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1. Introduction

The extension of the AdS/CFT corresponderie [1] to an abelian gaoge las been studied
extensively in recent years. Once it the abelian symmetry is broken oofsadielack hole in AdS
space, scalar hair can form whose dual is a (holographic) supkrctor on the boundary of AdS
space[R[]3]4,]5]. These systems exhibit several characteristitinsibe real world, thus offering
a new theoretical tool in the exploration of strongly coupled supercdaciic

The study of holographic superconductors involves the solution ofinear field equations.
These are very hard to solve in general and numerical methods ofteedpécially as one ap-
proaches zero temperature. The latter is important to be able to probe mouederstand the
ground state of these systems. It is important to develop analytic tools thé& theksolutions
of the field equations and this is what | discuss here. | am especially itgdrnesunderstanding
the low temperature regime in two different limits: small chemical potential (probe hvhibse
dual is a Schwarzschild black hold] [, 7], and large chemical potemtied! (to near-extremal
Reissner-Nordstrom black hole§) [8].

In the probe limit, | solve the field equations analytically at low temperaturesifi@reht
values of the scaling dimensidn ForA < % (below the scaling dimension of the Breitenlohner-
Freedman (BF) bound), the energy gap diverges as a (negativej pbthe temperature, signaling
the breakdown of the probe approximation in the zero temperature limit. | digus this is
corrected by including next-to-leading order terms. At the BF bomnd:(%, the energy gap
diverges a$InT|%, whered is a constant that | compute and depends on the dimension of spacetime
[A. This is a very mild divergence which explains why it was not detecteghitier numerical
studies [41.

When back reaction to the metric is included, the effective potential assteiitethe elec-
tromagnetic perturbation that determines the conductivity has a finite heightreBailts in a finite
number of quasinormal mod€s$ [4, 9]. As one approaches the probe linfieitjiet of the potential
increases with an attendant increase in the number of modes. | show thattéhepproach the
real axis as the temperature is lowered at frequencies that | computdicaibly In 2+1 (3+1)
dimensions they are given in terms of the zeroes of the Airy (digamma) fur{gffion

It should be pointed out that, even though | probe the low temperature rebdoenot have
access to the zero temperature state in the probe limit (for scaling dimems@r%). This is
because for a given charge of the scalar field, there is a lower bautideatemperature below
which the probe approximation breaks down. Thus, even though it is pétesible to take a “zero
temperature” limit of analytic expressions, the limit itsellisphysical It is, however, useful for
computational purposes, physicallow-temperature systems (obtained when backreaction to the
bulk metric is taken into account) are close to it.

In the case of large chemical potential (near-extremal limit of the dual blatX), | show
analytically that there is a quantum critical point at which the critical temperatamishes. As one
approaches this critical point, the energy gap diverfjes [8].

The discussion is organized as follows. In secfjon 2, | review the fieldt@ms and calculate
the critical temperature in the probe limit. In sect[pn 3, | discuss the low tempernzgime in the
probe limit. In sectiorf}4, | calculate the conductivity analytically at low tempeeatir the probe
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limit. In section[3, | discuss the analytic solution of the field equations neameatitg. Finally,
section{p contains my concluding remarks.

2. Hairy black holes

| am interested in the dynamics of a scalar field of massd electric chargg coupled to a
U (1) vector potential in the backgound ofla+ 1— dimensional AdS black hole. The action is

R-2A 1 .
S= [[aiymg| Toad - G 10— iAW - el (2.1)

whereF = dA | shall adopt units in whicih = — %% 161G = 1.
To find a solution of the field equations, consider the meinisatz

1
T2

ds

dﬂ (2.2)

_ —X(2) 42 2 2
[ f(z)e dt“ +dx +f(z)

wherex € R%-1, representing an AdS black hole of planar horizon. The AdS bourigatyg = 0.

| shall choose units so that the horizon izat 1, and therefore requirg(1) = 0. This is possible
because of the scaling symmetries of the system and can be done withaftdeserality as long
as one is careful to only consider physical quantities which are scalgdnta

The Hawking temperature is

(1) -xwy2

Also assume that the scalar field iseml function W(z), and the electromagnetic potential is the
electrostatic potentialh = ®(z)dt. The resulting field equations af¢ [3]

Wt “’_);’_dzl] Wt {qujex —Zr;ﬂ W=0

o [)g_H] cp'_z‘iz:ﬂcp ~0

_dglx’+zw’2+zq2(f22w2ex =0
e B i e S LICE

wherez € [0,1] (z= 1 is the horizon, whereas= 0 is the boundary).

| start by discussing the solution of this system of non-linear equations in theolitaitgeq
(probe limit). The other interesting limit (smajl corresponding to large chemical potential) will
be discussed later.
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To find the solution for large, expand the fields as series ifgl
1 1
W= |Y+W¥ +}
q [ T
1 1
b = a |:¢'o+¢1qz+...:|
1
1
X=X0+X1?+.... (2.5)

First, consider the zeroth order system-¢ «), and then add first-orderi(1/g?)) corrections in
order to obtain a physically sensible system.
Near the boundaryz(— 0), we havef — 1, x — 0 and so

2
W YHA: cbggu—pzd_z, Ai:gim (2.6)

While a linear combination of asymptotics is allowed by the field equations, it turtnthatuany
such combination is unstablg J10]. However, if the horizon has negatimeatire, such linear
combinations lead to stable configurations in certain cdsgs [11].

Thus, the system is labeled uniquely by the dimen&ieaA_.. The mass of the scalar field is
bounded from below by the BF bound,

e > —‘f (2.7)

There appears to be a quantum phase transitionf at 0. There is also a unitarity bound that re-
quiresA > d—gz U (p) is the chemical potential (charge density) of the dual theory on the laoynd
The leading coefficient in the expansion of the scalar yields vacuunt&tjmn values of operators
of dimensiom\,
(Op,) = VW) (2.8)
The field equations admit non-vanishing solutions for the scalar below aattiéimperaturdc
where these operators condense.
Define for convenience
1
Y(z) = —=b*2F(z) , b=(qon)Y? (2.9)
V2q ( <
with F(0) = 1.
Above the critical temperaturel (> Tc), we haveW = 0, therefore the field equations are
solved by the AdS Reissner-Nordstrom (RN) black hole with flat horizon,

f(z)=1— <1+ (d —42)p2)zd+(d_42)pzzz<d—1> L X@=0, o@=p(1-#2), @2.10)

and Hawking temperature (divided by an appropriate factor for a soaeant quantity)

T _ d (d _ 2)2P2
(qp)¥(d-1) — 4m(qp)Y/(d-1) [1_ 4d : (2.11)




Holographic superconductors George Siopsis

At the critical temperature, the scalar field equation is in the RN backgroithgow= p

(d—A)(1—f)+zf L ,(1—22)2

+ 27 Pe— 2

f' 2A+1-d
" ., 4ar1—da
Ak ]

F+ [A } F=0 (2.12)

For a givenq, pc is an eigenvalue.
To solve for largey (probe limit), expand

1 1 1
F:F0+F1@+..., p= q[po+p1q2 ] (2.13)

At zeroth order § — o limit), the RN background turns into an AdS Schwarzschild black hole of
flat horizon, so
fo(2)=1-2 , x0=0. (2.14)

Therefore, the scalar field equation at the critical temperature in the pnobecads

17 d , A2 , (1—2-2)2
— o + [l A — 2N\ — l:| FO+A 1= Zd Oc (1—Zd)2 Fo. (215)
The eigenvalwﬁ)gC minimizes the expression
o = bz A=) + 7 AR} (2.16)
c foldzzm—dﬂ%“:o(z)]z
It can be estimated by substituting the trial function
Fo=Fe(z2)=1—at. (2.17)

which obeys the boundary conditioRg(0) = 1, F/(0) = 0 andF, (1) is finite.
Ford = 3 andA = 1,2, one obtains, respectively,

P& ~127,17.3 , T.~0.225/0p, 0.117,/qp

in very good agreement with the exdgt= 0.226,/qp, 0.118,/qp.
ForA = % (BF bound) andl = 3,4, one obtains, respectively,

p2.~63 42, T.~0.15/q0, 0.2(qp)"3 (2.18)

in very good agreement with the exdgt= 0.15,/9p, 0.25(gp)Y/2. In fig. [, I extend the compar-
ison to a range of the scaling dimensifior d = 3,4 demonstrating the accuracy of the estimate
(2.1$) with the trial function[(2.37) for the critical temperature.
Right below the critical temperature, a condensate forms. For an explédittancalculation,
| shall concentrate od = 3, as the other cases are similar.
The Maxwell equation (Gauss’s Law) in the probe limit reads
1 <ﬁA>2 ZZ(A?l) FOZ(Z)

0= "> 18 %o (2.19)
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Figure 1: The critical temperatur@; vsthe scaling dimensioA for d = 3 (left panel) andd = 4 (right
panel). Data points represent exact values; solid linetaiodd with trial function ].

Right belowT, the condensat&/,) is small. If we write

O, 2
q>0=p00(1—z)+< 2A> 5Po+ ... (2.20)

we have 62

"o YR (2)
SO~ Poc g5 (2.21)
Integrating, we obtain
—_a(0) ~ (n)° _ /1 ZEVR(2)

p= (DO(O)NpoC[lJr > %} , €= 0dz o242 (2.22)

therefore the condensate is

[T 2 /4m\°
(On) = YT 1—?(:7 V:\/?<3> . (2.23)

Using trial functions, we obtain foh = 1(2), y ~ 11.4(133) to be compared with the exagt=
9.3(144).
Also notice from fig[R thay — « asA — 3, indicating thatr? = 0 is a quantum critical point.

3. Theprobelimit at low temperature

Next, | am interested in understanding analytically the behavior of the satiw tempera-
tures. In the zero temperature limi (~ 0), we deduce fron{ (2.11) that— «. The condensate
also divergesl{ — «, whereb is defined in [[2]9)), since is it measured in units of the radius of the
horizon (alternatively, observe thiat(qp)Y/ (@1 is a scale-invariant quantity, so bdttp — o).

Of interest is the behavior of scale-invariant quantities, such as thgyegap,
Ey _ (0)Y" b

o =~ T (3.1)
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Figure 3: The energy gaps.temperature for various scaling dimensionslat 3 (left panel) andd = 4
(right panel [h].

The behavior of the energy is shown in fi§). 3, obtained numericallylfer3,4 [4]. For scaling
dimensionsA > % (above the BF bound), the energy gap converges at zero temperahaeas
for A < % it diverges. The behavior cannot be conclusively determined frenmtimerical graph
at the BF bound/ = %). I shall show analytically that it diverges, albeit very mildly.

In the probe limit, we have to consider the system of zeroth-order equations

I AR SR S
e e Y (1_Zd)2d>0Fo_0
d-3 b2 A-1)
"o I 2 _
CDO 7 q)o 1—Zd FOCDO 0 (32)
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The scalar fieldy(z) has a smooth limita¥ — 0forA=A_ < %

r2(1-2 A A
Fo(z):r((l_zdg;F(d S zd> (3.3)

Thisis notthe case fak=A, > % and needs to be considered separately.
The field equations can be solved by iteration at low temperatbhres limit),

ey 1 d a4 (n+1) NP2 (n+1) u? 2 (N+1)72 (n)
R +z[1—zd 1-20| R+ TRy _(1_Zd)2[qno 1R
A 1 d_3,\ 1) bZAZ2A l ~ 1
R e e [an>}2q>gn+>:o (3.4)
starting with
ROz =1, &Q@=0. (3.5)
| defined
®o(2) = uPo(2) , Po(0) =1, (3.6)

wherep is the chemical potential.
At the nth step, one obtains for the scalar field

FO(nH)(Z) — 71(2) [LHJZ/OZ l_d(Z'Z,)d (z’)ZAHdﬁz(z')[dDénH)(Z')]ZFO(n)(Z,)}

~Fa(Dui® | Zldé)d<z>m+”%<z>[&>é”*” @PR"(@) 3.7

where

A A 21 A2 A, A 2
,%(z):lz<d,d;d;zd> » Fa2) = 54 F (1 d,l—d;z—d;zd> (3.8)

with the boundary conditioﬁo(”H)(O) = 1. At the horizon, this function diverges. Demanding
regularity atz =1 fixespu.
Forn = 0, one obtains for the electrostatic potential

B
&M (2) = r(v)fm)(bz)zz [KV <(b§)A> _ T:ébg)) Iy ((bAZ)A>] L v= % ., (3.9)

in terms of Bessel functions. The second Bessel function has an exipalty small coefficient,
0(~ e 2"/8) and can be neglected at IGw
The charge density is

bggz = (25)2\/ . (3.10)
For the scalar field one obtains
) = A1) |1 [ @R R @)
T e Il @11)
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which has a logarithmic singularity at the horizon,

[re)
r2(g)

re-4)
(d—28)r2(1-3)

SN
=
—~
N
=

(1+ pay) — p?ay | In(1—2) (3.12)

~
~

Demanding regularity at the horizon, the coefficient of the logarithm musskawhich fixes the
chemical potential,

1 r(2-2r4)
w2 @@yt -
Explicitly,
1 ([d-2r(i-v) 1 VmE (I (5)
U= mizd oaer(yy T 2T (d—zA)rzA(v)zzfr(%iA) * (3.14)
Evidently, forA < $, ay/a; — 0 asb — oo, therefore
2 op2hi2—d _(d=208)(20)?T (V) ()r2(1—-4)
W eh S T dra— v 2= B)rE) (3.15)

It is easily seen (using standard hypergeometric identities) that the low tatupeexpression
(B-11), with the choice[(3.13) gi, reduces to thd = 0 expression[(3 3) ds— . In fig. §, the
analytic expressior] (3]11) is compared with numerical results at tempefatlige 0.1 ind = 3
dimensions. The agreement is excellent, as the corresponding cusvasnast indistinguishable.

A similar comparison id = 4 dimensions is shown in fif] 6. Higher-order corretions are less than
1%, as seen in fi§f] 7, showing that the iterative procedure for the ansbjtiton converges rapidly

at low temperatures.

For the charge density, we deduce frdm (B.10) 4nd3.15),

po ~ b2 A1 (3.16)
Using
/4 1 _ 1
(ﬁAT> ~bpy T % ~pp T (3.17)
C C
we finally obtain for the energy gap
d/2-a
By _ (On)"® _ (T 95

showing that the condensate divergedas> 0. Notice that the exponent depends on the dimen-
sions of both the operator and spacetime. The constant of proportiopakty be found analyti-
cally and is plotted in fig[]4. As the scaling dimension approaches the BF tmum%’), we have

y — 0, indicating that the power law behavior changes. Thus, at the BF bmﬁcg, one needs

to exercise care. Letting= 9 —¢,

(d
p? g2

2)r(3) 1 1

- 3.19
r(1-32) 2607 2% g2 | (3.19)

QN
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Figure 4: The parametey in the energy gapsA. Curve on left (right) is fod = 3 (d = 4) []j].
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Figure 5: The fieldF for A = 1.2 (left panel), 14 (middle panel), B (right panel) andl = 3. First-order
analytic results (dashed lines) compared with exact nwakrésults (almost indistinguishable solid lines)
atT /T ~ 0.1 [ff].

and taking the limit — 0, one deduces at the BF bound

p? d?-dr(1- )

2 (d—2)r(2)[Inb+ By +o(b9)]

where 3y is a constant that depends on the dimension and is easily computed (ed+~f8r
B3~ 1.75).
The charge density at the BF bound behaves as

(3.20)

po ~ b%(Inb)~Y/2 (3.21)

and the energy gap as .

By _ (on)"" T Te) 2@

Lo T (Inb)2@-D ~ (In T) (3.22)
showing that the energy gap diverges at the BF bound, albeit very mildiiis mild divergence
was missed in earlier numerical studies (seqfig. 3).

Above the BF boundX > d/2), asT — 0, we havely ~ 1 near the boundaryz(< 1/b),
but asymptotically (large > 1/b), Fo ~ (b2)9~%, which does not have a smooth limit &s— 0.
Therefore, one cannot apply perturbation theory. Instead, onapgaoximate- by

{ 1 ,z<a/b
(

7> a/b

(3.23)
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Figure6: The fieldF for A = 1.6 (left panel), 18 (middle panel), 2 (right panel) am= 4. Upper two curves
are from first-order analytic expression and exact numirsailts (almost indistinguishable) Bf Tc = 0.2;
lower dashed curves are tfie= 0 limit [f]].
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Figure 7: Corrections areS 1% for T /T. < 0.1 (left panel) and vanish & — 0 (right panel) [|7].

and finda by a variational method][6]. One can then find an analytic estimate of theyegapy
which remains finite a¥ — 0.

Since forA < d/2 the energy gap diverges @s— 0, it is necessary to include corrections and
move away from the probe limig(— o) to obtain a physical system at low temperatures. At first
order, we obtain for the functions determining the metric,

2A 2
zf—df, = (b2) KmZ+A2fo+ 22¢0>F02+2Azf0F0F6+22f0F52+Z4d>’02

4(d-1) (b2)22 (b2)%2
2N\ 2
o - 02 [(Az N Zz%?O) F2.4 2AZRoF) + ZZF(;Z] (3.24)

The solution is

A A
L@ =-20-1 (d—1)

Similar results are also easily obtained for the first-order corrections t@#her @ind electrostatic
potential Y1 and @1, respectively). In particular, for the temperature, we deduce theofidstr
expression

(b2 [2_zd—zd—2A]+..., X2 =~ (022 +...  (3.25)

(3.26)

@)@ " 4pd/@D

whereA > 0 (the temperature receives a positive correction away from the probedingit¢an be
found explicitly. It is now clear why the probe limit fails &— 0. For the expansion in/tf? to

21\
i SR UL
q

11
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be valid, we ought to have
b < qY/2 (3.27)

For a givenq, this places a lower bound on the temperature above which the probe limit is valid
While T = 0 is unattainable for finite, the temperature below which the probe limit is not valid
can be made arbitrarily low by choosing a sufficiently laggel hus, even though the probe limit

(q — =) is not always a physical system, its properties are a good approximatonresponding
properties of physical systems (of finifg This approximation becomes better with increasing
and the ¥g? expansion is valid over a wider range of temperatures.

4. Conductivity in the probe limit

| am interested in calculating the conductivity analytically at low temperaturdslll gbtain
the conductivityo as a function of the rescaled frequency

. W )
W= b= W (4.2)
The functiono (@) has a well-defined limit ag — o (probe limit) down to zero temperature even
though the condensate, ) diverges. As | discussed above, the probe limit, which is not a physical
state at low temperatures, can be arbitrarily well approximated by physatak<f sufficiently
largeq. The conductivity of these states can be obtained agaeixpansion with the conductivity
in the probe limit serving as the zeroth order term in the expansion.
For definiteness, let = 3. The case = 4 will be discussed later.
The conductivity on the AdS boundary is found by applying a sinusoitgitr®magnetic
perturbation in the bulk of frequenay obeying the wave equation

2 2
3§+VA_ WA vzzzisz2 4.2)

whereA is any component of the perturbing electromagnetic potential along the aouisdbject
to ingoing boundary condition at the horizon,

A~ e !~ (1273 (4.3)

asz— 1 (r, — —o), wherer, is the tortoise coordinate

ro= fo(;:(lslln (1_2) —2V/3tan fz] (4.4)

with the integration constant chosen so that the boundaryrjs-an.
The wave equation reads

(;jz[(l f)dA} [bZAzZMFZ(Z)— i }A—O (4.5)

Set
A= (1—2)719Be 1973 4/(2) (4.6)

12
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where | included a convenient factor @f'“?/2 so that only.(z) contributes to the conductivity.
The wave equation becomes

-3(1-2) " +2[92—-2(1+ 2+ 2)iw| &'
(3+22+2)(3+2+2+72)

2N 2022 i
+ (3PP F2() - (14 22+ 32w~ 3(1+z+2)

wz] o =0 (4.7)

Regularity of< at the horizonZ = 1) implies the boundary condition

(3—2iw) (1) + <b2AF2(1)—2iw—4g)2> /(1) =0 (4.8)

In the low temperature limit (largb), it is convenient to rescale— z/b, and solve as a series
expansion in 1¢?.

The zeroth order term (probe limit) is obtained by repladinigy Fy, for A < % (so thaty has
a smooth zero temperature limit),

"+ [PA -] A/ =0 (4.9)

where | used-(z/b) — F(0) = 1, for largeb. For 1< A < % there are two linearly independent
solutions,Z., distinguished by their asymptotic behavior,

oy ~ e 70 (4.10)
The general solution can be written as a linear combination,
o =Ctd, +¢c o (4.11)

Applying the boundary conditiorj (4.8) at horizon, we deduce
J’_
C e (4.12)
-
so at low temperatures,
ct<c (4.13)

i.e.,o/ — 0asz— o.
For scaling dimensioA = 1, one obtains the exact solution

o (2) = e Vi-0z (4.14)

(whereas#, (z) = e*V 1-&°b7) with arbitrary normalization, where | restored the scaling parameter
b.
Thus, the low temperature limit of the conductivity is

o(®) = c:b 1- 62 (4.15)

Notice thato = 0 for @ < 1, therefore the gap is

wy = (O1) . (4.16)

13
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At low T, corrections are- ¢'(e%), therefore

3(01)
2

Oo~e®/T | Ey= ~ 0.48wy , (4.17)
to be compared with the BCS result for the energy Bgp- wy/2 = 0.500.
For scaling dimension = 3 (BF bound),

A (2) = o/ (2) = Ai (bz— @&?) (4.18)

whereass, (z) = Bi(bz— &?).
At T = 0in the probe limit, the quasinormal frequencies have moved to the real akimgie
an infinite set of normal frequencies which are solutions of

Ai(—@%) =0 (4.19)

giving rise to an infinite tower of real frequencies determined by the sarbthe Airy function.
TheT = 0 conductivity in the probe limit is

i Al'(—0?)

o0 = G A =@

(4.20)
The normal modes are the poles of the conductivity. At zero temperdiures 0, except at the
poles ofJo whered o diverges as @-function. The gap is

Wy~ 1.5(03)5)%/3 (4.21)
At low temperatures,

3\ 1/3
<> (O3/2)%% ~ 0.20, (4.22)

7éb3/2 _(E T3/2
Oo~e 3 = &M g = 1

1
bis
to be compared with the BCS res&l = 0.5ay.
However, the system d@t= 0 is not physical in the probe limit, so there is no physical conduc-
tivity that has the poles found above. For a physical low temperaturensysate need to include
1/ corrections. These shift the poles off the real axis resulting in spikedéaconductivity of a
physical system.
To see this explicitly, consider the first-order correctdos’ which obeys the wave equation
1

- " A2 - -
3" +[z2— G0 = 3(1_23)%1;2% (4.23)

where

I = 2[92—2(1+ 2+ D)iw] ;Z+ 30%2(2F1(2) + 2) — (1+ 22+ 3D)iw (4.24)

Z(1-152—- 1272 -102)
3(1+z+2) @

(4.25)
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Figure 8: The imaginary part of the conductivity th= 3 using the analytic expression for the scalar field
(dotted line) compared with the exact numerical solutiariddine) at% ~.1 [E].

1.5F b 1.5F
1.0r B 1.0r
S 1 iy 05F
0.0 R — 0.0
-0.5F \ \ B -0.5F \ \
_10 . . . . _10 . . . .
0.0 0.5 1.0 15 2.0 2t 0.0 0.5 1.0 15 2.0 2.t
w w
<Ogp>?* <Ogp>?*

Figure 9: The imaginary part of the conductivitss.frequency ind = 3 using the analytic expression fér
at % ~ .05 (left),.04 (right). As the temperature decreases, poles move or t@#h axis |[|7].

The real frequencies found above get shifted away from the résgl ax

mBi(—&?) (1 dz

. . A2 . _ A2
3GA(—6?) Jo 1_Z3A|(bz W) AI (bz— 07) (4.26)

o=

This expression is valid for low frequencies and low temperatures. Aseae Up the system,
most modes disappear and we are left with a finite number of quasinormakmbleir number
decreases as we increase the temperature. Conversely, as wewondhdosystem, modes shift
toward the real axis, and we obtain an increasing number of spikes inrldecivity.

Figure[8 depicts the imaginary part of the conductivity at temperatyifg ~ .1 in comparison
with the exact numerical solution. The agreement is very good even lathégic temperature at
which only one quasinormal mode is left. Unfortunately, this is the low temperé&tnit attained
by numerical analysis as numerical instabilities prohibit one from lowerintgtih@erature further.
Using the above analytical results, one can see in fijure 9 the emerdearténoreasing number
of poles as one lowers the temperatureTtl; ~ .06 and.04. Finally in figure[IP, the lower
temperature /T ~ .01) result is compared with the zero temperature analytic expregsioh (4.20)
demonstrating convergence.
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Figure 10: Comparison of the imaginary part of the conductivitydia= 3 using the analytic expression for
F at{ ~ .01 (dotted line) and the zero temperature limit (solid lify)

For A > 3/2, the wave equatior] (4.9) is not valid because the scalar does not kaveoth
zero temperature limit. On the other hand the probe limit is physical down to zemetatures.
The potential

V = b2 2(1-2)F(b2) (4.27)
attains a maximum of ordé?2-2) for A < 2. Therefore, at zero temperature it has infinite height.
However, the width becomes infinitely narrow leading to a finite tower of paleshe conduc-
tivity (quasinormal modes). In the zero temperature limit, the number of modesasegs as one
approaches the BF bound and decreases away from it.

Similar results hold fod = 4. At the BF boundA = 2, in the probe limit, the wave equation
reads

A — %A’ —[b*Z - w?’A=0, (4.28)

whose acceptable solution can be written in terms of a Whittaker function,
A=W, , (b*7) (4.29)
T2

(The other solution diverges as— «.) At the boundaryZ — 0), it has a logarithmic divergence
which we need to subtract before we can calculate quasi-normal modebeanonductivity [[4].
The conductivity is then given by

N 2R i
with an arbitrarily chosen cutoff, where
N2
A2) = A + Apb?Z —Ao%bzzzln(bzzz) T (4.31)
Using the expansion for small arguments,
W,z , (b°7) = 2[4 [1+ @7 (2y - 1+In(b?2) + ¢(1- @?/4))] b’z -
T2 Q2T (—G2/4) 2 [
(4.32)
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V <Oy>

Figure 11: Oo in d = 4 using the analytic expression for the scalar field (dofiteel) lcompared with the
exact numerical solution (solid line) {t ~ .17 [
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Figure 12: Oo in d = 4 using the analytic expression fbrat Tlc ~ .1 (left), .04 (right) ﬂ'].

we deduce th@ = 0 conductivity in the probe limit
- 1 .. 1 a2
o() :@%—lw 2y—§+l,U(1—w /4) (4.33)

We have a pole ab = 0, as expected and an infinite tower of real poles determined by the zeroes
of the digamma (poles of the Gamma) function,

0= <é;?1/2 = 2\/ﬁ , N ::()a]v 27"' (4":34)

Again, these poles shift off the real axis in a physical system (quasialanodes) and result in
spikes in the conductivity, as can be seen in figlir¢s 11[and 12. Thetiar(alyphysical limit

#33) is plotted in fig[ 3.

5. Thenear-extremal limit

Next, | consider the other end of the rangeypi e., smallg. Whereas the probe limig, — oo,
corresponds to a Schwarzschild black hole, the slathit corresponds to a Reissner-Nordstréom
black hole near extremality. On the gauge theory side of the correspomdhis translates to large
chemical potential.
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Figure 14: A =1 (left panel) A = 2 (right panel). ]

Numerical studies show that an instability exists even when0 (see fig[34). It is not
clear what the underlying physical mechanism is on the gauge theomgr{teligh) side. Numerical
analysis is cumbersome in the sm@limit, so to understand this regime, | shall develop analytic
tools.

For definiteness, | concentrate dr= 3 and scalar mass? = —2, so that the possible scaling
dimensions ar& = 1, 2.

Above the critical temperaturd (> T.), we have¥ = 0 andy = 0. The field equationd (2.4)
reduce to

f2 PP? P
Vi L - / o _
w+[f Z]w+[f2 sz}w 0
cD//:O
Z o ' 3(f-1)
2P St =0 (5.1)

The first (scalar) equation has a non-zero solution only-afT;. The other two (Einstein-Maxwell)
equations yield the RN black holg (21 10) with= 3, whose Hawking temperature is given py (2.11)
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with d = 3.
To find the critical temperatur&, we need to solve the field equation fér
At extremality,
P2
Vi 3, T=0 (5.2)

The generateal solution to the field equation is

2/2 5 .
z [(z-z\239/1-z\% 2 iq o l-z
von o () () e e fee w2 e
(5.3)

wherez,. are the two complex roots df(z) (z- = z;), and

1 . /1+4¢?
o= iV (5.4)
2 2V/3
are the scaling dimensions of a scalar field in AdBace of effective mass

Mgy = M° + ¢ P P? = —2— 2¢° (5.5)

The radius of the AdgSspace iR = 1/1/6.
Since both scaling dimensions are complex, neither solution is regular atriliernaThis is
in accord with the fact that we are below the BF bound in Adface.
Near extremality,
2
% —3-4nT, , T.<1 (5.6)

The aboverl = 0 result [5.B) is still approximately valid away from the horizon.
Near the horizon, perform the coordinate transformation

71 e, (5.7)
3
The metric becomes
dg— 1 —(4nT)? (14 Q) dt? + dé? +dx? + (5.8)
672 ‘ 7(1+Q) '
where | omitted higher-order terms 1.
The electrostatic potential reads
21pT,
®= ng €7+ ... (5.9)
and the field equation for the scalar fieéldnear the horizon becomes
{A+ QW+ @+ )W+ S |1+ [w=0 (5.10)
3 1+¢ ’
where prime denotes differentiation with respec{ to
The acceptable solution is
i iq iq
W)= (1+ "W§F<— S I S > 5.11
({)=@1+7) T3 3 ¢ (5.11)
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arbitrarily normalized so that at the horiz&8/(0) = 1. The other solution is discarded because it
has a logarithmic singularity at the horizon.
It is easily deduced from the identity

F(a,B;y;X) = (1=X)Y " PE(y—a,y—B;y;X) (5.12)

thatW is real.

The two expressiong (3.3) anfd (3.11), which are valid far from andtheahorizon, respec-
tively, should be matched in the overlap region. To this end let « in the near-horizon region.
We obtain

~ F(—il—25+) 7% +cc. (5.13)
g iq
F(=01+ BN (=0 = 75)

This is to be compared with the— 1 limit of the expression[(5.3) which is valid away from the

horizon,
2V2—i

_ q
WA AL-2z,)5 <1L> T 1-2% 1cc (5.14)
1-2z,
The two expression$ (5]13) ar{d (§.14) agree in the overlap regiongdptb
V2—i
M(-1-25_ 21T\ % o /1-7.\ %5
A= ( - ) - ( c) (1-2,) 5( Z+) (5.15)
M6 +9r(-o.-4)\ 3 1-z

| have thus obtained a solution to the wave equation which is parametriZgd Bipere is also an
overall arbitrary multiplicative constant (since the wave equation is linegaighwt am not showing.
The critical temparature is fixed by imposing the remaining boundary considitos 0.

ForA = 2, at the boundary, we ha ~ 72, therefore

2v2—i
vs d i
A(=z,)% <L> T (—5 +2\/§q,—6 _ 'q-—za;—za> tcc.=0  (5.16)

7

By solving this constraint, one determinks In figure[I} | plot the scale invariant quantify/,/p

as a function ofy?. ForA = 1, the constraint to be solved is similar {o ($.16) and is obtained by
demanding¥ ~ z+ 0(Z%) near the boundary. Notice th@ — 0 asg? — —%1. To unerstand the
physical relevance of negatiwg, write the complex scalar in terms of real scalars?]aspe‘qe.
Then the action reads

Sicalar = % / d*xy/—g [0, WOHW + PW2 (3,0 — Ay)? — mPW?] (5.17)

Thus, 8 is a Stickelberg field giving mass to the vector potemjalvhen¥ condenses. One can
fix the gauge by settin§ = 0. Theng? < 0 implies a negative mass which would normally signal
an instability. However, there is no instability in AdS space as long as one @ty the BF
bound. Also notice that foq = 0, 8 decouples. It would be interesting to explore the physical
consequences in this case.

For a generair?,
3+2n?

4

q? > o (5.18)
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|

Figure 15: The critical temperatures. o for A = 1 (left panel) and\ = 2 (right panel) [B].

Figure 16: The energy gaps. ¢ for A = 1 (left panel) and\ = 2 (right panel) [B].

Below T;, one can use iteration to solve the field equations, as in the probe limit. This festhe

energy gap are shown in figurel 16. Evidently, the energy gap in urilisdiferges as we approach
the critical point ¢ — g2) andT, — 0. This should be contrasted with the valué 8btain in BCS
theory and~ 8 for A = 2 in the probe limit ¢(? — o, see fig[B).

6. Conclusion

Gravity is believed to provide @ualdescription of superconductors at strong coupling through
holography fiolographicsuperconductors). | used analytic technigues to probe low temperature
physics where numerical instabilities arise, in order to understargitiiead statef these systems.

In the probe limit (largey?, whereq is the charge of the scalar field that condenses), the energy gap
diverges for scaling dimensions below the BF bound. | showed analytiteltyat the BF bound
the energy gap also diverges (albeit very mildly), which is not easily seererically. | calculated
the conductivity analytically and showed that, as a function of the frequérftgs an increasing
number of spikes as one lowers the temperature at the BF bound. Themositibhese spikes are
determined by the zeroes of the Airy (digamma) function in 2+1 (3+1) dimessibalso found
an analytic relation between the energy gamnd the frequency gap in the conductivity which
differs from the weak coupling (BCS) resilg = wy/2 in condensed matter theory.

At the other end of the range of (near extremality), corresponding to large chemical po-
tential, | developed analytic tools to probe the— 0 limit and found a quantum critical point at
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g? = g2 where the energy gap diverges. It would be interesting to analyze this lirthief in order
to elucidate the underlying physical mechanism of the instability.

A lot of work remains to be done toward a more realistic descriptog.,, by incorporating
spatial dependence to account for the lattice structure, pseudogripg detc.
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