see
what kind of regularity we require in order to extract from these data a suitable quantization.

4. Haar systems

The definition of Haar system for a groupoid extends the Haar measure on groups. In the
presentation we follow [9] (see also [8]).

Let G be a locally compact groupoid (for simplicity we assume that it is Hausdorff) and let
Cc(G ) denote the space of continuous functions with compact support. A left Haar system for G is
a family of measures {λ x,x ∈ G0} on G such that

i) the support of λ x is G x = l−1
G (x);

ii) for any f ∈Cc(G ), and x ∈ G0, λ ( f )(x) =
∫
G f dλ x, defines λ ( f ) ∈Cc(G0);

5
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iii) for any γ ∈ G and any f ∈Cc(G ),
∫
G f (γγ ′)dλ rG (γ)(γ ′) =

∫
G f (γ ′)dλ lG (γ)(γ ′).

The existence of the Haar system imposes a topological constraint on G , in particular in [9] it
is proven that as a consequence the right map rG : G → G0 is an open map. Moreover, if it exists it
is not unique, in general. There are two cases where there is a canonical choice, Lie groupoids and
r-discrete groupoids. In Lie case, the Haar system is unique once one adds a smoothness condition
(see Chapter 2.3 in [8]). A locally compact groupoid G is r-discrete if rG : G → G0 is a local
homeomorphism. As a consequence the fibre of rG is dicrete and admits the counting measure as
the essentially unique Haar measure. It is also called an étale groupoid.

The composition of λ x with the inverse map will be denoted as λx; this family defines a right
Haar system λ−1. Any measure µ on the space of units G0 induces measures ν ,ν−1 on the whole
G through ∫

G
f dν =

∫
λ ( f )dµ ,

∫
G

f dν−1 =

∫
λ−1( f )dµ .

The measure µ is said to be quasi-invariant if ν and ν−1 are equivalent measures; in this case
the Radon-Nikodym derivative D = dν/dν−1 is called the modular function of µ . The function
logD ∈ Z1(G ,R) turns out to be a groupoid one cocycle with values in R and its cohomology class
depends only on the equivalence class of µ .

The notion of quasi-invariant measure can be extended as follows: let c ∈ Z1(G ,R) be a fixed
cocycle and β ∈ [−∞,∞]. Consider the set:

Min(c) = {x ∈ G0 : c(Gx)⊂ [0,∞)} .

A measure µ on G0 satisfies the (c,β )–KMS condition if

i) when β is finite, µ is quasi invariant and the modular function is e−βc.

ii) when β =±∞, the support of µ is contained in Min(±c).

A normalized (c,∞)–KMS measure is called a ground state for c.
Let ζ ∈ Z2(G ,T) be a continuous two-cocycle. For any f ,g ∈Cc(G ) let us define the convo-

lution and the involution as

( f ∗g)(γ) :=
∫

f (γγ ′)g(γ ′−1)ζ (γγ ′,γ ′−1) dλ rG (γ)(γ ′) ,

f ∗(γ) := f (γ−1) ζ (γ,γ−1) (4.1)

The space Cc(G ) equipped with these operations defines the ∗-algebra Cc(G ,ζ ). The C∗-norm is
defined as || f || = supL ||L( f )|| over all bounded representations L (we skip details, see [9]). The
completion of Cc(G ,ζ ) with respect to this norm defines the ζ -twisted convolution C∗-algebra
C∗(G ,ζ ) of the groupoid G . We omit ζ in the notation when the cocycle is the trivial one.

Let now c ∈ Z1(G ,R) be a one cocycle with values in R. It defines an algebra automorphism
Ac : R→ Aut(Cc(G ,ζ )) as

(Ac(t) f )(γ) = eitc(γ) f (γ) f ∈Cc(G ,ζ ).

A measure µ on the space of units G0 defines the weight φµ on C∗(G ,ζ ) as

φµ( f ) =
∫

G0

f dµ . (4.2)
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We recall that given the automorphism Ac the weight φµ satisfies the KMS condition at 0 ≤ β < ∞
if, for any f ,g ∈Cc(G ,ζ ), we have

φµ( f ∗Ac(iβ )(g)) = φµ(g∗ f ) ;

if β = ∞, φµ satisfies the KMS condition at ∞ if |φµ( f ∗Ac(z)(g))| ≤ || f || ||g||, for any z such that
Imz > 0. It is proven that µ satisfies the (c,β )-KMS condition for β ∈ [0,∞] if and only if φµ

satisfies the KMS condition for the automorphism Ac at β .
The GNS representation generated by the KMS weight φµ is obtained as convolution action of

Cc(G ,ζ ) on the Hilbert space L2(G ,ν−1). If β is finite (and so µ is quasi invariant and D = e−βc

is the modular function) then Cc(G ,ζ ), equipped with the inner product of L2(G ,ν−1), is a left
Hilbert algebra. We recall the definition.

Definition 4.1. A ∗-algebra A , equipped with a inner product, is a left Hilbert algebra if the left
regular representation is bounded and involutive, if S( f ) = f ∗, f ∈ A , is preclosed, and if A 2 is
dense in A .

The polar decomposition of S = JD1/2 defines the modular conjugation J and the modular
operator D = S†S. On f ∈Cc(G ,ζ ) we have

(J f )(γ) = D1/2(γ) f ∗(γ) , (D f )(γ) = D(γ) f (γ) .

In case β = ∞ the KMS condition means that the hamiltonian c is positive on supp(ν) and the
associated state φµ is called a ground state.

We are now in a position to formulate our general philosophy of the quantization by means of
a multiplicative real polarization (in particular of a multiplicative integrable model).

In the previous section we saw that such a polarization will produce the topological groupoid
LBS of Bohr-Sommerfeld leaves, equipped with the modular one cocycle F ∈ Z1(LBS,R) and the
prequantization two cocycle ζ ∈ Z2(LBS,T). We require that the groupoid of Bohr-Sommerfeld
leaves LBS is r-discrete, so that there exists a canonical Haar system. If this condition is satisfied
we can apply Renault’s construction briefly described in this Section. Let µF be the quasi invariant
measure determined by the modular cocycle F and ν the induced measure on LBS. The ouptut
of the quantization procedure is then the left Hilbert algebra Cc(LBS,ζ ) endowed with the scalar
product of L2(LBS,ν−1).

5. A multiplicative integrable model for the Podles sphere

The standard Podles sphere (S2,π) is the simplest example of Poisson homogeneous space for
Poisson-Lie groups. It is a Poisson manifold with a two symplectic leaves: the north pole {∞} is
the zero dimensional leaf and the complement S2\{∞} is the symplectic one. We call S2\{∞} the
symplectic chart with coordinate z and S2\{z = 0} the singular chart with coordinate w = 1/z. In
the symplectic chart, the Poisson bracket reads

{z, z̄}= i(1+ |z|2) .

7
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One can check that this bracket extends to the other chart w = 1/z and that w = 0 is a zero for the
Poisson tensor of degree 2.

Let us describe very briefly how its symplectic groupoid is defined. Details can be found in
[2]. As a manifold, the symplectic groupoid G (S2,π) is T ∗S2. In the complex coordinates (z, p)
on the symplectic chart the structure maps read

lG (z, p) = z , rG (z, p) = z+(1+ |z|2)p̄ ,

mG [(z, p)(z′, p′)] = (z, p+
1+ |z′|2

1+ |z|2
) , z′ = rG (z, p) .

We can use the fact the symplectic leaf is open an write G (S2,π)|S2\∞ as C×C, where (x,y) ∈
C×C are defined as x = lG (z, p) and y = rG (z, p). The symplectic form is ΩG = l∗G ω − r∗G ω ,
where ω = idzdz̄/(1+ |z|2) is the symplectic form on S2\{∞}; it can be explicitly checked that it
extends to the singular chart and defines a global form.

Up to a scalar multiplication, any Haar system on G (S2,π) is written as

λ x =−iΛ(y)dydȳ, (|x|< ∞); λ ∞ =−id pSd p̄S , (5.1)

for any positive Λ such that limy→∞ Λ(y) = 1 (pS is the momentum of w in the singular chart). The
modular function with respect to the round volume form on S2 is

F(x,y) = log
1+ |x|2

1+ |y|2
.

Since the symplectic groupoid is diffeomorphic to the cotangent bundle with an exact sym-
plectic form (but not the canonical one) the prequantization is just given by the trivial line bundle
Λ = T ∗S2 ×C equipped with the connection given by choosing a primitive ΘG of ΩG .

Let now τ = 1
1+|z|2 ; remark that τ ∈C∞(S2), i.e. it is a global function. Then the two hamilto-

nians F1 = l∗G (τ) and F2 = r∗G (τ) are in involution because lG and rG are symplectically orthogonal.
Moreover, the modular function is F = log l∗G (τ)/r∗G (τ), so that we have a multiplicative integrable
system.

The Bohr-Sommerfeld leaves are selected by the condition∫
|x|2=F1

ΘG = 2πn1h̄ ,
∫
|y|2=F2

ΘG = 2πn2h̄ n1,n2 ∈ Z .

The groupoid of BS leaves can be mapped to the subgroupoid LBS = {(m,n),m+n ≥ 0,n ≥ 0}∪
{∞} ⊂ (Z× Z̄)|N̄ , with n = n1 and m = n2 − n1. The groupoid structure is the one induced by
the action groupoid Z× Z̄, defined by the action of Z on Z̄ = Z∪{∞}. The groupoid LBS is r-
discrete so that there exists a canonical left Haar system given by the counting measure. It is the
groupoid appearing in Sheu’s description of the C∗-algebra of the quantum Podles̀ sphere in [11].
The modular cocycle on the Bohr-Sommerfeld groupoid reads as F(m,n) = h̄m. The corresponding
normalized quasi-invariant measure on (LBS)0 = N̄ reads µh̄(n) = e−nh̄(1−e−h̄). The convolution
algebra is generated by {em,n,n ≥ 0,m+n ≥ 0} and the identity id = ∑n≥0 e0,n satisfying

emn ∗ em′n′ = δn,m′+n′em+m′,n′ , (emn,em′n′) = δmm′δnn′µh̄(n) . (5.2)
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In [2] it is introduced also a complex polarization so that the general construction of geometric
quantization can be applied. The Hilbert algebra described in (5.2) can be recovered from the
definition of a convolution product on the space of polarized sections. We want to remark that the
output of quantization obtained following the groupoid C∗-algebra procedure is the convolution
algebra defined in the geometric quantization framework.
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