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1. Introduction

Progress in understanding duality between plart&r4 super Yang-Mills theory and super-
string theory inAdS; x S based on integrability opens up the possibility of computing various
observables exactly in ‘t Hooft couplimg or in string tensionéi;. Integrability controls scaling
dimensions)j(A) of primary operatorss; that determine the 2-point functiorig (x()) &'(x(2)))

[1]. The next step is to understand 3-point functigus(x™M) & (x(2)) Gy (X)) which, in addi-
tion to A, are determined by non-trivial coefficient functioBgx(A). Higher-point correlation
functions, though in principle dictated by the OPE, are much more complicateéx&mple, con-
formal invariance implies that a 4-point correlatary (xV))...04(x*)) should, in general, contain
a non-trivial function of the two conformal cross-ratios £ 0,1,2, 3)

‘X(12>|2‘X<34)‘2 |X(12)|2‘X(34)‘2

AN B LA B AN I o (i) — () _ ()
T XBRxRT P X1 x @32’ Xm™ = Xm —Xm (1.1)

Ui
andA. Correlators of primary operators are natural observables in CFaddition, in a gauge
theory, one may consider expectation values of Wilson loops. An importasg ofahese, related
to gluon scattering amplitudes (see [2, 3, 4] and [5] for reviews), gpe@ation values of Wilson
loops in the fundamental representatid¥,) corresponding to polygons built out of null lines with
n cusps (located afx\h}, i = 1,...,n with [x+D]2 = 0, x"™Y = x(¥)). They were previously
studied at weak [6] and at strong [7, 2] coupling. Conformal invaeaficoken by the presence
of the cusps in a controllable fashion) implies [9] that foe 4,5 these expectation values are
fixed functions ofx() (depending on a fewA-dependent coefficients, in particular, on the cusp
anomalous dimension [10, 11]) while far> 5 they should depend om3- 15 cross-ratios of the
cusp coordinates. The first non-trivial exampléVg) which is expressed in terms of a function of
A and three cross-ratios. As suggested in [15], there is a close relativadaecertain correlators
of local (BPS) operators and expectation values of cusped Wilson:laamsrelator

Kn = (6(xD)...0(xM)) (1.2)

of primary operators (e.g., the highest weight part of 20’ scalar) locatpositions of the null cusps
is proportional to the expectation value of the null polygon Wilson loop in th@tdepresentation
(or to (W,)? in the planar approximation we will consider here). More precisely,

n
lim Kny/Kno= (Wh)2,  Kno~ |_||x(i’i+1)|‘2+ (1.3)
Xt —0 i=

is the most singular term in the tree-leval £ 0) part ofKp,.

Here we shall review the study [16] of a new observable that involvésdimcal operator and

a cusped Wilson loop, i.eMWh&'(a)) wherea is position of the local operator. One motivation is
that such correlators may lead to new simple examples where one may be albéggolate from
weak to strong coupling. In particular, in the first non-trivial case 4 such correlator happens to
be a function of jusbne non-trivial conformal ratio formed from the coordinates of the cugps
and the operata, (for n > 4 it will be a function of 31— 11 conformal ratios). For comparison, in
the case of a circular Wilson loop (which, in fact, may be viewed as-areeo limit of a regular null
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polygon) the dependence of the correlaitt, &'(a)) on the location of the operataris completely
fixed by conformal invariance. Determining such a function (both at vesakat strong coupling)
should be easier than the function of the two conformal ratios in the 4-poirglator case or the
function of the three conformal ratios in the 6-cusp Wilson loop case.

Another motivation to study such “mixed” correlators is that they may shed figireon the
relation [15] between the correlators of null-separated operators aspkd Wilson loops men-
tioned above. That relation was verified at weak coupling, but chedkiegplicitly at strong
coupling remains an important open problem. For example, one may start (nith B -point cor-
relator and consider a limit in which ontyof the locations of the operators become null-separated
and attempt to relate this limit th\,&'(a)) with a= x("D.

More explicitly, since the derivative of a correlator over the gauge ogorings down a
power of the super YM action which is the same as the integrated dilaton opéhatoelation

(O(D)...0XM)) ~ (Wh)? (1.4)

implies that

(G(x)...0(xM) / d*a Ggii (a)) ~ 2(Wh) (Wh / d*a 0y (a)) . (1.5)
Assuming that the integral over can be omitted and, furthermore, the dilaton operator can be
replaced by a generic local operator one may conjecture that

(O(XDY..0XM) G(a)) ~ W)Wy (), (1.6)

i.e. that
im (O6Y).O0XY) o@) - (W O(@)
XO—x0j-0  (O(xD)...0(xM)) (Wh)

In Section 2, we shall use general symmetry considerations to determirteuties of the corre-
lator (2.1) of a nulin-polygon Wilson loop and a conformal primary operator. We shall explicitly
discuss the case of= 4 where the result will be expressed in terms of a funcioaf only one
non-trivial conformal ratio (2.12) depending on the locations of theatperand the cusps. Taking
the |a] — oo limit then determines the corresponding OPE coefficient [12]. In Sectioe 3hall
explicitly compute ther = 4 correlator at strong coupling using semiclassical string theory methods
[12, 13], i.e. evaluating the vertex operator corresponding tmn the string surface [7, 2] ending
on the null quadrangle. We shall explicitly determine the strong-coupling fafrthe functionF

for the two cases: whed? is the dilaton or is a chiral primary operator. In Section 4 we turn to the
evaluation of this correlator at weak coupling, i.e. in perturbative gaugeryh In Section 5 we
shall mention some open questions.

1.7)

2. Structure of correlation function of cusped Wilson loop and a local operator

Below we will consider the correlation function

Mho'(a))

€ (Wh,a) = W7

(2.1)



Correlation function of null Wlson loop A.A. Tseytlin

whereW, is a polygonal Wilson loop made out ofnull lines and¢ is a local scalar operator
inserted at a generic poiat= {an} = (ap,a1,a2,83). While the expectation valug\;,) of such
Wilson loops is known to have UV divergences due to the presence outps ¢10, 11, 6] (en-
hanced in the null case) we will see that the ratio (2.1) is finite, i.e. doegqoire a regularization.
As follows from conformal symmetry, the non trivial part §\,,) depends only on the con-
formally invariant ratios constructed using the coordinates of the cugps & number of such
conformal ratios fom > 5 is 4n— n— 15= 3n— 15. Here 4 stands for the total number of co-
ordinatesn is the number of null conditions on the polygon lines and 15 is the dimension of the
conformal group. Furthermore, we expect (2.1) to be finite, sincagirees from the numera-
tor will be canceled by divergences from the denominator. The numberl® of independent
conformal ratios is exactly the same as the one that would appear in a tmradla > 4 primary
operators located at the corners of a null polygon. In general, thetsteuof n-point correla-
tor (0(x)...0(xM)) is fixed by conformal symmetry up to a function of conformal ratios. The
number of these conformal ratios is always giverchy= 4n— y,, where 4 is the total number of
coordinates ang, is the number of generators of the conformal group broken by the psea# the
local operators. Fan= 2, 3, 4 we havg, = 8,3 = 12 andy, = 14 so that, =0, c3 =0, ¢4 = 2.
A random configuration of > 4 points breaks the conformal group completely, yg= 15 and
thus forn > 4 we havec, = 4n— 15. If the operators are located at the corners of a null polygon
we have to imposea additional constraints which givel = 3n — y, for the number of conformal
ratios, i.e.ds = —2, d5 = 0 and thugd, = 3n— 15 forn > 4. Adding an operato¢’ in (2.1) at a
generic point brings in 4 parameters so tidi\y, a) with n > 4 should be a non-trivial function of
3n— 11 conformally invariant combinatior constructed out of the coordinate§ of then cusps
and the pointa,. This is, of course, the same as the number of conformal ratios parang@isin
correlator ofn+ 1 operators with only points being null-separated,

Chi1—N=4(n+1)—15—n=3n—11. (2.2)

In general,%’(Wh,a) should be a function ofi distancesa— x| and 2n(n — 3) non-zero “di-
agonals” of the null polygorx() — x|, i # j+1. We shall use the notationx — X |> = (Xm —
X% = —(Xo — %)% + (x1 — X))% + (X2 — X5)2 + (X3 — X5)2. It should also transform like the op-
erator&'(a) with dimensionA under (i) dilatations and (i) inversions, i.e. & — h=2%¢ under

x — hxl), a— ha, and (i) ¢ — |a?2¢ underam — -, X — ‘;jf—f'f'z The largela| behavior of

% can be fixed by consistency with the expected OPE expansion: for smatinNdlep one may
represent it in terms of a sum of local operators [12]

m> :1+ch & O(0) + ..., (2.3)

where r is the characteristic size of a loafj, are conformal primary operators with dimensions
Ay, and dots stand for contributions of their conformal descendants. Jakepositiora of the
operatord to be far away from the null polygon one should then get

MWho(a))

Whot@)) oM 0)e@) ~ —

o) ol e @4)
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where 67 conjugate to¢ is among the operators present in (2.3). Since all distahzces<(")]
between the operator and the cusps should appear on an equal foiiagggests the following
ansatz

ZF(a,x)
Mila—x®[ie’

% (Wh, ) = (2.5)
where.Z is finite in theéa] — o limit, i.e. it may depend oma— x| only through their ratios.
The dependence of on |[x!) — x| is constrained by the transformations under dilatations and
inversions mentioned above which implies that under these two transformatgosisould have

(i) Z -7, (i) 7 — (xY]... xV|)~"Z . (2.6)
We are led to the following expression for (2.1)
n XD () sd
%(Wnaa) = |_|I<J : F(le--aZSnfll)- (27)

ﬂE:l’a—X(k)\%A

In general A andF in (2.7) may depend also on the coupliagi.e. they may look different at
weak and at strong coupling, but the general structure (2.7) shouldibersal.

The same structure (2.7) follows also from the general form of the kedoreof local operators
if the relation (1.7) is assumed to be true. As is well know, conformal inveeamplies that a
correlator ofg primary operatorg’;(x)) of dimensiongy; at generic positions should be

q

(O1(xY)...0(XV)) = Ty Fg(U, s Uey) ,  Tq= [ IXV —xD|7 (2.8)
<]
2 1 3
Vlj:q_2<Ai+qu_1k21Ak>7 C4=2, Cq>4=4q9—15, (2.9)

where F is a function of conformally-invariant cross-ratios. Then Considegrgn-+ 1 with n
operators being the sam@, = &, A = Aand Oni1= 0, Dni1 = A we find

Tni1 |_|in<j |X(i) *X(j)‘n(nal)A n+1
= — a=x"Y (2.10)
Tn iy [a—x®[a8

To get a non-trivial expression in the null-separation it — x(+2| — 0 we will need to assume
thatn of such vanishing factors in numerator of (2.10) get cancelled agamgasfactors in some
cross-ratios contained imF; /F,. That will change the powers of the remainiég(n —1)—n=
In(n— 3) non-zero factorgx —x()| in (2.10) and also reduce the total number of non-trivial
conformal ratios (now denoted ldy) by nas in (2.2). The result will then have the same form as in
(2.7). Indeed, the combination one needs to multiply (2.10) by to cancel tighirag|x(1) — x(+1) |

factors in the numerator and to match the prefactor in (2.7) with= % is (x(M+D) = x(1)

I—lin<jfl |X(i> _ X(J) | n(n—lz)l(n—s)A

> (2.11)
M, XK — x(k+1) |52
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Let us now look in detail at the first non-trivial example:= 4.> Here the number of variable
is3x4—11=1, i.e. F should be a function of aingle variable{; = {. Forn=>5 the number
of conformal ratios is already 4. This makes the correlation function (&r) £ 4 a particularly
interesting and simple case to study.
As it follows from the above discussion, this varialjlean be viewed as the unique conformal
ratio which one can build out of the coordlnabé% (i=1,...,4) of 4 cusps and the locatian,
of the operatonﬁ’ Assumlng that the nuII quadrangle is ordered@éx @ x® x4 (i.e. |xV
X212 = |x® —x®))2 = |x@) —xW 2 = |x¥ —xV|2 = 0) it is easy to see that the unique non-trivial
conformally invariant comblnatlon of these 5 points is

|a_x(2)|2 ’a_x(4)’2 ‘X(l) —X(S)‘Z
|a—x(1)‘2 ’a—x(3)’2 ‘x(z) —x(4)‘2 '

(= (2.12)
In this case there is also a unique choice fortledependent factor in (2.7){xM) — x®)||x(?)
x4 |)2/2 that ensures the right dimensionality of the result. We conclude that thelation func-
tion (2.1) forn = 4 should have the following general form

(|X(1) —x3 | ’)((2) — x4 ’)A/Z
Mits la—x0[4/2 ’
whereA is the dimension of the operatér and( is given by (2.12).
As discussed above, the same conclusion applies also to a correlator afvaleot null-
separated operators and an extra operatomdeed, fom = 4 it is easy to see that (2.10) is to be
multiplied, according to (2.11), by
(\X(l) —x®3 , ‘X(Z) —_ x4 ‘)A/S

% (Wy,a) = (2.13)

(2.14)

which is a product of two cross-ratios in power6.

It is interesting to note that depending on jose conformal ratio, then = 4 correlator (2.13)
is an “intermediate” case between a 3-point functigtix)) o' (x?) & (x(3))) which is completely
fixed by conformal invariance (up to a function of the coupling) and aegert-point function
(0(xW)...0(x¥)) which depends on two conformal ratios.

In the limit when|a| — o we get

C
©'(Wa,8) a0 = [a (2.15)
(1) _x(3))2
_ NCINCINCINY:. _ X =xXE
- (‘X HX X |) F(ZOO) 9 Z°° |X(2) —X(4)|2 9 (216)

where C thus determines the corresponding OPE coefficient in (2.3).

Another special limit is when the position of the operator approaches thédoaaf one of
the cusps, e.ga — x(. Settingam = X&) + £am, € — 0, and using that the vectox&) — x@ and
xB —x® are null we find from (2.12) thaf is, generically, finite in this limit and is given by

4q - X(l) — X(Z) a - X(l) — X(4)
( - ) a-( ) C ag=x®
a |x(2) — x4 |2

oy = +&am . (2.17)

1The case oh = 3 is trivial as there is no solution for coordinates of a null triangle in reaWttkowski space.
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Similarly, the limit of the pre-factor in (2.13) is

2. (2.18)

4
|_| |a_ X(i) |A/2 ) N 4EA a - (X(l) _ X(z)) a- (X(l) _ X<4)) |X(1> _ X(3)
i: a—X

Thus
1

(reg)
Cg(w“ 7a)a—>x(1) ~ ’a_x(l)’A :

(2.19)
Note that this is the same behavior that would be expected if the Wilson loopre@esed by a
product of 4 same-type operators (e.g., scalar operators as in i @ositions of the cusps:
Wy0(a)) — (O(x1)...0(x#) ¢ (a)). Then the limita— x(Y) would be determined by the OPE,
O(xW)y o(a) ~ mé’(x(”). One can explicitly verify [16] the general form (2.7),(2.13) of the
correlator (2.1) at leading orders in the strong-coupling (section 3jtendieak-coupling (section
6) expansions and compute the corresponding funétion

3. Correlation function of 4-cusp Wilson loop with alocal operator at strong
coupling

Here we will compute (2.1) fon = 4 corresponding to the 4-cusp Wilson loop at strong cou-
pling. The result will have the expected form (2.13) and we will explicitly datee the function
F({). We shall always consider the planar limit of maximally supersymmetric Yang-khiésry
and assume that the operat@lis such that for large ‘t Hooft coupling its dimensiom is much
smaller thanv/A. In particular,& will be chosen as the dilaton operator or the chiral primary op-
erator. We shall follow the same semiclassical string theory approach #satised in the case of
the circular Wilson loop in [12, 13] (see also [23, 24, 22, 26, 14]).ttimg-theory description the
local operatow’(a) is represented by a marginal vertex operator [27]

V(a) = [d%E VX (&), (3.1)

whereX stands for the 2d fields that enter théSs x S superstring action. In general, (2.1) is then
given by

& (Wh,a) = <W1> Jiax] vy e . (3.2)

Herel is the string action proportional to the tensiba= 2—@ and the path integral is performed over
the euclidean world-sheets with topology of a disc (we consider only theupkgproximation)
and the boundary conditions set out by the Wilson looz @at0. Considering the limit when
VA > 1 and assuming that the operator represented by V is “light” [22] (i.e. thesponding
scaling dimension and charges are much smaller tHan) one concludes that this path integral
is dominated by the same semiclassical string surface as in the absence ofag,inghe case of
(Wh). The resulting leading-order value of (3.2) is then given by (3.1) etadlian this classical
solution, i.e.

“(Wha) | = (/dzf VIX(£):a)) (3.3)

semicl.
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One simple case is when the local operafois the dilaton operato@g; ~ tr(F3,Z)) + ...
(where we included also the R-chargelependence). The corresponding vertex operator has the
form [22]

Vil (@) = Cdil /dzf {Zz—f—(xmz—am)z}A X! Uil , (3.4)
X1 = (cosd e‘¢)j , A=4+]j, (3.5)

wherej < VA is an angular momentum alor®j in . The operatoly; equals theAdSs x S
Lagrangian

. 1
Udil = & = Znas, + Lo +fermions,  Zags, = ?[(00,2)2 + (OaXm)?] - (3.6)

Furthermorecg; is the normalization coefficient given by [12, 23, 22]

Cail = gy VD1 +2)(1+3). (3.7)
Inthe case of =0
o B Ve VA
j=0: A=4, cgi= N (3.8)

Let us start with the case when the Wilson loop is the regular (i.e. equalysidedrangle with 4
cusps. The classical euclidean world-sheet surfadel®; ending on this Wilson loop was found
in [2] and is given by

r

2= Coshu coshv’
X1 =r tanhu, Xp =rtanhv, Xx3=0; U VE (—0o, ). (3.9)

Xo = r tanhu tanhv,

Herezis the radial direction of the Poincare patchAafSs andxm = (Xo, X1, X2,X3) are the coordi-
nates on the boundary. The parameter r corresponds to the ovetallb$the loop. To simplify
later formulas we will set £= 1 (it is easy to restore r by simply replaciag- r—1z, xm — r~—xm).
The cusps correspond ta,Vv) — (£, +00) and thus are located at

X(l) = (17 17 17 0)7 X(Z) = (_17 17_17 0)7
x3) — (1,-1,-1, 0), x4 — (-1,-1,1,0), (3.10)

Substituting (3.10) into (2.12) gives the following explicit form of the confat ratio { that is
expected to appear in the correlator

(39— 20 —a1+82)(30— a0+ a1 — a)

(= , (3.11)
(30+a0 — a1 — &)(30+ a0 + a1 + &)
q=1-a3+a’+a3+a3. (3.12)
Substituting the classical solution (3.9) into (3.4) we obtain
@ o [T (coshu coshw)1 4
Can (W, 8) = 2¢ai /—oo dudv [q—ZaltanHJ—Zaztanthr 2aotanhutanhv] ’ (3.13)

2Here(u,v) cover the full plane, but since infinity is not identified the world sheet hpslogy of a disc.
3Below in this section the expression for a correlator will always stand féedtdingy/A > 1 value.
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where q is given by (3.12) and we used the fact that on the solution (B&9hadJy; = 2 (note
also that herg d?¢ = [dudv). The integral is straightforward to do and we get

~16aa; — 8o — (O + 483 — 4a2 — 4a3) logl
L 12(qap — 2a1a)3 '

Can (W, 2) = cg (3.14)
where we have used (3.11). The result is thus finite, in contrast to theohtbe 4-cusp surface
that requires a regularization [2]. The result (3.14) is indeed consigtiéim eq. (2.13) forA =4
with

F(O) =% 7 fl-20 -1+ (T + Dlog2). (315)
In the limit |a] — o (see (2.15)) we gef., = 1 and thus
r 32cqi r*
Can (W, a), . = 5 ‘a"g . (3.16)

which determines the OPE coefficient@j in the expansion (2.3) of the Wilson Ioml(reg) A
In the limit whena approaches a cuspf = xﬁ,}) +&dm, €—0) (see (2.17),(2.18)) we get

2 1
E W(reg) a _“
ail (W™ @asn = ~3c2 (303 + a3 + (a1 — 02)2+ 2a0(a1 + a2)2
«[1- o+ (a1 + a2 — 00)’ afw%w%aé} (3.17)
—302+ a2+ (01— a2)2+2a0(01+0a2)  2(ao—a1)(ap—a2) ]’ '

The behavioe 2 = ¢4 is in agreement with the general expression (2.19).

The above calculation can be generalized to the case of an irregulaiaqgée i.e. the one
with unequal diagonals# t. The corresponding solution can be found by applying a conformal
transformation to (3.9) [2]

z= f(u,v) coshu coshv, Xo =/ 1+4b? f(u,v) tanhu tanhv,

x1 = f(u,v) tanhu , X2 = f(u,v) tanhv, x3=0,
r
= <1. .
fuv) 1+ btanhu tanhv’ bl=1 (3.18)

b = 0 corresponds to the regular quadrangle case (3.9). The cuspsuae by taking(u,v) —
(400, +00) and are located at (cf. (3.10); here we sett)

y V142 1 1 0 2) V1i+b2 1 -1

=1 p 1apiap Y =T e 1o Y
(3):(\/1+b2 -1 -1 ) X(4):(— 1+b2 -1 1 0) (3.19)
m 1+b " 1+b’ 1+b 77 ™ 1-b '1-b’1-b " '

The Wilson loop is the quadrangié? x? x(3 x4, After the same steps as in the case of the
regular quadrangle we find that the resulting expression for the Wilsgndao indeed be written

4The same expression can be obtained by takéhtarge directly in (3.4) and doing the resulting simple integral

~ |al =8 [ d¢ 2.



Correlation function of null Wlson loop A.A. Tseytlin

as (2.13), whera = 4, x()’s are given by (3.19) and

64r*
XV =X P|x& — 2 = A2 (3.20)
e T4
F(Z)—?W[—Z(Z—lH(ZH)IOgZ]- (3.21)

The functionF () is thus the same as in (3.15), as expected.
The above discussion can be generalized also to the case when the diltatoo(3.4) carries
an angular momenturpalongSt ¢ . Here

i 27TCqi F2] \2 1AA0+1
G, 20) = s () (g5 e, (3:22)

whereF; is the hypergeometric function agmis a function ofag given by

28y  2a9V/1+b2—Db(1+aj)

= . 3.23
=i a o (3.23)
To extractF in (2.13) we have to multiply (3.22) by the factor
4
‘X(l) —X(S)‘iA/z‘X(Z) _X(4)‘*A/2 rl‘xr(]l,l) _ am’A/z_
i=
This gives
A
_onia. (T N2 0 o 1AA+1 5
F({(p)) =2 2"""mcq <F[A2+l]) (1-p%) 2F1(272,72 P (3.24)
Finally, we can express in terms of{
1-V7 (3.25)

p:1+\/?'

One can check that settirjg= 0, i.e. A = 4, gives back our earlier expression (3.21).

A similar computation can be done with the chiral primary operatpe trz! instead of the
dilaton operator. The bosonic part of the corresponding vertex tgrdd®2, 23, 22] can be written
in a form similar to (3.4)

V-(a):c-/dzf [;]Axiu (3.26)
A=, = amN j(i+1), (3.27)
where X is the same as in (3.4) while the 2-derivativepart is more complicated [26]
1
U=U;+Us+Uy, U= [(Ga%m)? — (0a2)?] — L, (3.28)
_ 8 a2 2 _ 2
Uz = s e —ap X~ 870062 = [0m—am)dosal?]

_ 8(|x—a?-2)

= m (Xn — @n)OgXn Oq Z. (3.29)

3

10
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For simplicity, we will consider the case of the regular 4-cusp Wilson loop;ctreesponding
solution (3.9) does not deepend Shcoordinates so X= 1

To find the functionF({) in (2.13) it is sufficient, as in section 3.1.3, to choose the special
case ofa= (ap,0,0,0). Then

“1qj+2
/ dudy (coshu coshv) }J

: (reg)
I 1+p tanhu tanhv

X [l+p — (sinhu sinhv+ p costu cosh/)z} (3.30)

For an arbitraryj this integral is rather complicated but can be easily done for specific vafues
For instance, foij = 2 we obtain:

4cy p+1

(reg)
W, = I . 3.31
As a result, we find (cf. (3.15))
. C
j=2: F(Q) = 52 Zﬁ log? . (3.32)
4. Correélation function of cusped Wilson loop with dilaton operator at weak
coupling
Let us now consider the computation of the correlator (2.1)
Whd (a))
C(Wh,a) = —— 2L 4.1
( n ) <Wn> ( )

in the weakly coupled plan&U (N) .4 = 4 supersymmetric gauge theory. Here the expectation
values are computed using gauge theory path integr&l and

1 iea g
Wy = Str &2 g9y AmdX™ (4.2)

Here we rescaled the fields with the coupling consta(with A = g?N) so that the /" = 4 La-
grangian is
1
Lyoa= —Ztr(F,Tzn +..)) (4.3)

with g appearing only in the vertices. We use the conventions
An=AT' . tr(T'TH=05", rs=1,...,N>°—1. (4.4)

The pathy in (4.2) is the union ofi null segments of the form

(

%ﬁ _Xm+txm Y

—xi), te0,1], (4.5)

5The additional coupling to the scalars in the locally-supersymmetric Wilsqm[88] drops out because the null
polygon contour consists of null lines.
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wherexrqq) (i=1,...,n) denote the locations of the cusps. The dilaton operator (which is a supers
metry descendant ofZf) is essentially the#” = 4 gauge theory Lagrangian up to a total derivative
(see, e.g., [34f)

Ogit = Cqif tr(F2,+ @' 0% + giy-dy+...), (4.6)
where®' are the scalars angl are the fermions and we did not write explicitly the terms of order
g andg?. The normalization coefficiert; is given by [35]

.
Cil = ——— . 4.7
e (4.7)
The leading order contribution to (4.1) (to which we will refer as the “treelleane) is propor-
tional tog? as one can easily see from (4.1), (4.2). To compute (4.1) to this ordeavesd expand
W, to orderg?. Hence, we can set= 0 in the Lagrangian (4.3) and in the dilaton operator (4.6).

Therefore, for the purpose of computing the leading order term in (4elgam take
Ogit — Cail trF2, = 264i1 (OmALO ™A™ — 9mALO"A™) | (4.8)
The gluon propagator in the above conventions is
1
(Am(X)AN(0)) = 4 X ’2 Nmd's. (4.9)

We will see that just like at strong coupling, the weak coupling correlatat) (4 finite, i.e. we do
not need to introduce a UV regularization in (4.9). Also note that to comput t@drderg® we
can replacéW,) in the denominator with unity. Therefore, we obtain

%ﬁ%ww,)—AM@ammmm

_ 20d|| 9 9]{& X)dx j{Al x)dx! (0 (GpALPAT — GALIIAP) (@) . (4.10)

The path ordering symba¥ means thax’ in the second integral is placed between the origin (an
arbitrary point along the loop, for instance one of the cusps)xambw using that

1 0 Mgd™® 1 (@—X)pNkgd"™

S e
X)0pA4(@)) =~ 772 daPla—x2 2m |a—x* (4.11)
and performing the Wick contractions we obtain= g?N)
(e?) _ Cdn/\ X)
ai (Wh2) = ?{7{ la— x|4|a x’|4dx dx
)-dX (a—X)-dx
B |a x\4 la— x| D (4.12)

Let us now specify ton = 4. Computing the??-ordered integrals in (4.12) we obtain for generic
locations of 4 null cusps

it A XU —x32 |x@ —x4)2
2t Lafa—x0p2

6Up to the scalar and the fermion equation of motion terfag is thus given by the YM Lagrangian plus the
Yukawa and the quartic scalar interaction terms.

ngll( (reg) ,a) =—

(4.13)
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This agrees with the expected structure (2.13) of the correlator (foritanlA = 4) with the
leading weak-coupling term in the functiéi{{) thus being simply a constant
Cail A
F({)=- o (4.14)

Note that the structure of (4.13) is exactly the same as the one appearingliiabje correction
to the 4-cusp Wilson loog\s) (given by a scalar box diagram). Indeed, integrating (4.13) aver
we get the integrated dilaton operator or gauge theory action insertion inWitben loop, which
is proportional to derivative ofW;) over gauge coupling [9, 11]. This observation may allow one
to extract higher order corrections to (4.13) by comparing to integrahkigber-order corrections
to <W4>

When computing the analogs of the integrals in (4.12nfor4 we have two different types of
contributions. The first one is when the two line integrals are taken alongthe segment. Let us
call this contributionT;; where the-th segment is parametrized by (4.5). After some computation
we obtain (up to the obvious factelréd”TA)

1 [(a_x(i)) . (X(i+1) _X(i>)]2

2[(a—x0)- (a—x0))%((a—x) (21 —a—xD)]2’
The other type of contribution appears when the two contractions are maliféeirent segments.
In this case we obtain

Ti(a) =— (4.15)

(a—xW). (a—x) (x(+D) — x0) . (x(i+D) — x(D)
la—x0 2 ja—xD2 (a—xD)- (a+x' 2x (+1) (a—x() - (a+ x) — 2x(+1))
(a—x) (<0+D —x0)) (a—x) (x40 —x)
Cla—xO2ja=xD 2 (a—x0) - (a+x) — 2x(l+1)) (a—x() - (a+x0) —2x(i+1)

Tij =

(4.16)

These expressions are completely general. Hence, the full answieh(iwhather lengthy) will be
the sum of such contributions.

Let us specify (4.15), (4.16) to the case of regular polygons with ev&des with the cusps
located at

0 ((—1)‘ \ /1—co§2r?’ cos(’ﬁT(Zin+ 1))7 sin(Z(2i +1))7 o) | 4.17)
1+cosT! cosy cosh
The problem is purely combinatorial, but there does not seem to be a simpégaat formula for
genericn. It is relatively easy, however, to compute the OPE coefficient by plattiagperator
very far from the loop: takinga| large we obtain (cf. (2.4),(2.15))
C 26411 A m
]a7|r;3’ Ch=— C;i": nztanzﬁ.
For generic location of the dilaton operator one can check that the resolssstent with the gen-
eral expectation (2.7). For instance, foe 6 and the case of a regular polygon the result depends
on three conformal ratios (since the polygon is regular only three ¢aiass are independent) and
we obtain

Gail (W™ ) g =

(4.18)

F(Z ~ Cait A L0G(G-)+33-03
1 Z27Z3) - 27'[4 1/3
L3338 - 2% (4ads(ee - ) - B+ 45|

(4.19)
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where the conformal ratios are defined by

‘X(l) _X(3)‘2’a_x(5)’2 ’)((2) _X(4)’2‘a_x(6)‘2
Q= ‘x(l) —x(5)‘2’a—x(3)’2 ’ (2= |x(2)—x(6)|2|a_x(4)|2 ’
B ‘X(l) —x(4)\2]a—x(3)]2|a—x(6)|2
£ ‘x(3)—x(6)‘2’a x(l)’2|a x(4)|2 (4.20)

5. Concluding remarks

Here we considered, following [16], the correlator (2.1) of a mgfiolygon Wilson loop with
a local operator, such as the dilatafy| ~ trF2, +...)or a chiral primary operator. Based on sym-
metry considerations we determined its general form (2.7), expressingeitrirs of a functiorF
of 3n— 11 conformal ratios involving the position of the operator and the positiotseo€usps.
In the first non-trivial case afl = 4 this functionF depends on just one conformal rafianaking
the corresponding correlator (2.1),(2.13) one of the simplest nonitokservables that one would
like eventually to compute exactly for all values of the ‘t Hooft couplhgThe value ofF deter-
mines, in particular, the corresponding OPE coefficient (2.16) in thensipa (2.3) of the Wilson
loop in terms of local operators.

We have found the leading terms i both at strong coupling (using semiclassical string
theory) and at weak coupling (using perturbative planar gauge the@tyeading order at strong
coupling we find thaF ~ v/A and has non-trivial dependence §x3.15) while at leading order in
weak coupling= ~ A and is constant (4.14). In the case of more general dilaton operatorevith n
zero R-chargg (with A = 4+ ) the strong-coupling expression féris given by a hypergeometric
function (3.24). Similar results were found in the case of the chiral primpeyator (3.30),(3.32).

It would be important to compute subleading terms in the two respective erpans

Frog = %[\f/\ fo({) + f1(Z)+%fz(Z)+...] , (5.1)
Fre1= %[)\h0+/\2h1(Z)+)\3h2(Z)+...] : (5.2)

Another open problem is the extension to the case ohthet cusped Wilson loop.

Let us note that in the case of the dilaton operator integrating (2.1) oveothegowe get the
insertion of the action and so the resulting correlator should be propadrtmaaderivative oveiA
of the logarithm of the null-polygon Wilson loop. Thus, in particular, the kisolge of (W,) at
higher orders im provides a constraint on integral of (2.1) at lower order ordekjnn general,
this is not, however, enough to determine the functimtg ) in (5.2).

Part of the original motivation for the present work was to shed more lightherrelation
[15] between a correlator of null-separated local operators and tleegf corresponding cusped
Wilson loop. We conjectured a more general relation (1.7) connectinglators with one extra
operator at an arbitrary position to the correlator (2.1) we consideredsmtper. It would be
interesting to try to verify the relation (1.7) for= 4 at weak coupling.

There are several possible extensions of our present work. Oneomsyder the case when
the local operator is not “light” at strong coupling but is allowed to carry a large charge (e.g.,
R-charge or angular momentum3fso thatA ~ v/A ). As in the circular loop case in [13], then the
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semiclassical surface will need to be modified to account for the preséitice sources provided
by the vertex operator V in the string path integral (see also [14]).

One may consider also a correlator of a Wilson loop with several “light%( v/A ) oper-
ators. At leading order in strong-coupling expansion such a corretdtonld factorize like in
the case of the correlators two “heavyt & v/A ) operators and several “light” ones [22, 26], i.e.
MhO(a1)0(az)) ~ (Wh@(a1)) (Wh@ (a2)). This follows from the fact that fot/A > 1 these corre-
lators are found, like in (3.3), by evaluating the corresponding vertexratprs on the world surface
ending on the null polygon that defines,.” The study of such more general correlators may be
of interest in trying to understand better the relation [15] between thelatsreof null-separated
local operators and the square of corresponding cusped Wilson loop.

Finally, let us mention some recent related work that appeared in [36837, 3
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