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We use gauge-gravity duality to study the stability of zero-temperature, finite baryon density

states ofN = 4 supersymmetricSU(Nc) Yang-Mills theory coupled to a single massiveN = 2

supersymmetric hypermultiplet in the large-Nc and large-coupling limits. In particular, we study

the Quasi-Normal Modes of the fluctuations of the bosonic fields, which gives the spectrum of

the mesons. Despite circumstantial evidence that the system might be unstable, such as a finite

entropy density at zero temperature and the existence of instabilities in similar theories, we find

no evidence of any instabilities. We discover a pole on the imaginary frequency axis in a scalar

meson two-point function, similar to the diffusion of spin at zero temperature in condensed matter

physics.
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1. The stability of a field theory at zero temperature and finitedensity

Real world physical systems of interest often involve finite matter density. Examples include
Quantum Chromodynamics (QCD) at finite baryon density and many condensed matter systems.
The study of the thermodynamical and transport properties of these systems is in general difficult
when the systems become strongly coupled. On one hand, the perturbativefield theory method is
not reliable. On the other hand, lattice simulation fails due to the sign problem at finite density
and furthermore it cannot access physics involving real time. The gauge/gravity duality provides
a solution to finite density field theory in the strongly coupled regime. In this work, we will study
such a system using the gauge/gravity duality. The theory isN = 4 Super Yang-Mills theory plus
N = 2 hypermultiplet. The theory hasSU(Nc) gauge symmetry andU(N f ) global symmetry. The
latter is analogous to the flavor group in QCD, and the diagonalU(1)B group of the flavor group
gives rise to a baryonic charge. It is this baryonic charge that we givea density to. In particular,
we will study the above field theory at zero temperature and finite baryon density. By virtue of
the gauge/gravity duality, the field theory at strong coupling has a dual description in terms ofNc

D3 branes andN f D7 branes. A solution in the dual description has been obtained corresponding
to a homogeneous state at zero temperature and finite density [1]. However, we expect it to be
susceptible to multiple instabilities.

First of all, previous holographic study showed the system has a finite entropy at zero tem-
perature [2]. While the D3 branes do not contribute to the entropy, the D7 branes have a finite
contribution to the entropy, which cannot be reconciled with the third law of thermodynamics. A
phase transition may happen before the zero temperature limit has been reached. Secondly, the fun-
damental multiplet contains both Dirac fermions and complex scalars. Due to the supersymmetry,
the chemical potential we assign for the baryon number density is also an effective chemical poten-
tial for the complex scalar. It has been argued that complex scalar with large chemical potential and
a quartic interaction is generically susceptible to Bose-Einstein condensation[1]. This argument
does seem to include the system we will study as a special case. Thirdly, perturbative analysis on
largeNc QCD at asymptotic density has shown an instability, where the Fermi surface of the quarks
are susceptible to formation of chiral density wave [3, 4]. Our system shares many features with
the largeNc QCD at finite density, it is reasonable to expect the ground state at finite density may
also be spatially modulated. Lastly, similar holographic studies on finite density system have indi-
cated the presence of Chern-Simons (CS) term in the gravity theory can lead to ground state with
spatial modulation [5] by violating the Breitenlohner-Freedman (BF) bound. Our system contains
a Wess-Zumino (WZ) term in the D7 brane action, which acts like the CS term. Therefore, similar
mechanism might also work in our system, making the homogeneous state in [1] unstable.

The goal of this work is to perform a systematic analysis of the bosonic, baryonic charge
neutral operators corresponding to the fluctuations of the D7 brane fields. By analogy with QCD,
these operators can excite mesons. By analyzing the dispersion relations of the mesons, we find
the system is actually stable and shows some peculiar transport properties,reminiscent of the spin-
diffusion in condensed matter physics.
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2. The gravity dual of the cold strongly coupled matter

In the limit of infinite number of colors and infinite ’t Hooft coupling, theN = 4 adjoint
matter has a simple description in terms of near horizon limit of D3 branes. Furthermore, we focus
on the “quenched limit”, where the number of flavor for theN = 2 fundamental matter is much
smaller than the number of colors, the dynamics of the fundamental matter reduces to the dynamics
of probe D7 branes in the background of D3 branes. The near horizon limit of the background has
the following metric and a self-dual Ramond-Ramond (RR) five-form:

ds2 = Gµνdxµdxν =
r2

R2(−dt2+d~x2)+
R2

r2 (dr2+ r2dΩ2
5),

F(5) =
4

R4(r
3dx0∧dx1∧dx2∧dx3∧dr)−4R4dΩ5, (2.1)

wherer is the AdS radial coordinate, with the field theory living at the boundaryr → ∞. The
D7 branes share the same spacetime coordinates as the D3 branes, with the additional coordinates
wrapping theS3 of S5. We separate theS3 part ofS5 explicitly as follows:

dΩ2
5 = dθ 2+sin2 θdφ2+cos2 θdΩ2

3. (2.2)

The decomposition allows us to write a simple RR four-form potentialC(4)

C(4) =
1

R4(r
4dx0∧dx1∧dx2∧dx3+R4cos4 θdφ ∧dΩ3). (2.3)

The dynamics of D7 brane is governed by the Dirac-Born-Infeld action with a WZ term. We will
consider a single D7 brane, for which the action is given by:

SD7 =−TD7

∫

d8ξ
√

−det(gab +(2πα ′)Fab)+
(2πα ′)2

2
TD7

∫

P[C(4)]∧F ∧F, (2.4)

TD7 = g−1
s α ′−4

(2π)7 is the D7-brane tension,(ξ 1, . . . ,ξ 8) are the worldvolume coordinates,gab is the
induced metric of the D7-brane,Fab = ∂aAb −∂bAa is the field strength associated with the world-
volumeU(1) gauge fieldAa, and P[C(4)] is the pullback of the RR four-form to the D7-brane
worldvolume.

A finite baryon density solution has been obtained in [1]. The solution corresponds to a non-
trivial embedding of the D7 brane and worldvolume gauge field. Denotingρ = r cosθ andy =

r sinθ , the solution reads

y(ρ) =
1
6

cN −1/3
(

d2

(2πα ′)2 − c2
)−1/3

B





N 2ρ6

N 2ρ6+ d2

(2πα ′)2 − c2
;
1
6
,
1
3



 ,

At(ρ) =
1

(2πα ′)

1
ε

y(ρ), (2.5)

whereN = TD72π2 = λNc
(2π)4 , and the parametersc andd are fixed in terms of the baryon chemical

potentialµ and quark massM.

c = γN (2πα ′)3(µ2−M2)M, (2.6)

d = γN (2πα ′)4(µ2−M2)µ . (2.7)

Note the solution is valid forε ≡ µ
M < 1 only.
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3. Meson spectrum of the theory

To study the meson spectrum of the theory, we consider all possible bosonic fluctuations of
the D7 brane fields. These include the fluctuation of the embedding:y(ρ) → y(ρ) + (2πα ′)χ,
φ = (2πα ′)ϕ and the fluctuation of the worldvolume gauge field:Ab = δ t

bAt +δAb. The equations
of motion for the fluctuations are obtained by plugging the fluctuations into the action of D7 brane
(2.4) and variating the action up to quadratic order in the fluctuations. The presence of a non-trivial
background gauge field couples the equations of motion for the fluctuations. Apart from the zero
sound mode that has been studied in [2], we find the fluctuations organize themselves into the
following three classes:

χ = Φ(ρ)eiωt−ikx3Y
m, δAt = εχ, δA3 =−

ω
k

εχ, δAi = 0, (3.1a)

χ = δAt = δA3 = 0, δAi = Φ±(ρ)eiωt−ikx3Y
m,±, (3.1b)

χ = δAt = 0, δA3 = Φ(ρ)eiωt−ikx3Y
m, δAi =

−ikηxx

m(m+2)ηS3Φ(ρ)eiωt−ikx3∇iY
m, (3.1c)

whereηab ≡ gab +(2πα ′)Fab andηS3 = r2

ρ2 . Y m andY m,± are scalar and vector spherical har-

monics onS3 with an integer eigenvaluem. The three classes of fluctuations lead to three master
equations for the fieldsΦ andΦ±:

∂ρ(
√
−ηηρρηxx∂ρΦ)−

√
−η

(

ω2η ttηxx + k2(ηxx)2+m(m+2)ηS3ηxx)Φ = 0, (3.2a)

∂ρ(
√
−ηηS3ηρρ∂ρΦ±)−

(√
−η

(

ηS3(ω2η tt + k2ηxx)+(ηS3)2(m+1)2)

±4(ρ2+ y2)(ρ + yy′)(m+1)
√

g̃
)

Φ± = 0. (3.2b)

To finish the discussion on the equations of motion, we further observe thatthe embedding field
ϕ and transverse components of the gauge fieldδA1 andδA2 satisfy the same equation of motion
asΦ. Therefore, we conclude that (3.2) describes all possible bosonic fluctuations apart from the
known zero sound mode.

A quick look at the limitρ → 0 shows that the master equations forΦ andΦ± are equivalent
to the equation of motion for a massless scalar inAdS2, therefore the BF bound is obviously not
violated. To find any possible instabilities, we need to explore the full meson spectrum.

The meson states are given by the normalizable solution of the master equations(3.2). The
condition of the normalizability gives the meson dispersion relation. This amountto find the Quasi-
Normal-Modes (QNM) of (3.2). An instability will be indicated by the QNM crossing the real axis
from above in the complex frequency plane according to our choice of theFourier transform. The
common practice is to integrate the master equations from the horizon with an infalling boundary
condition to the boundary, where it is demanded to be normalizable. However, the fact that the
horizon is an essential singularity of the master equation (3.2) and the large imaginary part of the
QNM makes this task numerically challenging. To overcome this difficulty, we usetwo different
methods: a low frequency expansion [6] and a zig-zag method [7].

The low frequency expansion determines the analytic form of the retardedGreen’s function
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Figure 1: Left panel: The first three QNM ofΦ for m = 0, labeled byn = 1,2,3. The solid lines describe
the motion as a function of momentum̄k ∈ (0,10) andε ∈ (0,0.9). Middle Panel: The first QNM ofΦ+

with m = 1 for k̄ ∈ (0,10) andε ∈ (0,0.8). Right panel: The first three QNM ofΦ−(ρ̄) with m = 1 for
k̄ ∈ (0,10) andε ∈ (0,0.8).

for Φ andΦ± to be:

G(Ω) =
b1− iΩb0

a1− iΩa0
, (3.3)

G±(Ω) =
b±0 − iΩb±−1

a±0 − iΩa±−1

, (3.4)

whereΩ ≡ ω̄
√

1− ε2. ai, bi, a±i and b±i are functions of̄k, m and ε that can be determined
numerically without difficulty. Hereω̄ and k̄ are dimensionless quantities scaled by the density.

The QNM at low frequency, if exist, are given byΩ = −i a1
a0

or Ω = −i
a±0
a±−1

. An instability would

correspond toa1
a0
→ 0− or a±0

a±−1
→ 0−. We find these do not occur for the lowest few integersm and a

wide range of̄k andε, thus there are no unstable QNM in the low frequency regime. Interestingly,

we find a−0
a−−1

→ 0+ ∼ k̄2 ask̄ → 0. This gives rise to a diffusion modeΩ = iD(ε)k̄2.

We also search for the QNM in the entire complex frequency plane using a zig-zag method.
The method amounts to solving the master equations along a contour in the complex plane of the
radial coordinateρ, which bypasses the numerical issue near the essential singularity at the horizon.
Detail of the method can be found in [7]. Applications of this method allows us to locate first few
QNM for fieldsΦ andΦ− and the first QNM forΦ+ as functions of̄k andε for the lowest integer
m in each case, corresponding to operators with the lowest dimension. Generically we expect an
instability to occur for those most relevant operators. Fig.1 summarize our mainresults for the
QNM for fieldsΦ, Φ+ andΦ− from left to right. We see none of the QNM cross the real axis from
above, therefore no instability is found in our perturbative analysis of thefluctuations.

In additional to the three QNM we show in Fig.1 for theΦ−, we reproduce the diffusion
mode found above using the low frequency expansion. Fig.2 shows the diffusive QNM ofΦ− as
a function ofk̄ andε for the lowest integerm = 1. We also extract the diffusion constantD(ε)√

1−ε2

defined byω̄ = i D(ε)√
1−ε2 k̄2+O(k̄3) as a function ofε for the lowest few values ofm. The results are

shown in Fig.3. The diffusion mode appears in the fluctuation of fieldΦ−(or δAi). For the lowest
integerm = 1, the dual operators are:

O
I = Qα †σ I

αβ Qβ , (3.5)

whereQα is theSU(2)R doublet of hypermultiplet scalars andσ I areSU(2)R Pauli matrices. The
operators are charge neutral and form a triplet of theSU(2)R. We will call this mode the “R-
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Figure 2: The diffusion mode ofΦ− in the complexω̄ plane, where each line indicates the motion, as a func-
tion of momentum̄k ∈ (0,9) for m = 1. The different lines are forε = M/µ = (0,0.1,0.3,0.5,0.7,0.8,0.9).
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Figure 3: The “diffusion constant” D(ε)√
1−ε2

for m = 1,2,3 QNM versusε.

spin” diffusion by analogy with conventional zero temperature spin diffusion in condensed matter
physics.

4. Summary

We have studied the perturbative stability ofN = 4 SYM theory coupled to a single flavor of
N = 2 hypermultiplet at zero temperature and a finite baryon density. This is doneby a systematic
study of the fluctuations of the bosonic fields of the D7 brane. The QNM of the fields correspond to
the dispersion relations of the mesonic operators in the dual field theory. Wefound that none of the
QNM crosses the real frequency axis from above, indicating the absence of perturbative instability
in our system. It is interesting to see if the conclusion remain trues for fluctuations for the fermionic
fields and when non-perturbative effects are included.
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We have also found a diffusion mode corresponding to the fluctuation ofδAi. For the lowest
integerm, the dual operators are charge neutral and form an “R-spin” triplet. We interpreted this
mode as the diffusion of spin associated withSU(2)R symmetry. It remains an open question
whether this diffusion mode is associated with the existence of a moduli space for the ground state
[8].
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