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(probe) limit, I show that the energy gap diverges as a (negative) power of the temperature for

scaling dimensions below the Breitenlohner-Freedman (BF)bound (∆ < d/2). At the BF bound
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1. Introduction

The extension of the AdS/CFT correspondence [1] to an abelian gauge group has been studied
extensively in recent years. Once it the abelian symmetry is broken outsideof a black hole in AdS
space, scalar hair can form whose dual is a (holographic) superconductor on the boundary of AdS
space [2, 3, 4, 5]. These systems exhibit several characteristics seen in the real world, thus offering
a new theoretical tool in the exploration of strongly coupled superconductors.

The study of holographic superconductors involves the solution of non-linear field equations.
These are very hard to solve in general and numerical methods often fail,especially as one ap-
proaches zero temperature. The latter is important to be able to probe in order to understand the
ground state of these systems. It is important to develop analytic tools that tackle the solutions
of the field equations and this is what I discuss here. I am especially interested in understanding
the low temperature regime in two different limits: small chemical potential (probe limit,whose
dual is a Schwarzschild black hole) [6, 7], and large chemical potential (dual to near-extremal
Reissner-Nordström black holes) [8].

In the probe limit, I solve the field equations analytically at low temperatures for different
values of the scaling dimension∆. For ∆ < d

2 (below the scaling dimension of the Breitenlohner-
Freedman (BF) bound), the energy gap diverges as a (negative) power of the temperature, signaling
the breakdown of the probe approximation in the zero temperature limit. I discuss how this is
corrected by including next-to-leading order terms. At the BF bound (∆ = d

2 , the energy gap
diverges as| lnT|δ , whereδ is a constant that I compute and depends on the dimension of spacetime
[7]. This is a very mild divergence which explains why it was not detected inearlier numerical
studies [4].

When back reaction to the metric is included, the effective potential associated with the elec-
tromagnetic perturbation that determines the conductivity has a finite height. This results in a finite
number of quasinormal modes [4, 9]. As one approaches the probe limit, theheight of the potential
increases with an attendant increase in the number of modes. I show that thelatter approach the
real axis as the temperature is lowered at frequencies that I compute analytically. In 2+1 (3+1)
dimensions they are given in terms of the zeroes of the Airy (digamma) function[7].

It should be pointed out that, even though I probe the low temperature regime, I do not have
access to the zero temperature state in the probe limit (for scaling dimensions∆ ≤ d

2). This is
because for a given charge of the scalar field, there is a lower bound on the temperature below
which the probe approximation breaks down. Thus, even though it is oftenpossible to take a “zero
temperature” limit of analytic expressions, the limit itself isunphysical. It is, however, useful for
computational purposes, asphysicallow-temperature systems (obtained when backreaction to the
bulk metric is taken into account) are close to it.

In the case of large chemical potential (near-extremal limit of the dual blackhole), I show
analytically that there is a quantum critical point at which the critical temperature vanishes. As one
approaches this critical point, the energy gap diverges [8].

The discussion is organized as follows. In section 2, I review the field equations and calculate
the critical temperature in the probe limit. In section 3, I discuss the low temperature regime in the
probe limit. In section 4, I calculate the conductivity analytically at low temperatures in the probe
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limit. In section 5, I discuss the analytic solution of the field equations near extremality. Finally,
section 6 contains my concluding remarks.

2. Hairy black holes

I am interested in the dynamics of a scalar field of massm and electric chargeq coupled to a
U(1) vector potential in the backgound of ad+1− dimensional AdS black hole. The action is

S=
∫

dd+1√−g

[

R−2Λ
16πG

− 1
4

FµνFµν −|(∂µ − iqAµ)Ψ|2−m2|Ψ|2
]

(2.1)

whereF = dA. I shall adopt units in whichΛ = −d(d−1)
2 , 16πG = 1.

To find a solution of the field equations, consider the metricansatz

ds2 =
1
z2

[

− f (z)e−χ(z)dt2 +d~x2 +
dz2

f (z)

]

(2.2)

where~x∈ R
d−1, representing an AdS black hole of planar horizon. The AdS boundaryis atz= 0.

I shall choose units so that the horizon is atz= 1, and therefore requiref (1) = 0. This is possible
because of the scaling symmetries of the system and can be done without lossof generality as long
as one is careful to only consider physical quantities which are scale invariant.

The Hawking temperature is

T = − f ′(1)

4π
e−χ(1)/2 (2.3)

Also assume that the scalar field is areal function Ψ(z), and the electromagnetic potential is the
electrostatic potential,A = Φ(z)dt. The resulting field equations are [3]

Ψ′′ +

[

f ′

f
− χ ′

2
− d−1

z

]

Ψ′ +

[

q2Φ2eχ

f 2 − m2

z2 f

]

Ψ = 0

Φ′′ +

[

χ ′

2
− d−3

z

]

Φ′− 2q2Ψ2

z2 f
Φ = 0

−d−1
2

χ ′ +zΨ′2 +
zq2Φ2Ψ2

f 2 eχ = 0

f
2

Ψ′2 +
z2

4
Φ′2eχ − d−1

2
f ′

z
+

d(d−1)

2
f −1
z2 +

m2Ψ2

2z2 +
q2Ψ2Φ2eχ

2 f
= 0 (2.4)

wherez∈ [0,1] (z= 1 is the horizon, whereasz= 0 is the boundary).

I start by discussing the solution of this system of non-linear equations in the limitof largeq
(probe limit). The other interesting limit (smallq, corresponding to large chemical potential) will
be discussed later.
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To find the solution for largeq, expand the fields as series in 1/q,

Ψ =
1
q

[

Ψ0 +Ψ1
1
q2 + . . .

]

Φ =
1
q

[

Φ0 +Φ1
1
q2 + . . .

]

f = f0 + f1
1
q2 + . . .

χ = χ0 + χ1
1
q2 + . . . . (2.5)

First, consider the zeroth order system (q→ ∞), and then add first-order (O(1/q2)) corrections in
order to obtain a physically sensible system.

Near the boundary (z→ 0), we havef → 1, χ → 0 and so

Ψ ≈ Ψ(±)z∆± , Φ ≈ µ −ρzd−2 , ∆± =
d
2
±
√

d2

4
+m2 (2.6)

While a linear combination of asymptotics is allowed by the field equations, it turns out that any
such combination is unstable [10]. However, if the horizon has negative curvature, such linear
combinations lead to stable configurations in certain cases [11].

Thus, the system is labeled uniquely by the dimension∆ = ∆±. The mass of the scalar field is
bounded from below by the BF bound,

m2 ≥−d2

4
(2.7)

There appears to be a quantum phase transition atm2 = 0. There is also a unitarity bound that re-
quires∆ > d−2

2 . µ (ρ) is the chemical potential (charge density) of the dual theory on the boundary.
The leading coefficient in the expansion of the scalar yields vacuum expectation values of operators
of dimension∆±,

〈O∆±〉 =
√

2Ψ(±) (2.8)

The field equations admit non-vanishing solutions for the scalar below a critical temperatureTc

where these operators condense.
Define for convenience

Ψ(z) =
1√
2q

b∆z∆F(z) , b = 〈qO∆〉1/∆ (2.9)

with F(0) = 1.
Above the critical temperature (T ≥ Tc), we haveΨ = 0, therefore the field equations are

solved by the AdS Reissner-Nordström (RN) black hole with flat horizon,

f (z) = 1−
(

1+
(d−2)ρ2

4

)

zd +
(d−2)ρ2

4
z2(d−1) , χ(z) = 0 , Φ(z) = ρ

(

1−zd−2
)

, (2.10)

and Hawking temperature (divided by an appropriate factor for a scale-invariant quantity)

T

(qρ)1/(d−1)
=

d

4π(qρ)1/(d−1)

[

1− (d−2)2ρ2

4d

]

. (2.11)
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At the critical temperature, the scalar field equation is in the RN background with ρ = ρc

F ′′ +

[

f ′

f
+

2∆+1−d
z

]

F ′ +

[

∆
(d−∆)(1− f )+z f′

z2 f
+q2ρ2

c
(1−zd−2)2

f 2

]

F = 0 (2.12)

For a givenq, ρc is an eigenvalue.
To solve for largeq (probe limit), expand

F = F0 +F1
1
q2 + . . . , ρ =

1
q

[

ρ0 +ρ1
1
q2 + . . .

]

(2.13)

At zeroth order (q→ ∞ limit), the RN background turns into an AdS Schwarzschild black hole of
flat horizon, so

f0(z) = 1−zd , χ0 = 0 . (2.14)

Therefore, the scalar field equation at the critical temperature in the probelimit reads

−F ′′
0 +

1
z

[

d
1−zd −2∆−1

]

F ′
0 +∆2 zd−2

1−zd F0 = ρ2
0c

(1−zd−2)2

(1−zd)2 F0 . (2.15)

The eigenvalueρ2
0c minimizes the expression

ρ2
0c =

∫ 1
0 dzz2∆−d+1{(1−zd)[F ′

0(z)]
2 +∆2zd−2[F0(z)]2}

∫ 1
0 dzz2∆−d+1 (1−zd−2)2

1−zd [F0(z)]2
. (2.16)

It can be estimated by substituting the trial function

F0 = Fα(z) ≡ 1−αzd−1 . (2.17)

which obeys the boundary conditionsFα(0) = 1, F ′
α(0) = 0 andFα(1) is finite.

Ford = 3 and∆ = 1,2, one obtains, respectively,

ρ2
0c ≈ 1.27, 17.3 , Tc ≈ 0.225

√
qρ, 0.117

√
qρ

in very good agreement with the exactTc = 0.226
√

qρ, 0.118
√

qρ.
For ∆ = d

2 (BF bound) andd = 3,4, one obtains, respectively,

ρ2
0c ≈ 6.3, 4.2 , Tc ≈ 0.15

√
qρ, 0.2(qρ)1/3 (2.18)

in very good agreement with the exactTc = 0.15
√

qρ, 0.25(qρ)1/3. In fig. 1, I extend the compar-
ison to a range of the scaling dimension∆ for d = 3,4 demonstrating the accuracy of the estimate
(2.16) with the trial function (2.17) for the critical temperature.

Right below the critical temperature, a condensate forms. For an explicit analytic calculation,
I shall concentrate ond = 3, as the other cases are similar.

The Maxwell equation (Gauss’s Law) in the probe limit reads

Φ′′
0 =

〈O∆〉2

2
z2(∆−1)F2

0 (z)
1−z3 Φ0 (2.19)
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Figure 1: The critical temperatureTc vs the scaling dimension∆ for d = 3 (left panel) andd = 4 (right
panel). Data points represent exact values; solid line is obtained with trial function [6].

Right belowTc, the condensate〈O∆〉 is small. If we write

Φ0 = ρ0c(1−z)+
〈O∆〉2

2
δΦ0 + . . . (2.20)

we have

δΦ′′
0 ≈ ρ0c

z2(∆−1)F2
0 (z)

1+z+z2 . (2.21)

Integrating, we obtain

ρ = −Φ′
0(0) ≈ ρ0c

[

1+
〈O∆〉2

2
C

]

, C =
∫ 1

0
dz

z2(∆−1)F2
0 (z)

1+z+z2 , (2.22)

therefore the condensate is

〈O∆〉 ≈ γT∆
c

√

1− T
Tc

, γ =
2√
C

(

4π
3

)∆
. (2.23)

Using trial functions, we obtain for∆ = 1(2), γ ≈ 11.4(133) to be compared with the exactγ =

9.3(144).
Also notice from fig. 2 thatγ → ∞ as∆ → 3, indicating thatm2 = 0 is a quantum critical point.

3. The probe limit at low temperature

Next, I am interested in understanding analytically the behavior of the systemat low tempera-
tures. In the zero temperature limit (T → 0), we deduce from (2.11) thatρ → ∞. The condensate
also diverges (b→ ∞, whereb is defined in (2.9)), since is it measured in units of the radius of the
horizon (alternatively, observe thatb/(qρ)1/(d−1) is a scale-invariant quantity, so bothb,ρ → ∞).
Of interest is the behavior of scale-invariant quantities, such as the energy gap,

Eg

Tc
=

〈O〉1/∆

Tc
∼ b

(qρ)1/(d−1)
(3.1)

6
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Figure 2: The parameterγ of the condensate nearTc vs.∆ in d = 3 [6].

Figure 3: The energy gapvs. temperature for various scaling dimensions atd = 3 (left panel) andd = 4
(right panel [4].

The behavior of the energy is shown in fig. 3, obtained numerically ford = 3,4 [4]. For scaling
dimensions∆ > d

2 (above the BF bound), the energy gap converges at zero temperature, whereas
for ∆ < d

2 , it diverges. The behavior cannot be conclusively determined from the numerical graph
at the BF bound (∆ = d

2). I shall show analytically that it diverges, albeit very mildly.

In the probe limit, we have to consider the system of zeroth-order equations,

−F ′′
0 +

1
z

[

d
1−zd −1−2∆

]

F ′
0 +

∆2zd−2

1−zd F0−
1

(1−zd)2 Φ2
0F0 = 0

Φ′′
0 −

d−3
z

Φ′
0−

b2∆z2(∆−1)

1−zd F2
0 Φ0 = 0 (3.2)

7
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The scalar fieldF0(z) has a smooth limit asT → 0 for ∆ = ∆− ≤ d
2 ,

F0(z) =
Γ2(1− ∆

d )

Γ(1− 2∆
d )

F

(

∆
d

,
∆
d

;1;1−zd
)

(3.3)

This is not the case for∆ = ∆+ > d
2 and needs to be considered separately.

The field equations can be solved by iteration at low temperatures (b→ ∞ limit),

−F(n+1)
0

′′
+

1
z

[

d
1−zd −1−2∆

]

F(n+1)
0

′
+

∆2zd−2

1−zd F(n+1)
0 =

µ2

(1−zd)2 [Φ̂(n+1)
0 ]2F(n)

0

Φ̂(n+1)′′
0 − d−3

z
Φ̂(n+1)′

0 − b2∆z2(∆−1)

1−zd [F(n)
0 ]2Φ̂(n+1)

0 = 0 (3.4)

starting with
F(0)

0 (z) = 1 , Φ̂(0)
0 (z) = 0 . (3.5)

I defined
Φ0(z) = µΦ̂0(z) , Φ̂0(0) = 1 , (3.6)

whereµ is the chemical potential.
At thenth step, one obtains for the scalar field

F(n+1)
0 (z) = F1(z)

[

1+ µ2
∫ z

0

dz′

1− (z′)d (z′)2∆+1−d
F2(z

′)[Φ̂(n+1)
0 (z′)]2F(n)

0 (z′)

]

−F2(z)µ2
∫ z

0

dz′

1− (z′)d (z′)2∆+1−d
F1(z

′)[Φ̂(n+1)
0 (z′)]2F(n)

0 (z′) (3.7)

where

F1(z) = F

(

∆
d

,
∆
d

;
2∆
d

;zd
)

, F2(z) =
zd−2∆

d−2∆
F

(

1− ∆
d

,1− ∆
d

;2− 2∆
d

;zd
)

(3.8)

with the boundary conditionF(n+1)
0 (0) = 1. At the horizon, this function diverges. Demanding

regularity atz= 1 fixesµ.
Forn = 0, one obtains for the electrostatic potential

Φ̂(1)
0 (z) =

2
Γ(ν)(2∆)ν (bz)

d−2
2



Kν

(

(bz)∆

∆

)

−
Kν

(

b∆

∆

)

Iν

(

b∆

∆

) Iν

(

(bz)∆

∆

)



 , ν =
d−2
2∆

, (3.9)

in terms of Bessel functions. The second Bessel function has an exponentially small coefficient,
O(∼ e−2b∆/∆), and can be neglected at lowT.

The charge density is
ρ0

bd−2 = − µ
(2∆)2ν . (3.10)

For the scalar field one obtains

F(1)
0 (z) = F1(z)

[

1+ µ2
∫ z

0

dz′

1− (z′)d (z′)2∆+1−d
F2(z

′)[Φ̂(1)
0 (z′)]2

]

−F2(z)µ2
∫ z

0

dz′

1− (z′)d (z′)2∆+1−d
F1(z

′)[Φ̂(1)
0 (z′)]2 (3.11)

8
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which has a logarithmic singularity at the horizon,

F(1)
0 (z) ≈−

[

Γ(2∆
d )

Γ2(∆
d )

(1+ µ2a2)−
Γ(2− 2∆

d )

(d−2∆)Γ2(1− ∆
d )

µ2a1

]

ln(1−z) (3.12)

Demanding regularity at the horizon, the coefficient of the logarithm must vanish, which fixes the
chemical potential,

1
µ2 =

Γ(2− 2∆
d )Γ2(∆

d )

(d−2∆)Γ(2∆
d )Γ2(1− ∆

d )
a1−a2 . (3.13)

Explicitly,

a1 =
1

b2∆+2−d

(d−2)Γ(1−ν)

(2∆)2νΓ(ν)
+ . . . , a2 =

1
b2

√
π∆ 2

∆−1Γ( 1
∆)Γ(d−1

∆ )Γ( d
2∆)

(d−2∆)Γ2(ν)22νΓ(d+∆
2∆ )

+ . . . (3.14)

Evidently, for∆ < d
2 , a2/a1 → 0 asb→ ∞, therefore

µ2 ≈ C b2∆+2−d , C =
(d−2∆)(2∆)2νΓ(ν)Γ(2∆

d )Γ2(1− ∆
d )

(d−2)Γ(1−ν)Γ(2− 2∆
d )Γ2(∆

d )
(3.15)

It is easily seen (using standard hypergeometric identities) that the low temperature expression
(3.11), with the choice (3.13) ofµ, reduces to theT = 0 expression (3.3) asb→ ∞. In fig. 5, the
analytic expression (3.11) is compared with numerical results at temperatureT/Tc ≈ 0.1 in d = 3
dimensions. The agreement is excellent, as the corresponding curves are almost indistinguishable.
A similar comparison ind = 4 dimensions is shown in fig. 6. Higher-order corretions are less than
1%, as seen in fig. 7, showing that the iterative procedure for the analyticsolution converges rapidly
at low temperatures.

For the charge density, we deduce from (3.10) and (3.15),

ρ0 ∼ b
d
2+∆−1 . (3.16)

Using
〈O∆〉1/∆

Tc
∼ bρ− 1

d−1
0 ,

T
Tc

∼ ρ− 1
d−1

0 , (3.17)

we finally obtain for the energy gap

Eg

Tc
=

〈O∆〉1/∆

Tc
= γ

(

T
Tc

)− d/2−∆
d/2+∆−1

(3.18)

showing that the condensate diverges asT → 0. Notice that the exponent depends on the dimen-
sions of both the operator and spacetime. The constant of proportionalityγ can be found analyti-
cally and is plotted in fig. 4. As the scaling dimension approaches the BF bound(∆ → d

2), we have
γ → 0, indicating that the power law behavior changes. Thus, at the BF bound, ∆ = d

2 , one needs
to exercise care. Letting∆ = d

2 − ε,

1
µ2 =

(d−2)Γ( 2
d)

d2(1− 2
d )Γ(1− 2

d)

[

1
2εb2−2ε − 1

2εb2 + . . .

]

(3.19)
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Figure 4: The parameterγ in the energy gapvs∆. Curve on left (right) is ford = 3 (d = 4) [7].
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Figure 5: The fieldF for ∆ = 1.2 (left panel), 1.4 (middle panel), 1.5 (right panel) andd = 3. First-order
analytic results (dashed lines) compared with exact numerical results (almost indistinguishable solid lines)
atT/Tc ≈ 0.1 [7].

and taking the limitε → 0, one deduces at the BF bound

µ2

b2 =
d2(1− 2

d )Γ(1− 2
d)

(d−2)Γ( 2
d)[lnb+βd +o(b0)]

(3.20)

whereβd is a constant that depends on the dimension and is easily computed (e.g., ford = 3,
β3 ≈ 1.75).

The charge density at the BF bound behaves as

ρ0 ∼ bd−1(lnb)−1/2 (3.21)

and the energy gap as

Eg

Tc
=

〈O∆〉1/∆

Tc
∼ (lnb)

1
2(d−1) ∼

(

ln
Tc

T

)
1

2(d−1)

(3.22)

showing that the energy gap diverges at the BF bound, albeit very mildly.This mild divergence
was missed in earlier numerical studies (see fig. 3).

Above the BF bound (∆ > d/2), asT → 0, we haveF0 ≈ 1 near the boundary (z . 1/b),
but asymptotically (largez& 1/b), F0 ∼ (bz)d−2∆, which does not have a smooth limit asT → 0.
Therefore, one cannot apply perturbation theory. Instead, one canapproximateF0 by

F0(z) =

{

1 , z≤ α/b
(

bz
α
)d−2∆

, z> α/b
(3.23)
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Figure 6: The fieldF for ∆ = 1.6 (left panel), 1.8 (middle panel), 2 (right panel) andd = 4. Upper two curves
are from first-order analytic expression and exact numerical results (almost indistinguishable) atT/Tc ≈ 0.2;
lower dashed curves are theT = 0 limit [7].
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Figure 7: Corrections are. 1% forT/Tc . 0.1 (left panel) and vanish asT → 0 (right panel) [7].

and findα by a variational method [6]. One can then find an analytic estimate of the energy gap
which remains finite asT → 0.

Since for∆ < d/2 the energy gap diverges asT → 0, it is necessary to include corrections and
move away from the probe limit (q→ ∞) to obtain a physical system at low temperatures. At first
order, we obtain for the functions determining the metric,

z f′1−d f1 =
(bz)2∆

4(d−1)

[(

m2 +∆2 f0 +
z2Φ2

0

(bz)2∆

)

F2
0 +2∆z f0F0F ′

0 +z2 f0F ′
0

2
+

z4

(bz)2∆ Φ′
0

2
]

zχ ′
1 =

(bz)2∆

d−1

[(

∆2 +
z2Φ2

0

f 2
0

)

F2
0 +2∆zF0F ′

0 +z2F ′
0

2
]

(3.24)

The solution is

f1(z) = − ∆
4(d−1)

(bz)2∆
[

2−zd −zd−2∆
]

+ . . . , χ1(z) = − ∆
2(d−1)

(bz)2∆ + . . . (3.25)

Similar results are also easily obtained for the first-order corrections to the scalar and electrostatic
potential (Ψ1 andΦ1, respectively). In particular, for the temperature, we deduce the first-order
expression

T

(qρ)1/(d−1)
=

d

4πρ1/(d−1)
0

[

1+λ
b2∆

q2 + . . .

]

(3.26)

whereλ > 0 (the temperature receives a positive correction away from the probe limit)and can be
found explicitly. It is now clear why the probe limit fails asT → 0. For the expansion in 1/q2 to
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be valid, we ought to have
b . q1/∆ (3.27)

For a givenq, this places a lower bound on the temperature above which the probe limit is valid.
While T = 0 is unattainable for finiteq, the temperature below which the probe limit is not valid
can be made arbitrarily low by choosing a sufficiently largeq. Thus, even though the probe limit
(q→ ∞) is not always a physical system, its properties are a good approximation tocorresponding
properties of physical systems (of finiteq). This approximation becomes better with increasingq
and the 1/q2 expansion is valid over a wider range of temperatures.

4. Conductivity in the probe limit

I am interested in calculating the conductivity analytically at low temperatures. I shall obtain
the conductivityσ as a function of the rescaled frequency

ω̂ =
ω
b

=
ω

〈O∆〉1/∆ (4.1)

The functionσ(ω̂) has a well-defined limit asq→ ∞ (probe limit) down to zero temperature even
though the condensate〈O∆〉 diverges. As I discussed above, the probe limit, which is not a physical
state at low temperatures, can be arbitrarily well approximated by physical states of sufficiently
largeq. The conductivity of these states can be obtained as a 1/q2 expansion with the conductivity
in the probe limit serving as the zeroth order term in the expansion.

For definiteness, letd = 3. The cased = 4 will be discussed later.
The conductivity on the AdS boundary is found by applying a sinusoidal electromagnetic

perturbation in the bulk of frequencyω obeying the wave equation

−d2A
dr2∗

+VA= ω2A , V =
2q2

z2 f Ψ2 (4.2)

whereA is any component of the perturbing electromagnetic potential along the boundary, subject
to ingoing boundary condition at the horizon,

A∼ e−iωr∗ ∼ (1−z)−iω/3 (4.3)

asz→ 1 (r∗ →−∞), wherer∗ is the tortoise coordinate

r∗ =
∫

dz
f (z)

=
1
6

[

ln
(1−z)3

1−z3 −2
√

3tan−1

√
3z

2+z

]

(4.4)

with the integration constant chosen so that the boundary is atr∗ = 0.
The wave equation reads

d
dz

[

(1−z3)
dA
dz

]

−
[

b2∆z2∆−2F2(z)− ω2

1−z3

]

A = 0 (4.5)

Set
A = (1−z)−iω/3e−iωz/3

A (z) (4.6)

12
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where I included a convenient factor ofe−iωz/3 so that onlyA (z) contributes to the conductivity.
The wave equation becomes

−3(1−z3)A ′′ +z
[

9z−2(1+z+z2)iω
]

A
′

+

[

3b2∆z2∆−2F2(z)− (1+2z+3z2)iω − (3+2z+z2)(3+z+z2 +z3)

3(1+z+z2)
ω2
]

A = 0 (4.7)

Regularity ofA at the horizon (z= 1) implies the boundary condition

(3−2iω)A ′(1)+

(

b2∆F2(1)−2iω − 4ω2

3

)

A (1) = 0 (4.8)

In the low temperature limit (largeb), it is convenient to rescalez→ z/b, and solve as a series
expansion in 1/q2.

The zeroth order term (probe limit) is obtained by replacingF by F0, for ∆ ≤ 3
2 (so thatF0 has

a smooth zero temperature limit),

−A
′′ +
[

z2∆−2− ω̂2]
A = 0 (4.9)

where I usedF(z/b) → F(0) = 1, for largeb. For 1< ∆ ≤ 3
2, there are two linearly independent

solutions,A±, distinguished by their asymptotic behavior,

A± ∼ e±
1
∆ z∆

, z→ ∞ (4.10)

The general solution can be written as a linear combination,

A = c+
A+ +c−A− (4.11)

Applying the boundary condition (4.8) at horizon, we deduce

c+

c−
∼ e−

2
∆ b∆

(4.12)

so at low temperatures,
c+ ≪ c− (4.13)

i.e.,A → 0 asz→ ∞.
For scaling dimension∆ = 1, one obtains the exact solution

A (z) = e−
√

1−ω̂2bz (4.14)

(whereasA+(z) = e+
√

1−ω̂2bz) with arbitrary normalization, where I restored the scaling parameter
b.

Thus, the low temperature limit of the conductivity is

σ(ω̂) =
i
ω̂

√

1− ω̂2 (4.15)

Notice thatℜσ = 0 for ω̂ ≤ 1, therefore the gap is

ωg = 〈O1〉 . (4.16)
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At low T, corrections are∼ O(e−2b), therefore

ℜσ ∼ e−Eg/T , Eg =
3〈O1〉

2π
≈ 0.48ωg , (4.17)

to be compared with the BCS result for the energy gapEg = ωg/2 = 0.50ωg.

For scaling dimension∆ = 3
2 (BF bound),

A (z) = A−(z) = Ai(bz− ω̂2) , (4.18)

whereasA+(z) = Bi(bz− ω̂2).

At T = 0 in the probe limit, the quasinormal frequencies have moved to the real axis yielding
an infinite set of normal frequencies which are solutions of

Ai(−ω̂2) = 0 (4.19)

giving rise to an infinite tower of real frequencies determined by the zeroes of the Airy function.

TheT = 0 conductivity in the probe limit is

σ(ω̂) =
i
ω̂

Ai ′(−ω̂2)

Ai(−ω̂2)
(4.20)

The normal modes are the poles of the conductivity. At zero temperature,ℜσ = 0, except at the
poles ofℑσ whereℜσ diverges as aδ -function. The gap is

ωg ≈ 1.5〈O3/2〉2/3 (4.21)

At low temperatures,

ℜσ ∼ e−
4
3b3/2

= e−(Eg/T)3/2
, Eg =

1
π

(

3
4

)1/3

〈O3/2〉2/3 ≈ 0.2ωg (4.22)

to be compared with the BCS resultEg = 0.5ωg.

However, the system atT = 0 is not physical in the probe limit, so there is no physical conduc-
tivity that has the poles found above. For a physical low temperature system, we need to include
1/q2 corrections. These shift the poles off the real axis resulting in spikes for the conductivity of a
physical system.

To see this explicitly, consider the first-order correctionδA which obeys the wave equation

−δA
′′ +[z− ω̂2]δA = − 1

3(1−z3)
H1A (4.23)

where

H1 = z
[

9z−2(1+z+z2)iω
] d

dz
+3b3z(2F1(z)+z3)− (1+2z+3z2)iω (4.24)

+
z2(1−15z−12z2−10z3)

3(1+z+z2)
ω2 (4.25)
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Figure 8: The imaginary part of the conductivity ind = 3 using the analytic expression for the scalar field
(dotted line) compared with the exact numerical solution (solid line) at T

Tc
≈ .1 [7].
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Figure 9: The imaginary part of the conductivityvs.frequency ind = 3 using the analytic expression forF
at T

Tc
≈ .05 (left), .04 (right). As the temperature decreases, poles move on to the real axis [7].

The real frequencies found above get shifted away from the real axis,

δω̂ =
πBi(−ω̂2)

3ω̂Ai ′(−ω̂2)

∫ 1

0

dz
1−z3 Ai(bz− ω̂2)H1Ai(bz− ω̂2) (4.26)

This expression is valid for low frequencies and low temperatures. As we heat up the system,
most modes disappear and we are left with a finite number of quasinormal modes. Their number
decreases as we increase the temperature. Conversely, as we cool down the system, modes shift
toward the real axis, and we obtain an increasing number of spikes in the conductivity.

Figure 8 depicts the imaginary part of the conductivity at temperatureT/Tc ≈ .1 in comparison
with the exact numerical solution. The agreement is very good even at such high temperature at
which only one quasinormal mode is left. Unfortunately, this is the low temperature limit attained
by numerical analysis as numerical instabilities prohibit one from lowering thetemperature further.
Using the above analytical results, one can see in figure 9 the emergence of an increasing number
of poles as one lowers the temperature toT/Tc ≈ .06 and.04. Finally in figure 10, the lower
temperature (T/Tc ≈ .01) result is compared with the zero temperature analytic expression (4.20)
demonstrating convergence.
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Figure 10: Comparison of the imaginary part of the conductivity ind = 3 using the analytic expression for
F at T

Tc
≈ .01 (dotted line) and the zero temperature limit (solid line)[7].

For ∆ > 3/2, the wave equation (4.9) is not valid because the scalar does not have asmooth
zero temperature limit. On the other hand the probe limit is physical down to zero temperatures.
The potential

V = b2∆z2∆−2(1−z3)F(bz) (4.27)

attains a maximum of orderb2(2−∆) for ∆ < 2. Therefore, at zero temperature it has infinite height.
However, the width becomes infinitely narrow leading to a finite tower of poles for the conduc-
tivity (quasinormal modes). In the zero temperature limit, the number of modes increases as one
approaches the BF bound and decreases away from it.

Similar results hold ford = 4. At the BF bound,∆ = 2, in the probe limit, the wave equation
reads

A′′− 1
z
A′− [b4z2−ω2]A = 0 , (4.28)

whose acceptable solution can be written in terms of a Whittaker function,

A = Wω̂2
4 , 1

2
(b2z2) (4.29)

(The other solution diverges asz→ ∞.) At the boundary (z→ 0), it has a logarithmic divergence
which we need to subtract before we can calculate quasi-normal modes and the conductivity [4].
The conductivity is then given by

σ(ω̂) =
2
iω̂

A2

A0
+

iω̂
2

(4.30)

with an arbitrarily chosen cutoff, where

A(z) = A0 +A2b2z2−A0
ω̂2

2
b2z2 ln(b2z2)+ . . . (4.31)

Using the expansion for small arguments,

Wω̂2
4 , 1

2
(b2z2) = − 2

ω̂2Γ(−ω̂2/4)

{

1−
[

1+ ω̂2(2γ −1+ ln(b2z2)+ψ(1− ω̂2/4)
)] b2z2

2

}

+ . . .

(4.32)

16



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
7
8

Holographic superconductors George Siopsis

0.0 0.5 1.0 1.5 2.0 2.5

-50

0

50

100

150

Ω

<O2>

ImHΣL

Figure 11: ℑσ in d = 4 using the analytic expression for the scalar field (dotted line) compared with the
exact numerical solution (solid line) atT

Tc
≈ .17 [7].
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Figure 12: ℑσ in d = 4 using the analytic expression forF at T
Tc

≈ .1 (left), .04 (right) [7].

we deduce theT = 0 conductivity in the probe limit

σ(ω̂) =
1
iω̂

+ iω̂
[

2γ − 1
2

+ψ(1− ω̂2/4)

]

(4.33)

We have a pole atω = 0, as expected and an infinite tower of real poles determined by the zeroes
of the digamma (poles of the Gamma) function,

ω̂ =
ωn

〈O〉1/2
= 2

√
n , n = 0,1,2, . . . (4.34)

Again, these poles shift off the real axis in a physical system (quasi-normal modes) and result in
spikes in the conductivity, as can be seen in figures 11 and 12. The analytic (unphysical) limit
(4.33) is plotted in fig. 13.

5. The near-extremal limit

Next, I consider the other end of the range ofq, i.e.,smallq. Whereas the probe limit,q→ ∞,
corresponds to a Schwarzschild black hole, the smallq limit corresponds to a Reissner-Nordström
black hole near extremality. On the gauge theory side of the correspondence, this translates to large
chemical potential.
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Figure 13: ℑσ atT = 0 in d = 4 [7].
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Figure 14: ∆ = 1 (left panel),∆ = 2 (right panel). [12]

Numerical studies show that an instability exists even whenq = 0 (see fig. 14). It is not
clear what the underlying physical mechanism is on the gauge theory (superfluid) side. Numerical
analysis is cumbersome in the smallq limit, so to understand this regime, I shall develop analytic
tools.

For definiteness, I concentrate ond = 3 and scalar massm2 = −2, so that the possible scaling
dimensions are∆ = 1,2.

Above the critical temperature (T ≥ Tc), we haveΨ = 0 andχ = 0. The field equations (2.4)
reduce to

Ψ′′ +

[

f ′

f
− 2

z

]

Ψ′ +

[

q2Φ2

f 2 − m2

z2 f

]

Ψ = 0

Φ′′ = 0
z2

4
Φ′2− f ′

z
+

3( f −1)

z2 = 0 (5.1)

The first (scalar) equation has a non-zero solution only atT = Tc. The other two (Einstein-Maxwell)
equations yield the RN black hole (2.10) withd = 3, whose Hawking temperature is given by (2.11)
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with d = 3.
To find the critical temperatureTc, we need to solve the field equation forΨ.
At extremality,

ρ2

4
= 3 , T = 0 (5.2)

The generalreal solution to the field equation is

Ψ = A
z

z−z+

(

z−z−
z−z+

)
2
√

2−i
2
√

3
q( 1−z

z−z+

)δ+

F

(

−δ− +2

√

2
3

q,−δ−− iq√
3

;−2δ−;2z2
+

1−z
z−z+

)

+c.c.

(5.3)
wherez± are the two complex roots off (z) (z− = z∗+), and

δ± = −1
2
± i

√

1+4q2

2
√

3
(5.4)

are the scaling dimensions of a scalar field in AdS2 space of effective mass

m2
eff = m2 +gttq2Φ2 = −2−2q2 (5.5)

The radius of the AdS2 space isR= 1/
√

6.
Since both scaling dimensions are complex, neither solution is regular at the horizon. This is

in accord with the fact that we are below the BF bound in AdS2 space.
Near extremality,

ρ2

4
= 3−4πTc , Tc ≪ 1 (5.6)

The aboveT = 0 result (5.3) is still approximately valid away from the horizon.
Near the horizon, perform the coordinate transformation

z= 1− 2πTc

3
ζ (5.7)

The metric becomes

ds2 =
1

6ζ 2

[

−(4πTc)
2ζ (1+ζ )dt2 +

dζ 2

ζ (1+ζ )

]

+d~x2 + . . . (5.8)

where I omitted higher-order terms inTc.
The electrostatic potential reads

Φ =
2πρTc

3
ζ + . . . (5.9)

and the field equation for the scalar fieldΨ near the horizon becomes

ζ (1+ζ )Ψ′′ +(2ζ +1)Ψ′ +
1
3

[

1+q2 ζ
1+ζ

]

Ψ = 0 (5.10)

where prime denotes differentiation with respect toζ .
The acceptable solution is

Ψ(ζ ) = (1+ζ )−iq/
√

3F

(

−δ+− iq√
3
,−δ−− iq√

3
;1;−ζ

)

(5.11)
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arbitrarily normalized so that at the horizonΨ(0) = 1. The other solution is discarded because it
has a logarithmic singularity at the horizon.

It is easily deduced from the identity

F(α ,β ;γ;x) = (1−x)γ−α−β F(γ −α ,γ −β ;γ;x) (5.12)

thatΨ is real.
The two expressions (5.3) and (5.11), which are valid far from and near the horizon, respec-

tively, should be matched in the overlap region. To this end, letζ → ∞ in the near-horizon region.
We obtain

Ψ ≈ Γ(−1−2δ+)

Γ(−δ+ + iq√
3
)Γ(−δ+− iq√

3
)
ζ δ− +c.c. (5.13)

This is to be compared with thez→ 1 limit of the expression (5.3) which is valid away from the
horizon,

Ψ ∼ A(1−z+)δ−
(

1−z−
1−z+

)
2
√

2−i
2
√

3
q

(1−z)δ+ +c.c. (5.14)

The two expressions (5.13) and (5.14) agree in the overlap region, provided

A =
Γ(−1−2δ−)

Γ(−δ− + iq√
3
)Γ(−δ−− iq√

3
)

(

2πTc

3

)−δ+

(1−z+)−δ−
(

1−z+

1−z−

)
2
√

2−i
2
√

3
q

(5.15)

I have thus obtained a solution to the wave equation which is parametrized byTc. There is also an
overall arbitrary multiplicative constant (since the wave equation is linear) which I am not showing.
The critical temparature is fixed by imposing the remaining boundary considitionatz= 0.

For ∆ = 2, at the boundary, we haveΨ ∼ z2, therefore

A(−z+)δ−
(

z−
z+

)
2
√

2−i
2
√

3
q

F

(

−δ− +2

√

2
3

q,−δ−− iq√
3

;−2δ−;−2z+

)

+c.c. = 0 (5.16)

By solving this constraint, one determinesTc. In figure 15 I plot the scale invariant quantityTc/
√ρ

as a function ofq2. For ∆ = 1, the constraint to be solved is similar to (5.16) and is obtained by
demandingΨ ∼ z+O(z3) near the boundary. Notice thatTc → 0 asq2 → −1

4. To unerstand the
physical relevance of negativeq2, write the complex scalar in terms of real scalars as1√

2
Ψeiqθ .

Then the action reads

Sscalar =
1
2

∫

d4x
√−g

[

∂µΨ∂ µΨ+q2Ψ2(∂µθ −Aµ)2−m2Ψ2] (5.17)

Thus,θ is a Stückelberg field giving mass to the vector potentialAµ whenΨ condenses. One can
fix the gauge by settingθ = 0. Thenq2 < 0 implies a negative mass which would normally signal
an instability. However, there is no instability in AdS space as long as one staysabove the BF
bound. Also notice that forq = 0, θ decouples. It would be interesting to explore the physical
consequences in this case.

For a generalm2,

q2 ≥ q2
c ≡

3+2m2

4
(5.18)
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Figure 15: The critical temperaturevs. q2 for ∆ = 1 (left panel) and∆ = 2 (right panel) [8].
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Figure 16: The energy gapvs. q2 for ∆ = 1 (left panel) and∆ = 2 (right panel) [8].

BelowTc, one can use iteration to solve the field equations, as in the probe limit. The results for the
energy gap are shown in figure 16. Evidently, the energy gap in units ofTc diverges as we approach
the critical point (q2 → q2

c) andTc → 0. This should be contrasted with the value 3.4 obtain in BCS
theory and∼ 8 for ∆ = 2 in the probe limit (q2 → ∞, see fig. 3).

6. Conclusion

Gravity is believed to provide adualdescription of superconductors at strong coupling through
holography (holographicsuperconductors). I used analytic techniques to probe low temperature
physics where numerical instabilities arise, in order to understand theground stateof these systems.
In the probe limit (largeq2, whereq is the charge of the scalar field that condenses), the energy gap
diverges for scaling dimensions below the BF bound. I showed analyticallythat at the BF bound
the energy gap also diverges (albeit very mildly), which is not easily seennumerically. I calculated
the conductivity analytically and showed that, as a function of the frequency, it has an increasing
number of spikes as one lowers the temperature at the BF bound. The positions of these spikes are
determined by the zeroes of the Airy (digamma) function in 2+1 (3+1) dimensions. I also found
an analytic relation between the energy gapEg and the frequency gap in the conductivityωg which
differs from the weak coupling (BCS) resultEg = ωg/2 in condensed matter theory.

At the other end of the range ofq2 (near extremality), corresponding to large chemical po-
tential, I developed analytic tools to probe theTc → 0 limit and found a quantum critical point at
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q2 = q2
c where the energy gap diverges. It would be interesting to analyze this limit further in order

to elucidate the underlying physical mechanism of the instability.
A lot of work remains to be done toward a more realistic description,e.g.,by incorporating

spatial dependence to account for the lattice structure, pseudogap, doping, etc.
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