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1. Introduction

The relationship of fluid dynamics with general relativity goes back to the work of Damour [1].
Lately, a different and perhaps more concrete shape of this relationship has been given by the
so-called fluid/gravity correspondence (see for example the recent review [2]). According to the
latter, the gravitational degrees of freedom that reside in the boundary of an asymptotically AdSD

spacetime describe the hydrodynamics of a relativistic fluid in D− 1 dimensions. Consequently,
the dynamical equations of the latter systems (e.g. Euler or Navier–Stokes) are encoded in the
asymptotic behaviour of the bulk Einstein equations.

The fluid/gravity correspondence framework appears to be capable of describing different
facets of relativistic fluids, such as superfluidity and dissipation. This appears to be a novel mech-
anism of emergence in physics whereby the low-energy effective degrees of freedom arise holo-
graphically in the boundary of a gravitational system. At a practical level, fluid/gravity correspon-
dence currently occupies a large part of the AdS/CMT correspondence as are collectively called
the efforts to find new computational tools for strongly coupled condensed matter systems using
holography (see e.g. the reviews [3, 4, 5]).

Despite some important results in the study of holographic fluids, the issue of vorticity has
been less well understood. This is important if one wants to extend the realm of AdS/CMT to
interesting condensed matter systems such as rotating Bose or Fermi gases [6, 7], turbulence or
wave propagation in moving metamaterials (e.g. [8]). With such extensions in mind, we review
here our recent attempt to setup a holographic framework for the description of fluids with vorticity.
Even without touching the thorny question of dissipation, i.e. assuming local equilibrium and
non-dissipating kinematics, our studies reveal a remarkably rich structure as soon as vorticity is
switched on. In particular, we note the intimate relationship of our neutral rotating holographic
fluids with charged fluids in magnetic fields, as well as with the problem of wave propagation in
moving media. We believe that the latter observation can lead to the holographic description of
analogue gravity systems [9, 10, 11, 12].

In the present review we choose to devote most of our discussion to the gravitational side
of the duality and we extensively discuss in Sec. 2 relativistic fluids, in Sec. 3 the general sta-
tionary Papapetrou–Randers and Zermelo geometries and in Sec. 4 various concrete examples of
stationary geometries in 2 + 1 dimensions. In Sec. 5 we review the Fefferman–Graham construc-
tion of holographic fluids in 2 + 1 dimensions focusing on the Kerr–AdS4, the Taub–NUT–AdS4

and the hyperbolic NUT–AdS4 solutions. In Sec. 6 we give an overview of some new results,
to be presented elsewhere [13], that aim to connect our approach with alternative descriptions of
holographic fluids. Section 7 contains our conclusions.

2. Relativistic fluids

In this section, we recall the salient features of relativistic fluid dynamics (see e.g. [14, 15]).
This includes aspects of vector-field congruences and properties of the energy–momentum tensor.
We work in arbitrary spacetime dimension D.
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2.1 Vector-field congruences

We consider a manifold endowed with a spacetime metric of the generic form

ds2 = gµνdxµdxν = ηabêaêb. (2.1)

We will use a,b,c, . . .= 0,1, . . . ,D−1 for transverse Lorentz indices along with α,β ,γ = 1, . . . ,D−
1. Coordinate indices will be denoted µ,ν ,ρ, . . . for spacetime x ≡ (t,x) and i, j,k, . . . for spatial
x directions. The dual of the orthonormal coframe êa is the frame ěa, which satisfies êa(ěb) = δ a

b .
To define parallel transport we take the Levi–Civita connection coefficients Γa

bc defined via the
spin-connection one-form ω̂a

b as

dêa + ω̂
a
b∧ êb = 0, ω̂

a
b = Γ

a
bcêc, ∇ěa ěb = Γ

c
aběc. (2.2)

Consider now an arbitrary timelike vector field û = uaêa, normalized as ηabuaub = −1, later
identified with the fluid velocity. Its integral curves define a congruence which is characterized by
its acceleration, shear, expansion and vorticity:

∇aub =−uaab +
1

D−1
Θhab +σab +ωab (2.3)

with1

aa = ub
∇bua, Θ = ∇aua, (2.4)

σab =
1
2

h c
a h d

b (∇cud +∇duc)−
1

D−1
habhcd

∇cud (2.5)

= ∇(aub) +a(aub)−
1

D−1
hab∇cuc, (2.6)

ωab =
1
2

h c
a h d

b (∇cud−∇duc) = ∇[aub] +a[aub]. (2.7)

The latter allows to define the vorticity form as

2ω = ωab êa∧ êb = dû+ û∧ â . (2.8)

These tensors satisfy several simple identities:

uaaa = 0, ua
σab = 0, ua

ωab = 0, ua
∇bua = 0, hc

a∇buc = ∇bua. (2.9)

Killing vector fields, satisfying ∇(aξb) = 0, are congruences with remarkable properties. We
quote two of them, the proof of which is straightforward:

• A Killing vector field has vanishing expansion.

• A constant-norm2 Killing vector field is furthermore geodesic and shearless. It can only carry
vorticity.

1Our conventions are: A(ab) = 1/2(Aab +Aba) and A[ab] = 1/2(Aab−Aba).
2This is not an empty statement since Killing vectors cannot be normalized at will. When their norm is constant, it

can be consistently set to −1,0 or +1.
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The timelike vector field ǔ can be used to decompose any tensor field on the manifold in
transverse and longitudinal components with respect to itself. The decomposition is performed by
introducing the longitudinal and transverse projectors:

Ua
b =−uaub, ha

b = uaub +δ
a
b , (2.10)

where hab is also the induced metric on the surface orthogonal to ǔ. The projectors satisfy the usual
identities:

Ua
cU

c
b = Ua

b, Ua
chc

b = 0, ha
chc

b = ha
b, Ua

a = 1, ha
a = D−1. (2.11)

For example, any rank-two symmetric tensor Tab can be decomposed in longitudinal, transverse
and mixed components:

Tab = euaub +Sab−uaqb−ubqa, (2.12)

the non-longitudinal part being
Σab = Sab−uaqb−ubqa. (2.13)

We have defined
e = uaubTab, Sab = h c

a h d
b Tcd , qa = h b

a Tbcuc, (2.14)

such that
uaqa = 0, uaSab = 0. (2.15)

Finally
uaTab = qb− eub. (2.16)

2.2 The energy–momentum tensor

The mere existence of a metric and a timelike vector-field congruence does not necessarily
imply the presence of a relativistic fluid. If we wish to identify the timelike vector ǔ with the
velocity of a relativistic fluid, then we should require the presence of an additional symmetric
rank-two tensor field – the energy–momentum tensor Tab whose projection along ǔ is the (positive)
energy density ε of the fluid

Tabuaub = ε , (2.17)

as measured in the local proper frame. The latter concept deserves a comment. In non-relativistic
fluids, the velocity field is unambiguously defined as the velocity of the mass flow of the fluid. In
the relativistic case, it requires a more formal definition as energy and mass cannot be distinguished,
and energy flows can be the result of dissipative phenomena or thermal conduction. One way to
define the velocity, which amounts to defining a specific local proper frame known as Landau
frame, is to demand the absence of mixed terms in (2.13):

ua
Σab = 0. (2.18)

Let us continue applying the decomposition (2.12) to the energy–momentum tensor. Insert-
ing (2.13) in (2.18), Eqs. (2.15) imply that qa vanishes in the Landau frame, where the energy–
momentum is thus

Tab = εuaub +Sab. (2.19)
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The last piece Sab is the stress tensor, purely transverse.
For a perfect fluid, all information is encapsulated in a further unique piece of data: the pres-

sure p measured in the local proper frame. Hence, the stress tensor reads:

Sperf.
ab = phab. (2.20)

For a viscous fluid, the stress tensor contains friction terms:

Sab = phab + tab, (2.21)

where tab is usually expressed as an expansion in the derivatives of the velocity field. At lowest
order one finds

tab =−2ησab−ζ habΘ (2.22)

with η ,ζ the shear and bulk viscosities. In 2+1 dimensions there exists another term at this order,
breaking the parity symmetry: ζHεcd(aucσd

b). The coefficient ζH is the rotational Hall viscosity. It
characterizes a transport phenomenon similar to the Hall conductivity of charged fluids in magnetic
fields.

The dynamical equations for the fluid (Euler, Navier–Stokes, . . . ) are all encoded in the co-
variant conservation of the energy–momentum tensor

∇
aTab = 0 . (2.23)

In the non-relativistic limit, Eq. (2.23) also delivers a matter-current conservation, which, for rela-
tivistic fluids, must be introduced separately as a consequence of charge conservation, if any.

2.3 Effectively perfect fluids

Relativistic fluids in the hydrodynamic regime are long wavelength approximations of finite-
chemical-potential and finite-temperature states of certain (unknown) quantum field theories3. Quite
generically all such fluids exhibit dissipative phenomena as they describe media with non-zero
shear viscosity. However, all such fluids can be in special kinematic configurations where the ef-
fects of dissipation are ignorable4. In this case, their dynamics is captured by the perfect part of the
stress tensor and the equations of motion read5:{

(ε + p)Θ+∇ǔε = 0

(ε + p)â−∇⊥p = 0
(2.24)

3A special class of such fluids, actually the one that naturally arises in holography, are conformal fluids, i.e. those
having vanishing energy–momentum trace: (D− 1)p− ε = (D− 1)ζ Θ. This equation is supposed to hold for any
kinematic configuration, in particular when the fluid is at rest, where ε = (D− 1)p. The latter is therefore adopted as
a thermodynamic equation of state valid always locally. When the fluid is not at rest, we conclude then that ζ Θ = 0,
which must hold for any Θ. In this scheme, the bulk viscosity for a conformal fluid is thus vanishing identically. Similar
conclusions are reached for higher-order viscosity coefficients entering the traceful part of the energy–momentum tensor.

4A fluid can be stationary and altogether dissipate energy provided it is not isolated. These situations are better
designated as forced steady states. On curved boundary backgrounds, the forcing task can be met by gravity through
the boundary conditions. This was discussed in [16]. As this feature does not appear in the backgrounds that will be
analyzed in the forthcoming sections, we will not pursue this further.

5The interested reader can find more information on these specific issues in e.g. [17, 18].
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(∇⊥ = ∇+ û∇ǔ stands for the covariant derivative along the directions normal to the velocity field).
Under this assumption, taking also into account the conformality (ε = (D−1)p ∝ T D), Eqs. (2.24)
lead to {

∇ǔε = 0

â = ∇⊥p
Dp .

(2.25)

The energy density is conserved along the fluid lines and in the absence of spatial pressure gradients
(i.e. for energy and pressure constants in spacetime), the flow is geodesic.

In several instances, the velocity of the fluid turns out to be a Killing vector field. Then, from
the discussion of Sec. 2.1 several straightforward conclusions can be drawn:

• The flow is geodesic, shearless and expansionless.

• The internal energy density is conserved and the pressure is spatially homogeneous.

• If the fluid is conformal then ε = (D−1)p ∝ T D is constant in spacetime.

Therefore, despite its viscosity, the kinematic state of the fluid can be steady and non-dissipative.
For this to happen, however, the existence of a constant-norm timelike Killing vector is required.
In other words, the background geometry must itself be stationary6. In this case, the constant-
norm timelike Killing vector congruence allows for the definition of a global time coordinate, with
associated inertial frames. The latter are comoving with the fluid. All the examples that we will
discuss in the following fall into this class.

3. Papapetrou–Randers stationary geometries

Starting with appropriate time-independent bulk backgrounds7, conformal fluids appear holo-
graphically, evolving generally on stationary but not necessarily static boundary geometries. Those
fluids possess therefore non-dissipative dynamics inherited from the gravitational environment and
this dynamics contains in general vorticity. We will present here some basic properties of the
boundary backgrounds arising in this context and explain how they affect the fluid dynamics. We
postpone to Sec. 5 the actual holographic analysis relating some of these backgrounds to exact bulk
Einstein spacetimes.

3.1 General properties, geodesic congruences and Papapetrou–Randers frame

Stationary metrics appearing in the holographic analysis we will be presenting later on are of
the generic form

ds2 = B2 (−(dt−bidxi)2 +ai j(x)dxidx j) , (3.1)

where B,bi,ai j are x-dependent functions. These metrics were introduced by Papapetrou in [19].
They will be called hereafter Papapetrou–Randers because they are part of an interesting network

6More generally, it can be shown that the velocity field uµ of a stationary fluid flow has to be proportional to a
Killing vector field of the background geometry [17].

7Notice that in some instances time independence is not met in the bulk, but stationarity remains valid on the
boundary as a consequence of appropriate boundary conditions [16]. These cases belong to the class of forced dissipative
steady-states mentioned in footnote 4.
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of relationships involving the Randers form [20], discussed in detail in [21] and more recently used
in [22, 23].

For later convenience, we introduce ai j,bi and γ such that

ai ja jk = δ
i
k, bi = ai jb j, γ

2 =
1

1−ai jbib j
. (3.2)

The metric components read:

g00 =−B2, g0i = B2bi, gi j = B2(ai j−bib j), (3.3)

and those of the inverse metric:

g00 =− 1
γ2B2 , g0i =

bi

B2 , gi j =
ai j

B2 . (3.4)

Finally, √
−g = BD√a, (3.5)

where a is the determinant of the symmetric matrix with entries ai j.
In the natural frame of the above coordinate system {∂t ,∂i}, any observer at rest has normal-

ized velocity ǔ = 1
B ∂t and dual form û = −B(dt − b) (we set b = bidxi). The normalized vector

field ǔ is not in general Killing – as opposed to ∂t . For this observer, the acceleration is thus non
vanishing:

ǎ = ∇ǔǔ = gi j
∂i lnB(∂ j +b j∂t) . (3.6)

As already mentioned, the motion is inertial if and only if B is constant. It will be enough for our
purposes to consider the case B = 1, and all subsequent formulas will assume this choice. We will
furthermore introduce a frame

ě0 = ∂t , ěα = E i
α (bi∂t +∂i) , E i

α Eβ

i = δ
β

α (3.7)

adapted to the geodesics at hand and its dual coframe (orthonormal as in Eq. (2.1))

ê0 = dt−b, êα = Eα
idxi, Eα

iE
β

iδαβ = ai j. (3.8)

This will be referred to as the Papapetrou–Randers frame.
The constant-norm Killing vector field ǔ = ě0 = ∂t (with û =−ê0 =−dt +b) defines a geodesic

congruence (the orbits of all observers at rest in the Papapetrou–Randers frame). As was shown in
Sec. 2.3, the latter has zero shear and expansion, but non-trivial vorticity (see Eqs. (2.7), (2.8)):

ω =
1
2

db ⇒ ω0i = 0, ωi j =
1
2

(∂ib j−∂ jbi) . (3.9)

The physical effect of vorticity is seen in the obstruction to the parallel transport of the spatial
frame ěα along the congruence:

∇ě0 ěα = ω
PR
αβ

δ
βγ ěγ ⇔ ∇∂t ∂i = ωi ja jk (∂k +bk∂t) (3.10)

(ωi j given in (3.9) are the spacetime components of the vorticity, while ωPR
αβ

= E i
α E j

β
ωi j are its

components in the Papapetrou–Randers frame). Embarked gyroscopes undergo a rotation.

7
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Papapetrou–Randers metrics do not exhibit ergoregions since8 g00 = −1. However, regions
where hyperbolicity is broken (i.e. where constant-t surfaces become timelike) are not excluded.
This happens whenever there exist regions where bib jai j > 1. Indeed, in these regions, the spatial
metric ai j− bib j possesses a negative eigenvalue, and constant-t surfaces are no longer spacelike.
Therefore the extension of the physical domain accessible to the inertial observers moving along
ǔ = ∂t is limited to spacelike disks in which bib jai j < 1 holds. We will come back to this important
issue in Secs. 3.3 and 5.2.

Before moving to the next topic, we would like to make a last remark. Following Eqs. (2.25),
the shearless and expansionless geodesic congruence under consideration could describe the fluid
lines of a dissipationless stationary, conformal fluid, under the assumption that energy (and pres-
sure) be conserved and constant all over space. As we will see in Sec. 5, this is exactly the dynamics
that emerges through holography.

3.2 Zermelo frame

Trading the data (ai j,bi) for (hi j,W i) defined as

hi j = ai j−bib j
γ2 , hikhk j = δ i

j, (3.11)

W i =−γ2bi, Wi = hi jW j =− bi
γ2 , (3.12)

the Papapetrou–Randers metric (3.1) can be recast in the following form

ds2 = γ
2 [−dt2 +hi j

(
dxi−W idt

)(
dx j−W jdt

)]
. (3.13)

The latter is called Zermelo metric because it first appeared in the framework of the Zermelo
problem [24], yet another member of the relationship network mentioned above9.

The Zermelo form of the metric suggests the following orthonormal coframe and its dual
frame:

ẑ0 = γdt , ẑα = Lα
i(dxi−W idt), L i

α Lβ

i = δ α

β
, (3.14)

ž0 = 1
γ

(
∂t +W i∂i

)
, žα = L i

α ∂i, Lα
iL

β

jδαβ = γ2hi j. (3.15)

We will call the latter the Zermelo frame. Its timelike vector field ž0 defines a congruence of
accelerated lines (∇ž0 ž0 6= 0). Thus, this frame in not inertial. It is instructive to compare the
Papapetrou–Randers frame introduced previously (in (3.7), (3.8)) with the Zermelo frame at hand.
Being both orthonormal, they are related by a local Lorentz transformation, as one sees by com-
bining the above formulas:

ě0 = γ

(
ž0−W β žβ

)
, (3.16)

ěα = Γ
β

α

(
žβ −Wβ ž0 +

γ2−1
γ2

(
WβW γ

W 2 −δ
γ

β

)
žγ

)
, (3.17)

8Ergoregions would require a conformal factor in (3.1) that could vanish and become negative.
9The Zermelo problem is formulated as follows: find the minimal-time navigation road on a geometry d`2 =

hi jdxidx j, in the presence of a moving fluid creating a drift current (wind or tide) W = W i∂i with a ship of fixed pro-
pelling velocity (i.e. fixed with respect to the frame comoving with the fluid or, put differently, of given power). The
answer is reached by searching for null geodesics of (3.13).

8
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where

Γ
β

α = γ2E i
α Lβ

i, W α = 1
γ
Lα

iW
i, Wα = δαβW β , (3.18)

W 2 = W αWα = W iWi = 1− 1
γ2 . (3.19)

The interpretation of these expressions is clear. Each spacetime point is the intersection of two
lines, belonging each to the two congruences under consideration. At this point W α are the spatial
velocity components of the inertial observer in the spatial frame of the accelerated observer and
1/γ2 = 1−W 2 the corresponding Lorentz factor.

It is worth making several further comments. The synchronous hypersurface for the inertial
observer is by definition dual to the time vector. Since dt(∂i) = 0 (equivalent to ẑ0(žα) = 0), this
hypersurface is spanned by {∂i}, and hence is not orthogonal to the inertial congruence (∂t ·∂i = bi).
The orthogonal lines to the Papapetrou–Randers (inertial) observer’s synchronous hypersurface are
nothing but the accelerated congruence tangent to the vector field ž0 (defining the corresponding
Zermelo frame) because ž0 · ∂i = 0, whereas the hyperplanes orthogonal to the the inertial con-
gruence (tangent to ě0 = ∂t) are spanned by {bi∂t + ∂i}. Therefore, since (dt− b)(∂i + bi∂t) = 0
(equivalent to ê0(ěα) = 0), the time τ of Zermelo observers, i.e. the dual of the hypersurface every-
where tangent to the latter hyperplanes, would satisfy dτ = dt−b. Such a time cannot be defined
since db = 2ω 6= 0. Put differently, no hypersurface exists tangent to the hyperplanes spanned by
{bi∂t +∂i} – Fröbenius theorem. This is a well known manifestation of vorticity.

The last statement again distinguishes the Papapetrou–Randers and Zermelo observers, which
are otherwise dual to each other. As for the perception of the rotation, Papapetrou–Randers ob-
servers feel it through embarked gyroscopes (see (3.10)), whereas their inertial motion as witnessed
by Zermelo observers satisfies

∇ž0 ǔ = ω
Z
0αδ

αβ žβ . (3.20)

Here ǔ = ě0 is the velocity of the inertial observers, while ωZ
ab are the vorticity components as

observed in the Zermelo frame: ωZ
αβ

= L i
α L j

β
ωi j and ωZ

0β
= W αωZ

αβ
. Hence, for the accelerated

observers, the inertial ones are subject to a Coriolis force: Zermelo observers are rotating them-
selves. The velocity vector ǔ = ě0 of the inertial observers undergoes a precession around the
worldline of a Zermelo observer tangent to ž0. The latter being accelerated, the variation of ǔ is
actually better captured as a Fermi derivative along ž0:

Dž0 ǔ =
(
ω

Z
0α − žα(γ)

)
δ

αβ žβ +W α žα(γ)ž0 , (3.21)

where žα(γ) = L i
α ∂iγ . The extra terms result from the rotation of the Zermelo frame and contribute

to the observed precession of the velocity vector ǔ.
One can try to tune rotating frames so as to make the perceived angular momentum of a given

congruence disappear, i.e. make its Fermi derivative vanish with respect to the rotating frame. This
leads to the so called zero angular momentum frames (ZAMO [25]). In general, Zermelo frames
are not ZAMO frames for the Papapetrou–Randers congruences, as the Fermi derivative (3.21) is
generically non-zero. It can however be zero under the necessary and sufficient condition

W j
ω ji = γ∂iγ, (3.22)

9
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since this implies that the combination ωZ
0α
− žα(γ) as well as the coefficient of ž0 vanish. Equation

(3.22) carries intrinsic information about the background and can indeed be recast as

Lž0 ê0 = 0. (3.23)

When fulfilled, the Zermelo observers coincide with the locally non-rotating (or ZAMO) frames
[25]. Remarkably, this occurs for a particular case that will be discussed in our subsequent devel-
opments.

3.3 Further properties and analogue gravity interpretation

In the above analysis and particularly in the change of frame from Papapetrou–Randers to Zer-
melo, it has been implicitly assumed that W 2 < 1. The velocity of Papapetrou–Randers observers
with respect to the Zermelo frame is however dictated by the geometry itself since W 2 = bibi, and
nothing a priori guarantees that bibi < 1 everywhere. There are regions in x-space where indeed
bibi > 1 bounded by a hypersurface where bibi = 1. The latter was called velocity-of-light hyper-
surface in [21] since this is the edge where the Papapetrou–Randers observer reaches the speed of
light with respect to the Zermelo frame.

The problem raised here is a manifestation of the global hyperbolicity breakdown. Indeed,
we have seen that in geometries of the Papapetrou–Randers form (3.1), constant-t surfaces are not
everywhere spacelike. The extension of the physical domain accessible to the inertial observers
moving along ǔ = ∂t is limited to spacelike disks in which b2 < 1 holds, bounded by the velocity-
of-light surface, where these observers become luminal.

The breaking of hyperbolicity is usually accompanied with the appearance of closed timelike
curves (CTCs). These are ordinary spacelike circles, lying in constant-t surfaces, which become
timelike when these surfaces cease being spacelike, i.e. when b2 > 1. The CTCs at hand differ in
nature from those due to compact time (as in the SL(2,R) group manifold), and cannot be removed
by unwrapping time. They require an excision procedure for consistently removing, if possible,
the b2 > 1 domain, in order to keep a causally safe spacetime. This is comparable to what happens
in the case of the three-dimensional Bañados–Teitelboim–Zanelli black hole [26] – although in the
latter case the trouble is not due to hyperbolicity issues. We will come back to the CTCs when
studying the anti-de Sitter Taub–NUT geometry.

Although the issue of hyperbolicity is intrinsic to our stationary geometries, moving from the
form (3.1) to the form (3.13) may provide alternative or complementary views. In the Zermelo form
(3.13) the trouble is basically encapsulated in the conformal factor. However, some problems such
as the original Zermelo navigation problem referred to in footnote 9 are sensitive to the general
conformal class10 of (3.13), and the conformal factor γ2 can be dropped or replaced. Doing so
can leave us with a geometry potentially sensible everywhere. This instance appears precisely in
analogue gravity systems.

Metrics of the form (3.13) are in fact known as acoustic or optical (see the original works
[27, 28] or e.g. [11] for an up-to-date review). They are used for describing the propagation of

10In the Zermelo navigation problem we look for null geodesics. In that framework, going to regions where γ2 < 0
means having a drift current faster than what the ship can overcome.
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sound/light disturbances in relativistic or non-relativistic fluids moving with velocity W i in spa-
tial geometry hi j, and subject to appropriate thermodynamic/hydrodynamic assumptions. In this
approach, the full metric (3.13) is an analogue metric and is not the actual metric of physical
spacetime. Under this perspective, peculiarities such as CTCs, potentially present in the analogue
geometry, have no real, physical existence. They are manifestations of other underlying physical
properties such as supersonic/superluminal regimes in the flowing medium.

In order to be concrete, we would like to quote two examples. The first is the original one,
where a fluid is flowing on a geometry d`2 = hi jdxidx j with velocity field W = W i∂i. Assuming
the fluid is non-relativistic, isolated, with mass density ρ and pressure p, in barotropic evolution
(i.e. such that the enthalpy variations satisfy dh = dp/ρ) and with sound velocity cs = 1/

√
∂ρ/∂ p, one

finds that irrotational acoustic perturbations propagate along null geodesics of the metric

ds2 =
ρ

cs

(
−c2

s dt2 +hi j
(
dxi−W idt

)(
dx j−W jdt

))
, (3.24)

and satisfy the corresponding scalar field equation. The metric (3.24) is of the form (3.13). It is
however analogue and not the actual spacetime geometry, which is Galilean. This analogue metric
is called acoustic in the case at hand. Similar results are available for light propagation, leading to
optical geometries (see e.g. [12, 29]).

Similarly we can quote the case of a relativistic conformal fluid, at rest in the Papapetrou–
Randers frame of a Papapetrou–Randers geometry (3.1) – with B = 1. In this case, fluid lines are
tangent to ǔ = ∂t , the kinematics is shearless and expansionless with vorticity (3.9), and thus it is
non-dissipative. It is also geodesic (see (3.6)) and Eqs. (2.25) imply that ε, p and T are constant
everywhere. The propagation of irrotational perturbations in this set up is captured by the following
acoustic metric11:

ds2 =
T D−2
√

D−1

(
−(dt−bidxi)2 +(D−1)ai j(x)dxidx j) , (3.25)

of the Papapetrou–Randers form, which can be recast in the Zermelo form (3.13), following (3.11)
and (3.12).

4. Examples in 2+1 dimensions

Examples of Papapetrou–Randers geometries are numerous, possessing diverse properties re-
garding their isometries, their curvature, the regularity of their Randers–Zermelo transformation,
etc. Their expressions can be simple in Papapetrou–Randers form and complicated in the Zermelo
representation or vice versa. All this depends in particular on the dimension12. We will here focus
on a few three-dimensional examples that turn out to emerge as holographic duals of exact four-
dimensional bulk spacetimes. Although the nature of the boundary three-dimensional spacetime
regarding Einstein’s equations plays little role in holography, some underlying intrinsic properties
appear to be generic for the backgrounds under consideration, and would deserve further inves-
tigation. Furthermore, all examples below are homogeneous spaces13, even though neither was

11This result is easy to establish, following e.g. similar reasoning as in [30].
12See [21] for a detailed account of properties and examples in 3+1 dimensions.
13Following [31, 32], homogeneous three-manifolds include all 9 Bianchi groups plus 3 coset spaces, which are H3,

H2×S1, S2×S1 (Sn and Hn are spheres and hyperbolic spaces respectively).
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homogeneity an a priori criterion, nor did our list provide an exhaustive classification of stationary
backgrounds with a spatially homogeneous timelike Killing vector field.

4.1 Warped three-spheres: Bianchi IX

Warped three-spheres, earlier more appropriately called biaxially squashed three-spheres, are
deformations of the standard homogeneous and isotropic (round) S3. This deformation breaks the
original SU(2)× SU(2) isometry group down to SU(2) or SU(2)×U(1). These spaces can be
endowed with the metric

ds2 =
3

∑
i=1

(
γiσ

i)2
, (4.1)

where γi are constants and σ i are the left-invariant Maurer–Cartan forms of SU(2). In terms of
Euler angles 0≤ θ ≤ π,0≤ φ ≤ 2π,0≤ ψ ≤ 4π , these one-forms read:

σ1 = sinθ sinψ dφ + cosψ dθ

σ2 = sinθ cosψ dφ − sinψ dθ

σ3 = cosθ dφ +dψ.

(4.2)

For reasons that will become clear in the following, we will consider situations where γ1 =
γ2. The spaces obtained in this way are called Berger spheres. They are axisymmetric i.e. have
SU(2)×U(1) isometry group. Since we are interested in spaces with Lorentzian signature, we
must set negative γ2

3 and the metric finally reads:

ds2 = L2
[
(σ1)2 +

(
σ

2)2
]
−4n2 (

σ
3)2

=−4n2 (dψ + cosθdφ)2 +L2 (dθ
2 + sin2

θdφ
2) , (4.3)

where 2L is the radius of the original undeformed S3 and 2nk the deformation parameter (k = 1/L).
The time coordinate in (4.3) is ψ . In the original Euclidean sphere this was an angle, but there

is no reason to keep it compact in the Lorentzian version at hand14. Introducing a non-compact
time t =−2n(ψ +φ), the metric (4.3) assumes the form:

ds2 =−
(
dt +4nsin2 θ/2 dφ

)2
+L2 (dθ

2 + sin2
θdφ

2) . (4.4)

This metric is of Papapetrou–Randers type (3.1). The base dx2 = ai j(x)dxidx j is a two-sphere of
radius L, while b =−4nsin2 θ/2 dφ is a Dirac-monopole-like potential. The latter creates a constant
– in the Papapetrou–Randers orthonormal coframe – vorticity

ω =−nsinθdθ ∧dφ =−nk2 ê1∧ ê2 (4.5)

for the geodesic congruence tangent to ǔ ≡ ě0 = ∂t (up to a delta-function contribution of the
“Misner point” at the southern pole – this name will be justified later).

As already quoted, the space at hand is homogeneous and belongs to the family of spaces
invariant under a four-parameter group of motions [33, 34], here generated by the following Killing

14This point deserves some comments, which we postpone to the discussion on the bulk geometries leading to (4.3)
as boundary.
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vectors: 
ξ1 =−sinφ cotθ ∂φ + cosφ ∂θ −2n sinφ

sinθ
(1− cosθ)∂t

ξ2 = cosφ cotθ ∂φ + sinφ ∂θ +2n cosφ

sinθ
(1− cosθ)∂t

ξ3 = ∂φ −2n∂t

e3 =−2n∂t .

(4.6)

The three former generate the left SU(2), whereas the latter generates an extra R factor (instead of
U(1) since t is non-compact).

The background (4.4) is not globally hyperbolic. Even though it is homogeneous, constant-t
surfaces are not and γ = 1/

√
1−4n2k2 tan2 θ/2 diverges when θ reaches θ∗ = 2arctan L/2n. Hyperbolicity

holds in the disk 0 < θ < θ∗, whereas it breaks down in the complementary disk (θ∗ < θ < π)
centered at the Misner point, where ∂φ becomes timelike. As a consequence, the circles tangent
to ∂φ become CTCs for θ∗ < θ < π . Homogeneity implies furthermore that CTCs are present
everywhere, passing through any arbitrary point of spacetime. In particular, for 0 < θ < θ∗ the
CTCs are sections of cylinders normal to the constant-t surfaces. The time coordinate t evolves
periodically along these elliptically shaped CTCs.

As we will see in the forthcoming sections, the situation described here is quite generic
for three-dimensional homogeneous spacetimes. These include the case of Som–Raychaudhuri
(Bianchi II) and the celebrated Gödel space (Bianchi VIII). They are illustrative examples of how
homogeneity combined with rotation often leads to the breakdown of hyperbolicity and the emer-
gence of CTCs. Gödel space in particular was the first to be recognized as plagued by CTCs. The
CTCs present in these spaces, however, are not geodesics [34, 35, 36]. Their presence is therefore
harmless for classical causality. This is why Gödel-like solutions like the case under consideration
have never been truly discarded, leaving open the possibility of quantum mechanical validity15.

Let us incidentally mention that the above three-dimensional geometry (4.4) – when lifted to
four dimensions by taking the direct product with an extra flat direction – has been shown to satisfy
Einstein’s equations with cosmological constant and energy–momentum tensor produced by some
specific charged fluid [34]. Alternatively, it also satisfies the equations of topologically massive
gravity [42], subject to a Kerr–Schild [46] deformation16

Rµν −
R
2

gµν +Λ
(3)gµν =

1
4nk2Cµν +

k2
(
1+4n2k2

)
4

uµuν , (4.7)

where û =−ê0 =−dt−4nsin2 θ/2dφ , Λ(3) = k2/4 is the cosmological constant for an undeformed
S3 and Cµν are the components of the Cotton–York tensor defined as

Cµν =
εµρσ

√
−g

∇ρ

(
Rν

σ −
1
4

Rδ
ν
σ

)
. (4.8)

For the background (4.4) this tensor is

Cµνdxµdxν = nk4 (1+4n2k2)[2û2 +L2 (dθ
2 + sin2

θdφ
2)] . (4.9)

15Attempts, among others in string theory within holography, were proposed a few years ago (see e.g. [36, 37, 38,
39, 40, 41] and references therein).

16It should be mentioned that the metric (4.4) solves also topological massive gravity equations without Kerr–Schild
deformation [43, 44, 45], provided one tunes appropriately the relationship among L2 and k2. This holds for generic
warped homogeneous spaces like AdS3, studied in Sec. 4.2.
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For later convenience we also quote:

Rµνdxµdxν = 2k4n2û2 +
(
1+2n2k2)(dθ

2 + sin2
θdφ

2) (4.10)

and
R = 2k2 (1+n2k2) . (4.11)

4.2 Warped AdS3: Bianchi VIII

Following the paradigm of squashed three-spheres, studied in Sec. 4.1, we analyze here the
deformations of AdS3. The latter is the (universal covering of the) SL(2,R) group manifold and has
left and right SL(2,R) isometries. Homogeneous deformations can break partially or completely
one SL(2,R) factor.

There are many realizations of the Maurer–Cartan forms of SL(2,R). The one we choose here
is convenient for the specific deformation we will consider in the following:

ρ0 =−dτ + coshσ dφ

ρ1 =−sinτ dσ − sinhσ cosτ dφ

ρ2 = cosτ dσ + sinhσ sinτ dφ ,

(4.12)

where 0 ≤ φ ≤ 2π,0 ≤ σ < +∞, and τ ∈ [0,2π] or better R if we consider the universal covering
of the space. The metrics under consideration are of the form

ds2 =−
(
γ0ρ

0)2
+
(
γ1ρ

1)2
+
(
γ2ρ

2)2
. (4.13)

The γs being constant, this geometry is homogeneous. When ∀i,γi = L, we recover radius-2L AdS3.
We will restrict ourselves here to the elliptically-squashed AdS3, obtained with γ0 = 2p ∈ R

and γ1 = γ2 = L. These geometries have a 4-parameter isometry group SL(2,R)×R. The Abelian
factor is the remaining one-parameter subgroup of the broken isotropy symmetry – U(1) before
taking the universal covering.

Elliptic deformations were studied as such in [47] and the continuous line obtained there coin-
cides – when uplifted to four dimensions – with the family of spacetime-homogeneous Gödel-type
metrics discussed in [34]. After a coordinate transformation trading τ for t = 2p(τ −φ) ∈ R, the
metric (4.13) reads:

ds2 =−
(
dt−4psinh2 σ/2 dφ

)2
+L2 (dσ

2 + sinh2
σ dφ

2) . (4.14)

This is a timelike fibration over a hyperbolic plane H2.
Alternative inequivalent deformations exist in SL(2,R), such as the hyperbolic or the parabolic

ones which lead to spacelike fibrations over AdS2 or plane-wave superpositions with AdS3. They
have been studied extensively in the framework of string theory [38, 39, 40] and more recently
in holography [45]. However, these are not of the Papapetrou–Randers form (3.1), as opposed to
the elliptic deformation for which b = 4psinh2 σ/2 dφ while the base dx2 = ai j(x)dxidx j is radius-L
Lobatchevsky plane. The “non-compact Dirac potential” b creates for the geodesic congruence
tangent to ǔ ≡ ě0 = ∂t a homogeneous vorticity, which – in the Papapetrou–Randers orthonormal
coframe – reads:

ω = psinhσ dσ ∧dφ = pk2 ê1∧ ê2. (4.15)
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In the case at hand, the base is non-compact and the Misner point is rejected to infinity.
The hyperbolicity properties of the background (4.14) are richer than for (4.4). Indeed, for

the space at hand, the Lorentz factor relating Zermelo and Papapetrou–Randers observers is γ =
1/
√

1−4p2k2 tanh2 σ/2. This factor remains finite for finite σ provided p≤ L/2 – the limiting case p = L/2

corresponding to the undeformed AdS3. Under this condition, the space is globally hyperbolic and
constant-t surfaces are spacelike everywhere. When p > L/2 this property breaks down for σ > σ∗=
2arctanh L/2p. Constant-t surfaces are spacelike on a disk only, centered at σ = 0 and bounded by a
velocity-of-light surface located at σ = σ∗. The breakdown of hyperbolicity is accompanied with
the appearance of CTCs, present everywhere as a consequence of homogeneity. This happens in
particular for p = L/

√
2 corresponding to Gödel’s solution.

As mentioned earlier, the absence of hyperbolicity in the backgrounds considered in our gen-
eral framework is closely related to the combination of vorticity and homogeneity. This is even
better illustrated in the AdS3, where the non-compact nature of the base makes it possible to evade
the breakdown, provided the vorticity is small enough with respect to the scale L set by the cur-
vature. The isometry group is in the present case SL(2,R)×R generated by the following Killing
vectors: 

ζ0 = ∂φ −2p∂t

ζ1 =−cosφ cothσ ∂φ − sinφ ∂σ −2p cosφ

sinhσ
(1− coshσ)∂t

ζ2 =−sinφ cothσ ∂φ + cosφ ∂σ −2p sinφ

sinhσ
(1− coshσ)∂t

q0 =−2p∂t .

(4.16)

For completeness we also quote the Levi–Civita curvature properties of the metric (4.14):

Cµν dxµdxν = pk4 (1−4p2k2)[2û2 +L2 (dσ
2 + sinh2

σ dφ
2)] , (4.17)

Rµν dxµdxν = 2k4 p2û2−
(
1−2p2k2)(dσ

2 + sinh2
σ dφ

2) , (4.18)

R = −2k2 (1− p2k2) , (4.19)

where û =−dt +4psinh2 σ/2 dφ .

4.3 Rotating Einstein universes

In the limit n→ 0, the geometry (4.4) becomes a homogeneous metric on R× S2. This is
the Einstein static universe, which is a trivial case of static Papapetrou–Randers geometry. The
isometry group remains unaltered and generated by the Killing vectors (4.6). The metric reads:

ds2 =−dt2 +L2 (dθ
2 + sin2

θ dφ
2) . (4.20)

Trading (θ ,φ) for (θ ′,φ ′) defined as

φ = φ
′+Ω∞t, Dθ ∆θ ′ = Ξ, Ξ = 1−L2

Ω
2
∞, Dθ = 1−L2

Ω
2
∞ sin2

θ , ∆θ ′ = 1−L2
Ω

2
∞ cos2

θ
′,

(4.21)
we obtain

ds2 =−dt2 +
ΞL2

∆2
θ ′

(
dθ
′2 +

∆θ ′

Ξ
sin2

θ
′ [dφ

′+Ω∞dt
]2)

. (4.22)

This is the Einstein universe uniformly rotating at angular velocity Ω∞ in spheroidal coordinates.
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The metric (4.22) is in a Zermelo form (3.13). It can be brought to Papapetrou–Randers form
using the general transformations (3.11) and (3.12):

ds2 =
Ξ

∆θ ′

(
−
[

dt− L2Ω∞

Ξ
sin2

θ
′dφ
′
]2

+
L2dθ ′2

∆θ ′
+

L2∆θ ′

Ξ2 sin2
θ
′dφ
′2

)
. (4.23)

In order to reach a canonical Papapetrou–Randers form (3.1) with B = 1, a conformal transforma-
tion is required with conformal factor Φ = ∆

θ ′/Ξ. The resulting geometry,

ds2 =−
[

dt− L2Ω∞

Ξ
sin2

θ
′dφ
′
]2

+
L2dθ ′2

∆θ ′
+

L2∆θ ′

Ξ2 sin2
θ
′dφ
′2, (4.24)

appears as the boundary of Kerr–AdS four-dimensional bulk geometry [48]. We would like to
stress that although (4.23) is still invariant under SU(2)×R generated by (4.6) (at n = 0), this is
no longer true for (4.24), where the isometry group is reduced to U(1)×R generated by ∂φ and ∂t ,
while ξ1 and ξ2 in (4.6) become conformal Killing vectors.

Let us finally mention that we can in a similar fashion consider the limit p→ 0 in the ellip-
tically deformed AdS3 geometries, given in (4.14). This leads to a Einstein-static-universe-like
geometry of the type R×H2, which can be brought into the form

ds2 =
Z

Θσ ′

(
−
[

dt− L2Ω∞

Z
sinh2

σ
′dφ
′
]2

+
L2dσ ′2

Θσ ′
+

L2Θσ ′

Z2 sinh2
σ
′dφ
′2

)
, (4.25)

after a coordinate transformation (σ ,φ) 7→ (σ ′,φ ′) with

φ = φ
′+Ω∞t, Hσ Θσ ′ = Z, Z = 1+L2

Ω
2
∞, Hσ = 1−L2

Ω
2
∞ sinh2

σ , Θσ ′ = 1+L2
Ω

2
∞ cosh2

σ
′.

(4.26)
One can similarly perform a conformal transformation leading to

ds2 =−
[

dt− L2Ω∞

Z
sinh2

σ
′dφ
′
]2

+
L2dσ ′2

Θσ ′
+

L2Θσ ′

Z2 sinh2
σ
′dφ
′2. (4.27)

The geometry described by (4.27) is globally hyperbolic without any restriction. For the met-
ric (4.24), global hyperbolicity holds under the condition Ω∞ < k. Again this is a bound on the
magnitude of the vorticity

ω =
L2Ω∞ sin2θ ′

2Ξ
dθ
′∧dφ

′ (4.28)

carried by the geodesic congruence ǔ = ě0 = ∂t in this background – and is relaxed for the non-
compact base (squashed H2 in (4.27) versus squashed S2 in (4.24)), where

ω =
L2Ω∞ sinh2σ ′

2Z
dσ
′∧dφ

′. (4.29)

4.4 Zooming at the poles: Bianchi II and VII0

We can further analyze the geometries met so far by zooming around their poles. This exhibits
new backgrounds of Papapetrou–Randers type, interesting for their own right.
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Som–Raychaudhuri and Heisenberg algebra. The geometry around θ ≈ 0 in (4.4) or σ ≈ 0 in
(4.14) is

ds2 ≈−
(
dt−L2

Ω∞χ
2dφ
)2

+L2 (dχ
2 + χ

2dφ
2) (4.30)

with χ = θ or σ , and Ω∞ =−nk2 or pk2. This very same geometry appears also around θ ≈ 0 or
π in (4.24) and around σ ≈ 0 in (4.27) – upon appropriate definitions of χ involving Ξ or Z.

Metric (4.30) is the Som–Raychaudhuri space, found in [49] by solving Einstein equations
with rotating, charged dust with zero Lorentz force. It belongs to the general family of three-
dimensional homogeneous spaces possessing 4 isometries studied in [33, 34], which include the
various metrics that we have discussed so far here. In the case of Som–Raychaudhuri (Eq. (4.30))
the isometries are generated by the following Killing vectors:

Kx = k sinφ

χ
∂φ − k cosφ ∂χ −LΩ∞χ sinφ ∂t

Ky = k cosφ

χ
∂φ + k sinφ ∂χ −LΩ∞χ cosφ ∂t

K0 = 2Ω∞ ∂t

K = ∂φ .

(4.31)

The vectors Kx,Ky and K0 form a Heisenberg algebra, and indeed the Som–Raychaudhuri metric
can be built as the group manifold of the Heisenberg group (Bianchi II) at an extended-symmetry
(isotropy) point with an extra symmetry generator17 ∂φ . Actually, this corresponds to a contraction
of SU(2)×R into a semi-direct product of the Heisenberg group with an extra U(1) generated
by Kx = −kξ1,Ky = kξ2,K0 = k2e3,K = ξ3 − e3 (see (4.6)). It can similarly emerge from the
SL(2,R)×R algebra (4.16).

Similarly to Gödel space, Som–Raychaudhuri space contains non-geodesic closed timelike
curves. These are circles of radius χ larger than 1/Ω∞ [50].

Flat vortex and E(2) geometry. The southern pole of (4.4) is not captured in the above scheme.
Indeed this is a fixed point of the transformation generated by the Killing vector ξ3 +e3 (see (4.6)),
which we referred to as the Misner point. Around this point

ds2 ≈−
(
dt +n

(
4−χ

2)dφ
)2

+L2 (dχ
2 + χ

2dφ
2) , (4.32)

where χ = π−θ . The latter is known as a flat vortex geometry, homogeneous and invariant under
an E(2)×R algebra (E(2) is Bianchi VII0) generated by18

Lx = kξ1 = k sinφ

χ

(
∂φ −4n∂t

)
− k cosφ ∂χ

Ly =−kξ2 = k cosφ

χ

(
∂φ −4n∂t

)
+ k sinφ ∂χ

L0 = ξ3 = ∂φ −2n∂t

L = e3 =−2n∂t .

(4.33)

It also appears as a contraction of the SU(2)×R.

17[Kx,Ky
]
= K0, [Kx,K0] =

[
Ky,K0

]
= 0, [K,Kx] = Ky,

[
K,Ky

]
=−Kx and [K,K0] = 0.

18[Lx,Ly
]
= 0, [L0,Lx] = Ly,

[
L0,Ly

]
=−Lx and everything commutes with L.
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5. Holography in the Fefferman–Graham expansion: from 3+1 to 2+1

In this section we study the properties of holographic fluids, as they arise in the Fefferman–
Graham expansion along the holographic radial coordinate. The set of data reached in this man-
ner contains the boundary frame i.e. the geometrical background hosting the fluid, as well as the
energy–momentum tensor, which describes the fluid dynamics. This general method is applied
to selected four-dimensional solutions of Einstein’s equations, whose boundaries coincide with
Papapetrou–Randers geometries studied in Sec. 4.

5.1 Split formalism and Fefferman–Graham in a nutshell

We find illuminating to discuss holographic fluid dynamics in D = 2 + 1 dimensions starting
from the 3+1-split formalism introduced in [51, 52, 53]. We begin with the Einstein–Hilbert action
in the Palatini first-order formulation

S =− 1
32πGN

∫
εABCD

(
RAB− Λ

6
EA∧EB

)
∧EC ∧ED =

1
16πGN

∫
d4x
√
−g(R−2Λ), (5.1)

where GN is Newton’s constant. We also assume negative cosmological constant expressed as
Λ = −3/L2 = −3k2. We denote the orthonormal coframe EA, A = r,a and use for the bulk metric
the signature +−++. The first direction r is the holographic one and x≡ (t,x1,x2)≡ (t,x).

Bulk solutions are taken in the Fefferman–Graham form

ds2 =
L2

r2 dr2 +
r2

L2 ηabEa(r,x)Eb(r,x) . (5.2)

For torsionless connections there is always a suitable gauge choice such that the metrics (5.2) are
fully determined by two coefficients êa and f̂ a in the expansion of the coframe one-forms Êa(r,x)
along the holographic coordinate r ∈ R+

Êa(r,x) =
[

êa(x)+
L2

r2 F̂a(x)+ · · ·
]
+

L3

r3

[
f̂ a(x)+ · · ·

]
. (5.3)

The asymptotic boundary is at r→ ∞ and it is endowed with the geometry

ds2
bry. = lim

r→∞

ds2

k2r2 . (5.4)

The ellipses in (5.3) denote terms that are multiplied by higher negative powers of r. Their coeffi-
cients are determined by êa and f̂ a, and have specific geometrical interpretations19, though this is
not relevant for our discussion.

The 3 + 1-split formalism makes clear that êa(x) and f̂ a(x), being themselves vector-valued
one-forms in the boundary, are the proper canonical variables playing the role of boundary “coor-
dinate” and “momentum” for the (hyperbolic) Hamiltonian evolution along r. For the stationary
backgrounds under consideration, describing thermally equilibrated non-dissipating boundary fluid
configurations, êa and f̂ a are t-independent.

The boundary “coordinate” is given by the set of one-forms êa. For this coframe we must
determine the “momentum” of the boundary data. For example, when the boundary data carry

19For example, the coefficient F̂a is related to the boundary Schouten tensor.
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zero mass, we expect this to be zero. In this case f̂ a(x) = 0 and the unique exact solution of the
Einstein’s equations is pure AdS4.

More generally, the vector-valued one-form f̂ a satisfies

f̂ a∧ êa = 0 , εabc f̂ a∧ êb∧ êc = 0 , εabcD f̂ b∧ êc = 0 , (5.5)

where the action of the generalized exterior derivative D on a vector-valued one-form V̂ a is defined
as

DV̂ a = dV̂ a + ε
a
bcB̂b∧ êc , (5.6)

and the “magnetic field” B̂a is the Levi–Civita spin connection associated with êa [52]. One can
easily see that conditions (5.5) imply, respectively, symmetry, absence of trace and covariant con-
servation of the tensor T = T a

běa⊗ êb, defined as

f̂ a =
1
κ

T (êa) =
1
κ

T a
bêb , κ =

3
8πGNL

. (5.7)

Hence we can interpret the latter as the covariantly conserved energy–momentum tensor of a con-
formal field theory. Here we are interested in particular stationary bulk solutions for which we
expect the energy–momentum tensor be reduced to the perfect relativistic form, Eqs. (2.19) and
(2.20):

T a
b = (ε + p)uaub + pδ

a
b . (5.8)

Although the two necessary ingredients for the description of a relativistic perfect fluid, namely
the boundary frame and the velocity one-form, are nicely packaged in the leading and subleading
independent boundary data, until now we did not assume any specific relationship between them.
Nevertheless it is clear that such a relationship would be imposed by any exact solution of the
bulk gravitational equations, given the interior boundary conditions. We will soon observe that
the Fefferman–Graham expansion of the exact solutions of Sec. 5.2 yield the same form for the
boundary energy–momentum tensor, namely

f̂ 0 =−2M
3L

ê0 , f̂ α =
M
3L

êα . (5.9)

The boundary frame one-forms êa are themselves, of course, different in the three solutions. Com-
paring (5.7), (5.8) and (5.9), we find

ε = 2p = 2κ
M
3L

, (5.10)

constant as already advertised. The solutions under consideration describe thus the same conformal
fluid in different kinematic states. More importantly, (5.9) fixes the direction of the velocity field
with respect to the boundary frame to be

ǔ = ě0 . (5.11)

As explained in Sec. 3.1, in the Papapetrou–Randers geometry (Eq. (3.1)), this congruence is
tangent to a constant-norm Killing field and has thus zero shear, expansion and acceleration (con-
sistent, according to (2.25), with the constant pressure found in (5.10)). It also shows that the
observer’s frame ěa is comoving. Therefore, in the Fefferman–Graham expansion the kinematic
properties of holographic fluids are determined by the geometric properties of the boundary co-
moving frame.
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5.2 Some exact geometries and their fluid interpretation

We present here three examples of holographic fluids with vorticity that reside at the boundary
of two exact solutions of the bulk vacuum Einstein equations; the Kerr–AdS4, the Taub–NUT–AdS4

and the hyperbolic NUT–AdS4 black hole solutions.
The four-dimensional Kerr solution of Einstein’s equation with Λ =−3k2 reads:

ds2 =
dr2

V (r,θ)
−V (r,θ)

[
dt− a

Ξ
sin2

θ dφ

]2
+

ρ2

∆θ

dθ
2 +

sin2
θ∆θ

ρ2

[
adt− r2 +a2

Ξ
dφ

]2

, (5.12)

where
V (r,θ) =

∆r

ρ2 (5.13)

and {
∆r = (r2 +a2)(1+ k2r2)−2Mr

ρ2 = r2 +a2 cos2 θ

{
∆θ = 1− k2a2 cos2 θ

Ξ = 1− k2a2.
(5.14)

The geometry has inner (r−) and outer (r+) horizons, where ∆r vanishes, as well as an ergosphere
at gtt = 0. The solution at hand describes the field generated by a mass M rotating with an angular
velocity

Ω =
a(1+ k2r2

+)
r2
+ +a2 (5.15)

as measured by a static observer at infinity [54, 55]. Note that asymptotic observer associated with
a natural frame of the coordinate system at hand is not static, but has an angular velocity

Ω∞ = ak2. (5.16)

The boundary metric of Eq. (5.12) is (4.24) (without primes in the angular coordinates).
The Taub–NUT–AdS4 geometry is a foliation over squashed three-spheres solving Einstein’s

equations with negative cosmological constant (the σs are given in (4.2)):

ds2 =
dr2

V (r)
+
(
r2 +n2)((σ1)2 +

(
σ

2)2
)
−4n2V (r)

(
σ

3)2
(5.17)

=
dr2

V (r)
+
(
r2 +n2)(dθ

2 + sin2
θ dφ

2)−V (r)
[

dt +4nsin2 θ

2
dφ

]2

, (5.18)

where
V (r) =

∆r

ρ2 (5.19)

and {
∆r = r2−n2−2Mr + k2

(
r4 +6n2r2−3n4

)
ρ2 = r2 +n2.

(5.20)

Besides the mass M and the cosmological constant Λ = −3k2, this solution depends on an extra
parameter n: the nut charge.

The solution at hand has generically two horizons (V (r±) = 0) and is well-defined outside the
outer horizon r+, where V (r) > 0. The nut is the endpoint of a Misner string [56], departing from
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r = r+, all the way to r→∞, on the southern pole at θ = π . The geometry is nowhere singular along
the Misner string, which appears as a coordinate artifact much like the Dirac string of a magnetic
monopole is a gauge artifact. In order for this string to be invisible, coordinate transformations
displacing the string must be univalued everywhere, which is achieved by requiring the periodicity
condition t ≡ t−8πn.

One can avoid periodic time and keep the Misner string as part of the geometry. This semi-
infinite spike appears then as a source of angular momentum, integrating to zero [57, 58], and
movable at wish using the transformations generated by the above vectors. This will be our view-
point throughout this work. However, despite the non-compact time, the Taub–NUT–AdS geometry
is plagued with closed timelike curves, which disappear only in the vacuum limit k→ 0 [59]. Even
though this is usually an unwanted situation, it is not sufficient for rejecting the geometry, which
from the holographic perspective has many interesting and novel features. The boundary geometry
of (5.18), reached by following (5.4), is (4.4) and this is the background where the fluid is evolving.
What we called Misner point for the latter in Sec. 4.1 is the endpoint of the bulk Misner string.

On a non-compact horizon, the nut charge can be pushed to infinity. This happens in hyperbolic
NUT black holes, obtained as foliations over three-dimensional anti-de Sitter spaces20. Using the
SL(2,R) Maurer–Cartan forms (4.12), we obtain the following solution of Einstein’s equations with
cosmological constant Λ =−3k2:

ds2 =
dr2

V (r)
+
(
r2 + p2)((ρ1)2 +

(
ρ

2)2
)
−4p2V (r)

(
ρ

0)2
(5.21)

=
dr2

V (r)
+
(
r2 + p2)(dσ

2 + sinh2
σ dφ

2)−V (r)
[
dt−4psinh2 σ

2
dφ

]2
(5.22)

with V (r) given in (5.19) and{
∆r =−r2 + p2−2M̂r + k2

(
r4 +6p2r2−3p4

)
ρ2 = r2 + p2.

(5.23)

Here M̂ is the mass parameter and p characterizes the non-trivial S1 fibration over the H2 base.
In this case no Misner string is however present, and the space is globally hyperbolic provided
p ≤ L/2. The boundary metric of (5.22) is (4.14), which plays the role of host for the holographic
fluid. Interestingly, this family of solutions is connected to the Kerr–AdS4 black hole, as we will
now show.

The Kerr–AdS4 black hole (5.12) has a rotation parameter a restricted to a2 < L2, and is
singular for a2 = L2. It has however a finite, maximally spinning limit if the a→ L limit is taken
keeping the horizon size finite and simultaneously zooming into the pole [61]. More explicitly, we
trade the angle θ in (5.12) for a new coordinate σ according to

sinθ =
√

Ξ sinh2 σ/2. (5.24)

20In their Euclidean section these geometries have no nut, but only a bolt [60]. We shall nevertheless conform to
standard use and call them – with a slight abuse of language – hyperbolic NUT black holes, to stress the presence of a
non-trivial S1 fibration over H2. Physically, they represent rotating black hyperboloid membranes [61].
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Then, the resulting metric has a regular a→ L limit,

ds2 =
dr2

V (r)
+

1+ k2r2

4k2

(
dσ

2 + sinh2
σdφ

2)−V (r)
[

dt− 1
k

sinh2 σ

2
dφ

]2

, (5.25)

with

V (r) = 1+ k2r2− 2k2Mr
1+ k2r2 . (5.26)

This is again a rotating black hyperboloid membrane. Indeed, performing the rescaling r 7→ 2r,
t 7→ t/2, this metric is cast in the form (5.22)–(5.23) with parameters M̂ = M/8 and p = L/2, and
the boundary of (5.25) takes the form (4.14) with this value of p. The boundary is therefore the
undeformed AdS3 spacetime that can equivalently be recovered by performing the coordinate trans-
formation (5.24) directly on the Kerr–AdS boundary metric (4.24), followed by the a→ L limit.
As we saw, this special value corresponds to the limiting case that enjoys global hyperbolicity.
Accordingly, from the Kerr–AdS point of view, it is obtained as the ultraspinning limit for which
the boundary Einstein static universe rotates effectively at the speed of light [48]. In this way, we
nicely connected fluids on warped AdS3 backgrounds to fluids living on a rotating Einstein static
universe into a single, continuous family.

There are many other exact bulk four-dimensional geometries that one could study under
the perspective of describing boundary fluids with vorticity. One can for instance consider the
case of flat horizon reached when the trigonometric sinus in (5.18) (or the hyperbolic sinus in
(5.22)) is traded for a linear function and the potential adapted by dropping the first two terms (see
e.g. [59, 60]). This bulk solution, also plagued by the global hyperbolicity problem, gives rise to a
boundary fluid moving on the Som–Raychaudhuri geometry (4.30). Alternatively, the flat-horizon
bulk solution can be obtained as an appropriate pole-zooming of the four-dimensional Kerr–AdS,
consistent with the observed relationships among the boundary geometries. Limits at n, p→ 0 lead
to the so-called topological black holes [62, 63, 64]. These are interesting in their own right [65]
even though the holographic fluid dynamics has no intrinsic vorticity – their boundaries are Einstein
static universes R×S2 given in (4.20) or R×H2, where no fiber appears that would create vorticity.
Hyperbolic Kerr–AdS or other exact bulk metrics can be found to reproduce on the boundary (4.27)
or (4.32) [66]. One can also find solutions that combine nut charge and ordinary rotation [67] such
as Kerr–Taub–NUT–AdS. We will neither pursue any longer the general analysis of this rich web
of backgrounds exhibiting many interrelations, nor delve into a quantitative presentation, but move
instead into another interesting approach to holographic fluids, which can be easily exemplified
with the backgrounds at hand.

The above bulk geometries describe holographically a conformal fluid at rest without shear
and expansion in the Papapetrou–Randers frame of a Papapetrou–Randers geometry (3.1). These
fluids have a non-trivial kinematics, though, because of the vorticity of the geodesic congruence
they fill. The vorticity is different in the various cases: it is given in Eqs. (4.28), (4.5) and (4.15),
for Kerr–AdS, Taub–NUT–AdS and hyperbolic NUT–AdS. In the first case, the fluid undergoes a
cyclonic motion with maximal vorticity at the poles and vanishing at the equator. In the other two
backgrounds, the vorticity is constant as a consequence of the homogeneity. The velocity fields are
not homogeneous, though, and behave differently in Taub–NUT–AdS and hyperbolic NUT–AdS.

Even though the boundary spacetime of Taub–NUT–AdS is homogeneous, the constant-t sur-
faces are not. Inertial observers, comoving with the fluid have therefore a different perception
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depending on whether they are at 0 < θ < θ∗ or in the disk θ∗ < θ < π , surrounding the Misner
string. This gives a physical existence to the b2 = 1 edge, the meaning of which is better ex-
pressed in the Zermelo frame. In the latter, the fluid becomes superluminal and the Misner string
is interpreted as the core of the vortex with homogeneous vorticity.

The various troublesome features which appear in Gödel-like spaces as the ones at hand are
intimately related with the non-trivial rotational properties combined with the homogeneous char-
acter of these manifolds. In other words, for the Taub–NUT–AdS boundary, they are due to the
existence of a monopole-like Misner vortex21. Although no satisfactory physical meaning has ever
been given to Gödel-like spaces, the causal consistency of the latter being still questionable, they
seem from our holographic perspective to admit a sensible interpretation in terms of conformal
fluids evolving in homogeneous vortices (4.5)22 or (4.15).

The case of hyperbolic NUT–AdS, Eq. (5.22), is yet of a different nature. This bulk geom-
etry leads again to homogeneous boundary (4.14). Hence, the fluid has constant vorticity (4.15).
However, in the case at hand, the spatial sections dx2 = ai jdxidx j are non-compact and negatively
curved as opposed to the boundary of Taub–NUT–AdS. As a consequence, the combination of
vorticity and homogeneity does not break global hyperbolicity, as long as p ≤ L/2. In this regime,
the velocity of the fluid is well-defined everywhere, and its Lorentz factor with respect to Zermelo
observer is increasing with σ and bounded as γ ≤ 1/

√
1−4p2k2. For this observer, the fluid is at rest

in the center (i.e. at the north pole) and fast rotating at infinity. When p = L/2, it reaches the speed
of light when σ → ∞, whereas for p > L/2 this happens at finite σ = σ∗, along the surface-of-light
edge. The latter situation is similar to what happens in the Taub–NUT–AdS irrespectively of the
value of the nut charge n. In the hyperbolic case, the major differerence is however that the vortex,
together with the Misner point are sent to spatial infinity (σ → ∞).

The above discussion holds in the perspective of interpreting the holographic data as a genuine
stationary fluid. There is however an alternative viewpoint already advertised, consisting in the ana-
logue gravity interpretation of the boundary gravitational background. From the latter, the physical
data are still (hi j,W i) i.e. a two-dimensional geometry and a velocity field. However, their combi-
nation into (3.13) is not a physical spacetime. The would be light cone, in particular, is narrowed
down to the sound or light velocities in the medium under consideration – necessarily smaller than
the velocity of light in vacuum. Consequently, the breaking of hyperbolicity or the appearance of
CTCs are not issues of concern, and the regions where γ becomes imaginary keep having a satis-
factory physical interpretation as portions of space, where the medium is supersonic/superluminal
with respect to the sound/light velocity in the medium and not in the vacuum. Finally, the virtual
spacetime (3.13) governs the mode propagation through the fluid. This way of thinking opens
up a new chapter that requires adjusting suitably the standard holographic dictionary. The latter
provides indirect information on the physical system that must be retrieved.

21Since the bulk theory is such that the boundary does not have access to a charge current, the Misner vortex cannot
be associated with a vortex in an ordinary superfluid, but is related to the spinning string of [68], the metric of which,
Eq. (4.32), indeed appears when zooming in on the southern pole.

22As already stressed, one should add a δ -function contribution to the Taub–NUT–AdS vorticity (4.5) because we
keep the Misner string physical with non-compact time [22, 23].
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6. Alternative expansion: from 2+1 to 3+1

The holographic fluids we have described so far emerge from exact bulk four-dimensional so-
lutions of vacuum Einstein’s equations with negative cosmological constant. They appear as a set
of two pieces of boundary data – the coframe and the energy–momentum current – following the
Fefferman–Graham expansion at large (appropriately chosen) radial coordinate. This is a top-down
approach as opposed to the alternative bottom-up method initiated in [2]. The latter aims at recon-
structing perturbatively a bulk solution starting from boundary data. The perturbative expansion of
the bulk geometry obtained in this way is, however, orthogonal in spirit to that of the Fefferman–
Graham series, since it is a derivative (of the velocity field) rather than a large-radius expansion.
It captures therefore from the very first order the presence of a regular horizon of the black object
that generates the dynamics of the boundary fluid.

As a matter of principle, one could generally follow the above procedure and perturbatively re-
construct the bulk solution corresponding to any boundary background of the Papapetrou–Randers
type in terms of the data (bi,ai j) containing the full dynamics of the fluid. Our viewpoint is different
though, and we are here interested in modestly discussing the interplay between the perturbative
expansion developed in [2, 16, 69] and the exact solutions we have analyzed in Sec. 5. This is
motivated by the observation made in [16, 69], according to which the proposed bulk perturbative
reconstruction of the Kerr–AdS boundary fluid (in several dimensions) does coincide exactly with
the original bulk geometry at second order – modulo a specific resummation, indicative of the gen-
uinely all-order nature of the solution. This is remarkable and leads to the deeper question: why
and under which conditions does this occur?

The question raised here is twofold. Given an exact bulk solution, what can make it be ex-
pressed in the form of a limited expansion in terms of its boundary data obtained via the Fefferman–
Graham procedure? Given a set of arbitrary boundary data, what could ensure the corresponding
bulk series be exact at finite order?

Making progress in this direction would require delving into the physics of dissipative phe-
nomena and their holographic expressions. This analysis stands beyond our present scope. We
can nevertheless make an observation that might ultimately be relevant. In all backgrounds un-
der consideration, the bulk can be expressed exactly as a limited derivative expansion provided
an extra term (with respect to the expansion proposed in [16, 69]) involving the Cotton tensor of
the boundary geometry is appropriately added, and after performing a resummation similar to that
of Kerr–AdS. This holds for all Papapetrou–Randers backgrounds presented in Sec. 4. To keep
our presentation compact, we will only consider those for which we studied the bulk realisation in
Sec. 5, namely Kerr–AdS, Taub–NUT–AdS and hyperbolic NUT–AdS.

The starting point for this analysis is the expression in Eddington–Finkelstein coordinates of
the bulk metrics. For Kerr–AdS, Eq. (5.12) this is achieved by performing the following coordinate
change: {

dt 7→ dt− r2+a2

∆r
dr

dφ 7→ dφ − aΞ

∆r
dr

(6.1)

with all quantities defined in (5.20). Similarly for Taub–NUT–AdS, Eqs. (5.18) and (5.20), one
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performs

dt 7→ dt− r2 +n2

∆r
dr, (6.2)

while the same holds with n 7→ p for the hyperbolic NUT–AdS given in (5.22) and (5.23). All three
bulk metrics assume then the following generic form:

ds2 =−2ûdr + r2k2ds2
bry. +

1
k2 Σµνdxµdxν +

û2

ρ2

(
2Mr +

uλCλ µεµνσ ωνσ

2k6√−gbry.

)
, (6.3)

where all the quantities refer to the boundary metric ds2
bry.. The latter being of the Papapetrou–

Randers form (3.1), û =−dt +b and ω = 1
2 db. Furthermore Cλ µ are the components of the Cotton

tensor (zero for Kerr–AdS, and displayed in Eqs. (4.9) and (4.17) for the other cases). Finally

Σµνdxµdxν = −2û∇νω
ν

µdxµ −ω
λ

µ ω
λν

dxµdxν − û2 R
2
, (6.4)

ρ
2 = r2 +

1
2k4 ωµνω

µν , (6.5)

and ρ2, as computed in (6.5), coincides with the quantities defined in Eqs. (5.14), (5.20) and (5.23).
The above result (6.3) deserves a discussion. It appears as a limited derivative expansion on

the velocity field of the boundary geodesic congruence ǔ = ∂t . The latter carries neither expansion,
nor shear (see Secs. 2.1 and 3.1) but only vorticity given in Eqs. (4.28), (4.5) and (4.15) for the
three backgrounds under investigation Kerr–AdS (5.12), Taub–NUT–AdS (5.18) and the hyperbolic
NUT–AdS (5.22). It seems that at most two derivatives of the velocity field are involved, but this
counting is naive. Indeed, the vorticity being ultimately an intrinsic property of the geometry23, R∼
ω2, while Cω ∼ ω4. Furthermore, 1/ρ2 is a resummed power series in even powers of the vorticity.
As already advertised, this resummation betrays the infinite perturbative expansion underlying the
method, that would otherwise appear as limited to the fourth order.

The metric (6.3) yields an exact solution of AdS4 gravity for a large class of boundary Randers
data (bi,ai j). In addition to the cases described above, one can rewrite in this form the full Kerr–
Taub–NUT–AdS4 family of metrics, as well as all rotating topological black holes found in [66]:
the rotating black cylinder and the rotating hyperbolic black membrane. All these metrics belong
to the Plebański–Demiański type-D class of solutions [70]. It is an interesting problem to find to
see if it is possible to extend this collection and find the most general set of Randers data (bi,ai j)
generating an exact solution through (6.3).

It is remarkable that all known exact AdS4 black hole solutions can be set in the above form
(6.3), much like Kerr–AdS, provided an extra term (one should say an extra resummed series)
based on the Cotton tensor is added. This term, of fourth order in the derivatives of the velocity
field24, was absent in the original expressions of [16, 69], only valid up to second order. In five
or higher bulk dimensions, terms involving the Weyl tensor appear at the second order [16, 69],
but obviously do not contribute in the four-dimensional case under consideration. Our expression

23Vorticity components are directly related to the connection coefficients, as e.g. Γi
t j =−ω i

j.
24The Cotton tensor itself is third order in the derivatives of the velocity field, but it cannot appear at this order in

the fluid/gravity metric because it has the wrong parity. The fourth order is indeed the smallest order for which it can
appear.
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(6.3) shows that in four dimensions analogous terms, involving the Cotton tensor, appear in the
derivative expansion starting from the fourth order.

7. Conclusions

In this review we presented an extensive discussion of the holographic description of vorticity.
This is the first step in efforts to extend AdS/CMT to systems such a rotating atomic gases of
analogue gravity systems. The upshot is that even the simplest setup, namely non-dissipating
fluids in local equilibrium with non-zero vorticity, has an extremely rich geometric structure whose
detailed analysis should lead to new and interesting physical results. One such result, presented
in [23] was the calculation of the classical rotational Hall viscosity coefficient of neutral 2 + 1
dimensional fluids having uniform vorticity Ω

ζH =
ε + p

Ω
, (7.1)

which we were not able to find in recent works on parity broken hydrodynamics in 2 + 1 dimen-
sions.

The next steps in our program will certainly reveal interesting physical consequences. For ex-
ample, the study of scalar, vector and ultimately graviton fluctuations around the above geometries
should lead to the determination of various transport coefficients for rotating neutral fluids. These
developments might also shed light on the thermalization processes that are expected near analogue
horizons. Furthermore, we believe that our approach offers a well-defined path to study the issue
of time-dependence in conjunction with irreversible, non-equilibrium dynamics as it can appear in
dissipative fluid configurations or in the vicinity of analogue horizons.

In the present work we have emphasized the importance of the nut charge in the holographic
description of vorticity. In superfluids this is a quantized quantity, hence one might wonder whether
and how nut-charge quantization could emerge in their holographic description. The latter is in
fact incomplete and the formation of vortices in rotating condensates calls for a more complete
understanding, which justifies our efforts.

An issue worth mentioning is the relationship of our work with alternative approaches of
fluid/gravity correspondence. We have presented some preliminary results in Sec. 6 and we plan
to elaborate on that subject in a forthcoming work. Many other roads seem open for further in-
vestigation, which we have not discussed. One could for example try to describe fluids in more
complicated kinematic states, with multipolar vorticity – as a generalization of the monopole-like
configurations created by nut charges, or the dipoles corresponding to Kerr cyclonic motions. This
would require the generalization of the Weyl multipole solutions to asymptotically AdS spaces.
The magnetic paradigm of the geodesic motion in Papapetrou–Randers geometries (see e.g. [21])
might turn in a powerful tool for that task. Let us finally mention that analogue-gravity applications
are very rich and diverse. Setting the bridge with holographic techniques would however require a
more systematic study.
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