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1. The stability of a field theory at zero temperature and finitedensity

Real world physical systems of interest often involve finite matter densitgmiples include
Quantum Chromodynamics (QCD) at finite baryon density and many coedenatter systems.
The study of the thermodynamical and transport properties of thesersystén general difficult
when the systems become strongly coupled. On one hand, the pertuflediibeory method is
not reliable. On the other hand, lattice simulation fails due to the sign problemitat diensity
and furthermore it cannot access physics involving real time. The ¢gragéy duality provides
a solution to finite density field theory in the strongly coupled regime. In this weekwill study
such a system using the gauge/gravity duality. The theory'is- 4 Super Yang-Mills theory plus
A =2 hypermultiplet. The theory h&J (N;) gauge symmetry arld(N; ) global symmetry. The
latter is analogous to the flavor group in QCD, and the diagoria)g group of the flavor group
gives rise to a baryonic charge. It is this baryonic charge that weagdensity to. In particular,
we will study the above field theory at zero temperature and finite baryositge By virtue of
the gauge/gravity duality, the field theory at strong coupling has a duatigésn in terms ofN.
D3 branes and; D7 branes. A solution in the dual description has been obtained condisigo
to a homogeneous state at zero temperature and finite density [1]. Howevexpect it to be
susceptible to multiple instabilities.

First of all, previous holographic study showed the system has a finitepgnat zero tem-
perature [2]. While the D3 branes do not contribute to the entropy, therB®eb have a finite
contribution to the entropy, which cannot be reconciled with the third law ahtbdynamics. A
phase transition may happen before the zero temperature limit has beleadeSecondly, the fun-
damental multiplet contains both Dirac fermions and complex scalars. Due taghesgmmetry,
the chemical potential we assign for the baryon number density is alsoeativeffchemical poten-
tial for the complex scalar. It has been argued that complex scalar withdamgmical potential and
a quartic interaction is generically susceptible to Bose-Einstein condenghtiorhis argument
does seem to include the system we will study as a special case. Thindiyoad¢ive analysis on
largeN. QCD at asymptotic density has shown an instability, where the Fermi surfffoe quarks
are susceptible to formation of chiral density wave [3, 4]. Our systemeshmany features with
the largeN; QCD at finite density, it is reasonable to expect the ground state at finisitylemay
also be spatially modulated. Lastly, similar holographic studies on finite densitgmsyhave indi-
cated the presence of Chern-Simons (CS) term in the gravity theory ahtolgaound state with
spatial modulation [5] by violating the Breitenlohner-Freedman (BF) bounat.s§stem contains
a Wess-Zumino (WZ) term in the D7 brane action, which acts like the CS termefine, similar
mechanism might also work in our system, making the homogeneous state irs{dblen

The goal of this work is to perform a systematic analysis of the bosonigpbar charge
neutral operators corresponding to the fluctuations of the D7 brans.fiBidanalogy with QCD,
these operators can excite mesons. By analyzing the dispersion reldtitvesroesons, we find
the system is actually stable and shows some peculiar transport propertigsscent of the spin-
diffusion in condensed matter physics.
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2. The gravity dual of the cold strongly coupled matter

In the limit of infinite number of colors and infinite 't Hooft coupling, the” = 4 adjoint
matter has a simple description in terms of near horizon limit of D3 branes. Fuhe, we focus
on the “quenched limit”, where the number of flavor for thé = 2 fundamental matter is much
smaller than the number of colors, the dynamics of the fundamental matteesditbe dynamics
of probe D7 branes in the background of D3 branes. The near Indiiad of the background has
the following metric and a self-dual Ramond-Ramond (RR) five-form:

r2 R2
ds® = GyydxHdx” = @(—dt%dzz) + r—z(dr2+ r2dQ3),

4
FO = Q(r3dx°/\dx1/\dx2/\dx3/\dr) — AR, (2.1)

wherer is the AdS radial coordinate, with the field theory living at the boundary . The

D7 branes share the same spacetime coordinates as the D3 branes, wdttittbaad coordinates

wrapping theS® of . We separate th®® part of S explicitly as follows:
dQ2 = d6? + sir? 8d¢? + cos 6dQ3. (2.2)

The decomposition allows us to write a simple RR four-form pote il

cW = %(r4dx°/\dxl/\dx2/\dx3+ R*cod' 0do A dQs). (2.3)
The dynamics of D7 brane is governed by the Dirac-Born-Infeld actiibm a\WZ term. We will
consider a single D7 brane, for which the action is given by:
(2mma’)?
2

S7= —TD7/d85 v/ —det(gap + (21ma’)Fap) + TD7/ PICW]AF AF, (2.4)

To7 = % is the D7-brane tensior(é?,..., &8) are the worldvolume coordinategy, is the
induced metric of the D7-bran&z, = d.A, — Ay is the field strength associated with the world-
volume U (1) gauge fieldA,, andP[C™¥)] is the pullback of the RR four-form to the D7-brane
worldvolume.

A finite baryon density solution has been obtained in [1]. The solution sporeds to a non-
trivial embedding of the D7 brane and worldvolume gauge field. Dengiirgr cosf andy =
rsin@, the solution reads

1 2 13 N2pb 11
y(p) = C‘/Vl/3< _C2> B 175 |
6 (2rma’)? N2p6 4 ﬁ _2'6’3
1 1

where V" = Tp72m2 = (’;E)a, and the parametersandd are fixed in terms of the baryon chemical

potentialy and quark mash!.

c=yA (2ma’)® (U2 — M?) M, (2.6)
d =y (2ma’)* (u? — M?) p. (2.7)

Note the solution is valid fog = {; < 1 only.
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3. Meson spectrum of the theory

To study the meson spectrum of the theory, we consider all possible ibdkanuations of
the D7 brane fields. These include the fluctuation of the embedditm); — y(p) + (2rma’)x,
@ = (2ma’)¢ and the fluctuation of the worldvolume gauge fietg:= 3 A + 6A,. The equations
of motion for the fluctuations are obtained by plugging the fluctuations into tieneaf D7 brane
(2.4) and variating the action up to quadratic order in the fluctuations. Hsepce of a non-trivial
background gauge field couples the equations of motion for the fluctuatigest from the zero
sound mode that has been studied in [2], we find the fluctuations orgamimesdives into the
following three classes:

X = D(p)dU ey ™ SA —ex, 5Az = —%sx, OA =0, (3.1a)
X = OA = 0A3 = 0, 3A, = ™ (p)d @ TagmE (3.1b)
X = O =0, 8Ag = B(p)e* W™, S = TG @(p)E N DT, (3.10)

wherena = g + (21ma’)Fyp andn> = L—i. M and#™* are scalar and vector spherical har-

monics onS® with an integer eigenvalue. The three classes of fluctuations lead to three master
equations for the field® and®=:

0p(vV=NNPP N0 ®) — /=1 (N N+ K2 (N*)2+ m(m+2)nSn*) > =0,  (3.2a)
0p(vV—nNZ2nPPo,®%) — (/=1 (N3 (w?n" +K2n*) + (n=)*(m+1)?)
+4(p? +y2) (P + YY) (M+ 1)\/6) o =0. (3.2b)

To finish the discussion on the equations of motion, we further observéhén&mbedding field
¢ and transverse components of the gauge Bélg and dA, satisfy the same equation of motion
as®. Therefore, we conclude that (3.2) describes all possible bosopicdiions apart from the
known zero sound mode.

A quick look at the limitp — 0 shows that the master equationsdand®* are equivalent
to the equation of motion for a massless scalahd$,, therefore the BF bound is obviously not
violated. To find any possible instabilities, we need to explore the full messtrsin.

The meson states are given by the normalizable solution of the master eqat®)nsthe
condition of the normalizability gives the meson dispersion relation. This amodint the Quasi-
Normal-Modes (QNM) of (3.2). An instability will be indicated by the QNM criogsthe real axis
from above in the complex frequency plane according to our choice didhger transform. The
common practice is to integrate the master equations from the horizon with an mpfadliimdary
condition to the boundary, where it is demanded to be normalizable. Howbeefact that the
horizon is an essential singularity of the master equation (3.2) and the largmanapart of the
QNM makes this task numerically challenging. To overcome this difficulty, wetwselifferent
methods: a low frequency expansion [6] and a zig-zag method [7].

The low frequency expansion determines the analytic form of the ret&@deeh’s function
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Figure 1: Left panel: The first three QNM op for m= 0, labeled byn = 1,2, 3. The solid lines describe
the motion as a function of momentukre (0,10) ande € (0,0.9). Middle Panel: The first QNM ofp*
with m= 1 fork e (0,10) and € € (0,0.8). Right panel: The first three QNM &b~ (p) with m= 1 for

k € (0,10) ande € (0,0.8).

for ® and®* to be:

by iQby
G(Q) = a—i0a’ (3.3)
bs —iQb*
G (Q) = 1-70117 (3.4)
8y —18a,

whereQ = wv1—¢g2. g, b;, aii and bii are functions oﬂz m and € that can be determined
numerically without difficulty. Herew andk are dimensionless quantities scaled by the density.
+
The QNM at low frequency, if exist, are given 6y = —i% orQ= —iga%. An instability would
1

+
correspond tcg% — 0 or % — 0~. We find these do not occur for the lowest few integamnd a
1

wide range ok ande, thus there are no unstable QNM in the low frequency regime. Interestingly,
we find :‘41 — 0" ~ k% ask — 0. This gives rise to a diffusion mode = iD(e)EZ.

We also search for the QNM in the entire complex frequency plane usingzagignethod.
The method amounts to solving the master equations along a contour in the cotapkepthe
radial coordinat@, which bypasses the numerical issue near the essential singularity atitanh
Detail of the method can be found in [7]. Applications of this method allows usctatéofirst few
QNM for fields® and®d~ and the first QNM ford™ as functions ok ande for the lowest integer
m in each case, corresponding to operators with the lowest dimensionri€adiyeve expect an
instability to occur for those most relevant operators. Fig.1 summarize our nestifts for the
QNM for fields®, @™ andd~ from left to right. We see none of the QNM cross the real axis from
above, therefore no instability is found in our perturbative analysis ditletuations.

In additional to the three QNM we show in Fig.1 for tde", we reproduce the diffusion
mode found above using the low frequency expansion. Fig.2 shows fosidef QNM of @~ as

a function ofk and e for the lowest integem = 1. We also extract the diffusion constaﬁ%

defined byw =i \Zﬂ%@vt O(Es) as a function ot for the lowest few values of. The results are

shown in Fig.3. The diffusion mode appears in the fluctuation of fietdor 6A;). For the lowest
integerm = 1, the dual operators are:

0'=Q"ay,QP, (3.5)

whereQ? is the U (2)r doublet of hypermultiplet scalars aad areSJ (2)r Pauli matrices. The
operators are charge neutral and form a triplet of 30€2)gr. We will call this mode the “R-
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Figure 2: The diffusion mode ofo™ in the complexw plane, where each line indicates the motion, as a func-
tion of momentunk € (0,9) for m= 1. The different lines are f&a=M/u = (0,0.1,0.3,0.5,0.7,0.8,0.9).
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Figure 3: The “diffusion constant” (&) form= 1,2,3 QNM versus.

V1-¢2

spin” diffusion by analogy with conventional zero temperature spin ddfugh condensed matter
physics.

4. Summary

We have studied the perturbative stability.¢f = 4 SYM theory coupled to a single flavor of
A =2 hypermultiplet at zero temperature and a finite baryon density. This isljomeystematic
study of the fluctuations of the bosonic fields of the D7 brane. The QNMedigids correspond to
the dispersion relations of the mesonic operators in the dual field theorfipuivd that none of the
QNM crosses the real frequency axis from above, indicating the absdperturbative instability
in our system. Itis interesting to see if the conclusion remain trues for fluchsevo the fermionic
fields and when non-perturbative effects are included.
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We have also found a diffusion mode corresponding to the fluctuatid#@ofFor the lowest
integerm, the dual operators are charge neutral and form an “R-spin” tripletintérpreted this
mode as the diffusion of spin associated waihi(2)gr symmetry. It remains an open question
whether this diffusion mode is associated with the existence of a moduli spaitefground state

[8].
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