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Anomalies, instantons and chiral symmetry breaking at a Lifshitz point

1. Introduction

The axial anomalies arising upon quantization of massless fermions in a given gauge and/or
metric field background are deeply connected to the analytic index of the fermion operator. The
Atiyah-Singer index theorem asserts that the difference of positive and negative chirality normaliz-
able zero modes of the Dirac operator in a given background is provided by (one-half) the integrated
form of the anomalous axial current conservation law. This profound relation constitutes the back-
bone of our study and it can be easily established without knowing the local form of the axial
anomaly. It will be discussed first for relativistic fermion theories in four space-time dimensions
and then it will be generalized to non-relativistic models of Lifshitz type. Of course, the compu-
tation of the index relies on the form of the axial anomaly, which is a topological density given
by the Chern-Pontryagin class of the gauge and/or metric field background. The coefficient of the
anomaly turns out to be universal (it is the same for both relativistic and Lifshitz theories) in accor-
dance with the general expectation that the axial anomaly is an infra-red phenomenon in disguise.
Furthermore, if the index of the Dirac operator is non-zero, the corresponding axial charge will
not be conserved in time, leading to violation of baryon and lepton number in physical processes
within a given theory. These issues will be addressed in detail focusing on the similarities and the
differences exhibited by relativistic and Lifshitz quantum field theories.

The results we report in the following are restricted to four-dimensional theories and they are
based on our previous work on the subject [1, 2] to which we refer the interested reader for further
details. However, the presentation we adopt here is somewhat different emphasizing more the
general ideas rather than the technical details. Also, the instanton backgrounds on which the index
computations will be made are described in all generality in our work on gravitational Hořava-
Lifshitz models [3, 4]. References to other original papers can also be found there.

2. Relativistic field theories

First, to set up the stage, we consider the Dirac operator in a four-dimensional space-time
M4 with Euclidean signature which may also be coupled to a (generally non-Abelian) background
gauge field Aµ via the rule of minimal substitution

Dµ = ∂µ +
1
8
[γa, γb]ωµ

ab− iAµ . (2.1)

Here, ωµ
ab are the components of the spin connection with tangent space-time indices a, b and γa

are the corresponding Dirac matrices satisfying the anti-commutation relations

[γa, γb]+ = 2δab . (2.2)

In most applications, the four-dimensional metric will be taken to be of the special form

ds2 = dt2 +gi j(t,x)dxidx j . (2.3)

This is also appropriate for the description of Lifshitz theories satisfying the so called projectable
condition, which will occupy most of our attention later. In the relativistic case, however, the
space-time metric can be of general form.
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Then, the Euclidean Dirac operator and the associated γ5-matrix γ5 = −γ0γ1γ2γ3 that anti-
commutes with it assume the following form in the chiral representation, respectively,

iγµDµ = i

 0 Q−

Q+ 0

 , γ5 =

 1 0

0 −1

 , (2.4)

setting for notational convenience

Q± =
∂

∂ t
± iσIEI

iDi . (2.5)

In writing (2.5) we use the temporal choice A0 = 0 in the presence of gauge fields. We also use the
Pauli matrices σI as well as the inverse dreibeins EI

i associated to the metric gi j in (2.3) (summation
over the space indices i and the tangent space indices I are implicitly assumed). The 2×2 blocks
Q± are first-order operators mapping the two-component Weyl spinors Ψ± to Ψ∓ and they are
mutually related by conjugation as (Q±)† =−Q∓. The massless Dirac equation iγµDµΨ(t,x) = 0
acting on four-component spinors reduces to the following system of Weyl equations on M4,

Q±Ψ±(t,x) = 0 , (2.6)

whose number of normalizable solutions will be denoted by n±, respectively.
The index of the Dirac operator is defined as the difference between the number of positive

and negative chirality zero modes, i.e.,

Ind(D) = n+−n− = dim Ker Q+−dim Ker Q− = Tr γ5 . (2.7)

The last equality is actually a tautology following from the chirality condition γ5Ψ± = ±Ψ± by
taking the trace over the zero energy states in the fermion Hilbert space. One can extend the trace to
the entire Hilbert space without affecting the index because the non-zero energy states are always
paired and for them the difference between the two chiralities cancel. Thus, only zero energy states
contribute to the index. Since the zero modes of Q± are also zero modes of Q∓Q±, the index takes
the equivalent form

Ind(D) = dim Ker (Q−Q+)−dim Ker (Q+Q−) = Tr
(

γ5 e−τ(iγµ Dµ )2
)

. (2.8)

The operators Q∓Q± are elliptic and they are better behaved than Q±, since they are related to the
square of the Dirac operator as

−(iγµDµ)2 =

Q−Q+ 0

0 Q+Q−

 . (2.9)

The equality (2.8) is very useful for comparison with the axial anomaly computations. It holds for
any τ > 0 and it provides a regulated version of Trγ5. The trace is taken oven the entire fermionic
Hilbert space, since the non-zero energy states cancel each other.

The massless fermion theory with Lagrangian density L = Ψ̄iγµDµΨ exhibits an axial current
conservation law ∇µJµ

5 (t,x) = 0, where Jµ

5 (t,x) = Ψ̄γµγ5Ψ. There is an invariance of the classical
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theory that can be easily found by applying Noether’s procedure with respect to the chiral rotations
δεΨ = iεγ5Ψ. There is also an associated chiral charge

Q5 =
∫

d3x
√

detg J0
5 (t,x) (2.10)

which is conserved in time under the appropriate boundary conditions at spatial infinity (typically
the spatial slices are taken to be compact without boundary). Quantum mechanically, however,
the situation changes drastically as there is an obstruction to the axial current conservation law,
called axial anomaly. The anomaly is most conveniently described in the Euclidean domain after
Wick rotation of the time coordinate and it originates from the non-invariance of the fermionic path
integral measure (DΨ̄)(DΨ) under chiral rotations. Careful investigation of the partition function
shows that the variation of the action combines with the variation of the measure to produce the
anomalous conservation law

∇µJµ

5 (t,x) = 2 lim
Λ→∞

∑
n

ϕ
†
n (t,x)γ5 e−(iγµ Dµ )2/Λ2

ϕn(t,x) (2.11)

after introducing a cut-off Λ to regulate the infinite sum that otherwise is ill-defined. Here, ϕn(t,x)
are the eigen-states of the interacting fermion operator iγµDµ .

Integration over space-time is combined with the sum over n in (2.11) to yield the trace over
the entire fermionic Hilbert space of the theory. Thus, comparison with the index formula (2.8)
leads to the profound relation

Ind(D) =
1
2

∫
M4

dt d3x
√

detg ∇µJµ

5 (t,x) , (2.12)

which connects the physics of axial anomalies with the mathematical theory of Atiyah-Singer index
theorem for the Dirac operator. Clearly, if the index is non-zero, the axial charge Q5 will not be
conserved, leading to baryon and lepton number violation in the theory, as

∆Q5 = 2 Ind(D) . (2.13)

So far there has been no explicit reference to the form of the axial anomaly in the background
of gauge and/or metric fields. Likewise, there has been no reference to the Atiyah-Singer formula
for computing the index of the Dirac operator analytically. This step is crucial for telling the rest
of the story in physics and mathematics. Manipulating the regulated sum (2.11), it turns out that

∂µJµ

5 =
1

4π2 Tr(F ∧F) , ∇µJµ

5 =
1

96π2 Tr(R∧R) (2.14)

for the gauge and the gravitational field contribution to the anomalous divergence of the axial cur-
rent, respectively. The obstruction to the axial current conservation law can be easily guessed in
both cases. The anomaly should be a topological density built out of the field strength of the back-
ground fields, i.e., the curvature two-forms F and Rab of the gauge and metric fields, respectively,
so that the divergence of the axial current is a total derivative gauge invariant term. Furthermore, it
should be odd under parity since Jµ

5 is a pseudo-vector current. The only available such quantities
in four space-time dimensions are the characteristic classes Tr(F ∧F) and Tr(R∧R), where the
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trace is taken over the color indices of the non-Abelian gauge field (per flavor of Dirac fermions)
and the tangent space-time indices of M4, respectively. Then, it only remains to fix the coefficient
of the anomaly to complete the derivation of (2.14). The outcome is the same using either physical
or mathematical techniques to make sense of the regulated sum for Trγ5.

Soon after the discovery of instantons in four-dimensional gauge theories and gravity, the
question arose whether the index of the Dirac operator is non-zero on such topologically non-
trivial backgrounds. For non-Abelian gauge fields (e.g., SU(2)) on M4 ' S4, obtained as one-
point compactification of R4 by imposing appropriate boundary conditions on Aµ(x), the instanton
number k ∈ Z is provided by the second Chern number

k =
1

8π2

∫
M4

Tr(F ∧F) (2.15)

and, therefore, Ind(D) = k on such instanton backgrounds. Then, it follows that the axial charge
conservation law is violated by ∆Q5 = 2k. Likewise, on compact Riemannian manifolds without
boundaries, but with non-vanishing Hirzebruch signature,

τ(M4) =
1

24π2

∫
M4

Tr(R∧R) , (2.16)

the index of the Dirac operator is non-zero, Ind(D) = τ/8 (recall that the signature of all compact
four dimensional spin manifolds without boundaries is integer multiple of 8). The only gravitational
instanton of this kind is K3, which is a hyper-Kähler manifold with self-dual Riemann tensor whose
signature is 16 and Ind(D) = 2.

In the presence of boundaries one considers bound states of the Dirac equation by imposing
appropriate boundary conditions on the spinors near ∂M4 and uses the Atiyah-Patodi-Singer (APS)
index theorem to count the difference between positive and negative chirality zero modes (L2-index
of the Dirac operator). The APS theorem is based on the integrated form of the axial anomaly with
the same bulk contribution as before, but it also contains suitable boundary terms given by

Ind(D) =
1

192π2

∫
M4

Tr(R∧R)− 1
192π2

∫
∂M4

Tr(θ ∧R)− 1
2

ηD(∂M4) . (2.17)

The first boundary term involves the Chern-Simons secondary characteristic class written in terms
of the second fundamental form θ , which accounts for the possible deviation of the space-time
metric ds2 = dt2 + gi j(t,x)dxidx j from cross-product form at the boundary; as such it is a higher
derivative analogue of the Gibbons-Hawking-York boundary term encountered in general relativity.
The second boundary term is non-local and it is provided by the η-invariant of the tangential part of
the Dirac operator restricted to boundary; as such it counts the spectral asymmetry between positive
and negative chirality modes of the corresponding three-dimensional Dirac operator on ∂M4 and it
is made rigorous using zeta-function regularization.

When M4 = I×Σ3 with a compact three-manifold Σ3 without boundaries (e.g., Σ3 ' S3), the
index of the Dirac operator on M4 can be calculated in practice by spectral flow methods. Ind(D) is
provided by the net number of level crossings that occur in the spectrum of the three-dimensional
Dirac operator on Σ3,

Ind(D) = ∆S(Σ3) , (2.18)
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as the metric gi j(t,x) deforms from one end of the time interval I to the other; recall that the
η-invariant jumps by ±2 units when an eigen-value crosses from negative to positive values or
conversely, and, therefore, each level crossing contributes ±1 units to the index. Formula (2.18)
and its generalization to Lifshitz theories is very useful for the applications. In those cases that the
complete spectrum of the Dirac operator on Σ3 can be found and the spectral flow can be studied
explicitly, the index of the four-dimensional fermion operator on I×Σ3 can be computed in closed
form.

It is well known that all non-compact instanton solutions of Einstein gravity can not sup-
port extreme geometric deformations on Σ3 that are capable to induce level crossing, and, hence,
Ind(D) = 0. Prime examples of this kind are provided by the Taub-NUT and Eguchi-Hanson in-
stantons which admit complete metrics (2.3) with self-dual Riemann curvature tensor on I×Σ3

with I being the semi-infinite real line of proper time t and Σ3 is S3 and S3/Z2, respectively, en-
dowed with homogeneous and partially isotropic geometries with SU(2)×U(1) isometry group. It
can be explicitly seen in those cases that the individual terms contributing to the index (2.17) cancel
against each other, as required on general grounds based on Lichnerowicz’s theorem: non-compact
four-metrics with non-negative Ricci scalar curvature admit no bound state solutions of the Dirac
equation (if such states existed, they would be covariantly constant, and, hence, non-normalizable
leading to contradiction). Thus, it is not possible to have chiral symmetry breaking induced by
gravitational instantons of topology I×Σ3 in ordinary Einstein-Dirac theory.

3. Lifshitz field theories

Next, we extend the scope of our discussion to Lifshitz fermion theories with anisotropy scal-
ing exponent z = 2α +1 by considering the non-relativistic analogue of the Dirac operator

iγµDµ = iγ0D0 +
1
2

iγ i[Di(−DkDk +M2)α +(−DkDk +M2)αDi] (3.1)

in the presence of background gauge and/or metric fields. Here, M is an arbitrary mass scale that
is introduced for convenience to extrapolate between the Dirac and Lifshitz fermion models. The
Lifshitz operator acts on four-component spinors Ψ(t,x) and D0 and Di are the time and space
components of the ordinary covariant derivative (2.1) that provides the minimal coupling to the
background fields. Then, the massless Lifshitz fermion theory in 3 + 1 space-time dimensions is
defined by the Lagrangian density Ψ̄iγµDµΨ and gives rise to the axial current conservation law
∇µJµ

5 (t,x) = 0, as in the relativistic case. The spatial components of the axial current are different
from the relativistic case, since they involve a number of derivatives that depend upon z, whereas
the time component J0

5 (t,x), and, hence, the axial charge Q5 is the same.
The axial symmetry is broken quantum mechanically and explicit computation shows that the

anomalous term in the divergence of the axial current is identical to the relativistic case for the
gauge and/or the metric field couplings, as in equation (2.14). More precisely, the anomalous
divergence of the axial current in the presence of gauge fields is

∂µJµ

5 =
1

4π2 ε
0i jkTr(F0iFjk) =

1
4π2 Tr(F ∧F) , (3.2)

6
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whereas the metric field contribution to the axial anomaly turns out to be

∇µJµ

5 =− 1
96π2 ε

0i jkRab
0iRab jk =

1
96π2 Tr(R∧R) . (3.3)

Here, we write the result in 3 + 1 terms using the electric and magnetic components of the corre-
sponding curvature 2-forms and then recast it in the form (2.14). The calculation is performed in
the Euclidean domain by analytic continuation of the space-time foliation used for the formulation
of Lifshitz models. It is also implicitly assumed that the space-time metric is restricted to the pro-
jectable case, meaning that the lapse and shift functions in the ADM decomposition of the metric
are taken to be 1 and 0, respectively, so that its analytic continuation is given by (2.3) in proper
time x0 = t.

The arguments leading to the general relation (2.12) between the index of the fermion op-
erator and the axial anomaly generalize easily to the Lifshitz operator (3.1). One simply has to
consider the higher derivative analogue of the operators Q± shown in (2.5) by replacing Di with
[Di(−DkDk +M2)α +(−DkDk +M2)αDi]/2 and also replace the regulator exp[−(iγµDµ)2/Λ2] by
exp[−(iγµDµ)2/Λ2z] in the sum (2.11) which is now taken oven the eigen-states ϕn(t,x) of the
interacting Lifshitz fermion operator iγµDµ . As a result, the index of the Lifshitz fermion operator
(3.1) is equal to the index of the Dirac operator for all values of the anisotropy exponent z,

Ind(D) = Ind(D) . (3.4)

In space-times with boundaries the Atiyah-Patodi-Singer index theorem for the Lifshitz fermion
operator assumes the same form as in (2.17). The η-invariant is now referring to the tangential part
of the Lifshitz operator restricted to the boundary ∂M4, which turns out to be equal to the η-
invariant of the corresponding three-dimensional Dirac operator. Thus, relation (3.4) is universal,
as it extends to all space-times with or without boundaries. If the index does not vanish, the axial
charge will not be conserved in time, i.e., ∆Q5 = 2 Ind(D), leading to baryon and lepton number
violation as before. It will be seen shortly that chiral symmetry breaking effects in non-relativistic
theories of Lifshitz type are common practice.

Anomalies, instantons and chiral symmetry breaking at a Lifshitz point are closely interrelated
as in the relativistic case. The task is to find solutions of Lifshitz theories that allow for violation
of chiral charge conservation and then compare the results to relativistic field theories. Here, we
provide a brief account of bosonic Lifshitz theories and review their instanton solutions, following
our earlier work on the subject [3, 4]. In general, they provide classical backgrounds for Lifshitz
fermion propagation in 3 + 1 space-time dimensions. Special emphasis is placed on gravitational
theories of Lifshitz type (in the so called Hořava-Lifshitz gravity) coupled to Lifshitz fermion
models. Then, ignoring the backreaction of fermions to the gravitational instanton backgrounds,
we find that – unlike ordinary gravity – non-conservation of Q5 becomes possible for a certain
range of the gravitational coupling parameters. We provide some simple solutions that realize this
novel possibility and give a qualitative interpretation of its origin. The case of Lifshitz gauge field
theories appears to be conceptually simpler and looks easier for comparison with the relativistic
case, but its instanton solutions are not explicitly known to this day; it is an open problem for
future study which we hope to address elsewhere in detail.

The bosonic Lifshitz field theories in 3+1 space-time dimensions resemble point particle sys-
tems with configuration space C and local coordinates qI that correspond to Euclidean relativistic
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fields in three spatial dimensions. Thus, C is the infinite dimensional space of all scalar, vector
or more generally tensor fields on a Riemannian manifold Σ3, i.e., qI = ϕ(x), Ai(x) or gi j(x) etc,
which will be called superspace in all cases. These field theories are non-relativistic models with
anisotropic scaling in space and time x→ ax and t→ azt with exponent z which is provided by the
order of the classical equations of motion of the relativistic fields qI defined on Σ3. Their action is
often taken to be of the form

S =
1
2

∫
dt ∑

I,J

(
dqI

dt
O IJ dqJ

dt
− ∂W

∂qI
OIJ

∂W
∂qJ

)
(3.5)

assuming that the potential term is derivable from a superpotential W [q] using the metric O IJ and
its inverse OIJ on the superspace C . This class of Lifshitz models are said to satisfy the detailed
balance condition with local superpotential functional W being the action of a suitably chosen rel-
ativistic field theory on Σ3. Of course, one may deviate from detailed balance by having additional
terms in the potential that cannot be casted in the form (3.5) using a local superpotential func-
tional, but such generalizations will not be in focus here. In all cases, the Lifshitz theories admit an
effective point particle description in superspace that proves useful in many respects.

Next, we consider instanton solutions of Lifshitz theories on R×Σ3, assuming for simplicity
that the metric in superspace is positive definite (it can also become degenerate in some important
cases that will be discussed later). We first note that the minima of the potential provide static
solutions of the equations of motion following from (3.5); they are configurations that satisfy the
classical equations of motion ∂W/∂qI = 0 of the underlying relativistic field theory defined by
the action W on Σ3 and they are all degenerate with zero energy. Then, the instantons are defined
as extrema of the Euclidean action derived from (3.5) by Wick rotation t → it (equivalently by
inverting the potential) that interpolate smoothly between different degenerate vacua of the effective
point particle system as t extends all the way from −∞ to +∞. By completing the square, as usual,
it can be easily seen that the instantons satisfy the system of first-order equations in time

dqI

dt
=±OIJ

∂W
∂qJ

(3.6)

and their action equals Sinstanton = |∆W | ≡ |W (t = +∞)−W (t =−∞)|. The two choices of sign in
(3.6) correspond to instanton and anti-instanton configurations.

Thus, the instantons of Lifshitz theories (with detailed balance) are eternal solutions of the
gradient flow equations (3.6) derived from the superpotential functional W and their action is finite,
as required on general grounds. Yet explicit solutions of the gradient flow equations can not be
easily obtained unless additional symmetries are imposed on the fields, leading to consistent mini-
superspace truncations of the configuration space C . Otherwise, only qualitative features of the
solutions can be studied, in general, at least in those cases that the mathematical tools of geometric
analysis are powerful enough to explore the problem of long-time existence against the possible
formation of singularities along the flow lines. In gravitational theories of Lifshitz type the defining
relations (3.6) are nothing else but geometric flows for the metrics on Σ3. Specific examples and
explicit solutions will be described later and compared to the instantons of Einstein gravity. Note
for completeness that if we were considering Lifshitz theories without detailed balance, instanton
solutions would be much more difficult to find, if they existed at all as finite Euclidean action
configurations.
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Specializing to Hořava-Lifshitz gravity, we consider (3 + 1)-dimensional space-times M4 '
R×Σ3 endowed with Lorentzian metrics ds2 = −dt2 + gi j(t,x)dxidx j (the so called projectable
case) and write down the following action in canonical form,

S =
1
2

∫
M4

dtd3x
√

detg
[(

∂gi j

∂ t

)
G i jkl

(
∂gi j

∂ t

)
−
(

1
2
√

detg
δW
δgi j

)
Gi jkl

(
1

2
√

detg
δW
δgkl

)]
, (3.7)

where
G i jkl =

1
2
(gikg jl +gilg jk)−λgi jgkl (3.8)

is the (λ -deformed) DeWitt metric in superspace C consisting of all Riemannian metrics on Σ3 and
Gi jkl is its inverse. We also choose as superpotential functional W [g] the action of topologically
massive gravity on the three-manifold Σ3,

WTMG[g] =
2

κ2
w

∫
Σ3

d3x
√

detg (R−2Λw)+
1
ω

WCS[g] , (3.9)

where

WCS[g] =
∫

Σ3

d3x
√

detg ε
i jk

Γ
l
im

(
∂ jΓ

m
lk +

2
3

Γ
m
jnΓ

n
kl

)
(3.10)

is the gravitational Chern-Simons action, which is conveniently written here in terms of the Christof-
fel symbols of the metric g on Σ3. The resulting non-relativistic gravitational theory (3.7) in 3+1
dimensions exhibits anisotropic scaling z = 3 which reduces to z = 2 only when the gravitational
Chern-Simons term is absent.

The essential feature of topologically massive gravity is the presence of an adjustable scale
that supplies the mass to one of the two helicity gravitons in the weak field approximation of the
theory around flat space; the other helicity graviton remains massless and the two are interrelated
by orientation reversing transformations on Σ3 that flip the sign of ω . The associated range of
gravitational interactions in three dimensions is given by the relative ratio of the three-dimensional
gravitational constant to the Chern-Simons coupling, κ2

w/|ω|, which will play role later in the
formulation of a geometric criterion for having chiral symmetry breaking effects by gravitational
instantons in the associated (3 + 1)-dimensional Hořava-Lifshitz gravity. Further generalizations
arise by adding quadratic (or higher) curvature terms to W , as in three-dimensional new massive
gravity (and generalizations thereof), which lead to (3 + 1)-dimensional Hořava-Lifshitz models
with higher anisotropy scaling exponent z. In those cases, the three-dimensional gravitons remain
massive (although the masses of the two helicity states need not be the same) leading to similar
phenomena as with WTMG; such generalizations will not be addressed here at all to simplify the
presentation.

The instanton equation (3.6) specializes to the Ricci-Cotton flow. This is a third order equation
derived from WTMG[g] as gradient flow for the metric gi j on Σ3. The flow lines depend on the
superspace parameter λ , but the fixed points, which are classical solutions of three-dimensional
topological massive gravity, do not depend on it for general values of λ . Here, we only consider
the spacial case λ = 1/3, so that the defining equation of gravitational instantons takes the form

∂tgi j =∓ 1
κ2

w

(
Ri j−

1
3

Rgi j

)
± 1

ω
Ci j , (3.11)
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where Ri j is the Ricci curvature tensor of g and Ci j its Cotton tensor. The driving curvature terms
that arise in this case are traceless. This, in turn, implies that the fixed points have undetermined
Ricci scalar curvature R, which can vary from one fixed point to the other. Said differently, we
are considering a unimodular version of three-dimensional topological massive gravity in which
the cosmological constant Λw has the interpretation of an integration constant that can assume
arbitrary values. This restriction is necessary for having level crossing, and, hence, ∆Q5 6= 0 as
t varies from −∞ to +∞ in the corresponding gravitational instanton background. Otherwise, if
λ 6= 1/3, the two end-points of the instanton will have the same curvature R(= 6Λw) forbidding
any net level crossing to occur in the theory.

More technically speaking, the metric in superspace takes the following form at λ = 1/3,

G i jkl =
1
2
(gikg jl +gilg jk)− 1

3
gi jgkl , (3.12)

and as such it projects any symmetric two-tensor to its traceless part. Then, the inverse metric in
superspace becomes ill-defined. Instead, one defines

Gi jkl =
1
2
(gikg jl +gilg jk)−

1
3

gi jgkl , (3.13)

which follows formally from the inverse metric as λ →±∞ and it also projects any symmetric two-
tensor to its traceless part. The two quantities are simply related to each other by the generalized
orthonormality condition

G i jklGklmn =
1
2
(
δ

i
mδ

j
n +δ

i
nδ

j
m
)
− 1

3
gi jgmn (3.14)

that follows from the standard one by subtracting the trace part for consistency of the projection.
As a result, the conformal factor of the metric decouples from the dynamics and the Ricci-Cotton
flow (3.11) preserves the volume of space Vol(Σ3). This is precisely the class of models that allow
for violations of chiral charge conservation by gravitational instanton effects in Hořava-Lifshitz
gravity.

Our next task is to consider simple examples that illustrate the situation and derive the neces-
sary and sufficient conditions on the parameters of the theory for having chiral symmetry breaking.
We consider the simple case of Bianchi IX homogeneous geometries on Σ3 = S3 with isometry
group SU(2)×U(1), known as Berger spheres,

ds2 = γ(t)
[
(σ1)2 +(σ2)2 +δ

2(t)(σ3)2
]

, (3.15)

which provide consistent mini-superspace reduction of the Ricci-Cotton flow to an ordinary differ-
ential equation. Here, σ I are the left-invariant 1-forms of SU(2) satisfying

dσ
I +

1
2

ε
I
JKσ

J ∧σ
K = 0 (3.16)

and δ ∈ [0, ∞) is a parameter measuring the anisotropy of the model. Instanton solutions of Hořava-
Lifshitz gravity can be explicitly constructed in this case and then compared to the analogous
solutions (Eguchi-Hanson and Taub-NUT) of Euclidean Einstein gravity. Homogeneous solutions
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with higher degree of anisotropy can also be studied by relaxing the additional U(1) isometry
(axial symmetry) of the 3-sphere, but they will not be discussed here as they introduce unnecessary
technical complications.

The normalized Ricci-Cotton flow (3.11) admits the round metric with δ = 1 as fixed point,
but it also admits a second fixed point within the class of Berger sphere metrics provided that ω < 0
(for a given choice of orientation of S3) with

1
3

+
κ2

wδ

2ω
√

γ
= 0 . (3.17)

The presence of two fixed points is prerequisite for the existence of instantons. There is a smooth
flow line interpolating between these two fixed points, but the precise form of the solution will not
be important in the following. All it matters here is the variation of the 3-curvature

R =
1
2γ

(4−δ
2) (3.18)

as one moves from one fixed point to the other and the ability to induce level crossing by changing
the shape of S3, whereas the volume Vol(S3) = 16π2δγ3/2 remains fixed throughout the evolution.
Fortunately, the computation of the index of the Dirac-Lifshitz operator is a tractable problem in
the background of gravitational instanton solutions with SU(2)×U(1) isometry.

Let ζ denote the eigen-values of the three-dimensional Dirac operator iγ iDi on a Berger sphere,
which can be determined in closed form together with their multiplicities. They split into positive
and negative eigen-values that depend upon δ . Zero modes (often called harmonic spinors) also
arise for special values of δ ≥ 4,

δ
2 = 2

√
4pqδ 2 +(p−q)2 , (p,q) ∈ N2 (3.19)

with multiplicities p + q. Setting p = q = 1 it follows that the first zero modes of iγ iDi arise
when δ = 4, which is the critical value of the anisotropy parameter for inducing level crossing
by varying δ . Comparison with equation (3.18) shows that the curvature of the Berger sphere
should be sufficiently negative to allow for the occurrence of zero modes and subsequently for level
crossing as δ > 4. This is also consistent with Lichnerowicz’s theorem for the three-dimensional
Dirac operator that requires negative curvature for the existence of harmonic spinors.

Extending the discussion to the three-dimensional Dirac-Lifshitz operator iγ iDi, we note that
its eigen-values Z on Berger spheres are simply expressed in terms of the eigen-values ζ of the
corresponding Dirac operator as

Z = ζ

(
ζ

2 +
1
8γ

(δ 2−4)+M2
)α

. (3.20)

It turns out that Z have the same sign as ζ for all values of δ , and, hence, level crossing occurs
at the values of δ given by (3.19) as before. Also, since the multiplicity of the eigen-values of Z
is the same as ζ , the number of modes that undergoes level crossing, ∆S(S3), is the same for both
operators. This is consistent with the fact that the index of the four-dimensional Dirac-Lifshitz
operator is the same as the index of the Dirac operator on all such geometrical backgrounds R×S3,
i.e., Ind(D) = Ind(D), and which can be computed by spectral flow methods via equation (2.18).
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The instanton of z = 3 Hořava-Lifshitz gravity with SU(2)×U(1) isometry that interpolates
smoothly between the round sphere and the Berger sphere with δ given by (3.17) leads to violation
of chiral charge conservation provided that the volume of space (which remains fixed for all t) is
bounded from below as

Vol(S3) = 16π
2
δγ

3/2 = 54π
2
δ

4
(
−κ2

w

ω

)3

> 13824π
2
(
−κ2

w

ω

)3

(3.21)

letting δ > 4 in the final step. Thus, chiral symmetry breaking becomes possible when the mean
radius of space is sufficiently larger than the range of interaction ∼ κ2

w/|ω| in topologically mas-
sive gravity, which is associated to the superpotential functional W [g]. This provides a qualitative
criterion for chiral symmetry breaking in Hořava-Lifshitz gravity that satisfies the detailed balance
condition and which generalizes beyond the simple example we have considered here. ∆Q5 is given
by the number of modes (including their multiplicities) that have undergone level crossing.

Comparison to Einstein gravity reveals that novel phenomena become possible in non-relativistic
gravitational theories leading to fermion number violation. According to a scenario, such theories
are thought to provide the ultra-violet completion of gravity sacrificing relativistic invariance for
power counting renormalizability at very high energies. The phase of Hořava-Lifshitz gravity aris-
ing at λ = 1/3 seems to be more appropriate in this context although the flow to ordinary gravity
in the infra-red regime and the emergence of relativistic invariance as low energy phenomenon has
not been made quantitative to this day. The asymptotic safety programme for gravity seems to
provide a promising framework to address this fundamental issue in future studies.

4. Conclusions

We outlined the general relation between anomalies, instantons and chiral symmetry breaking
in relativistic and Lifshitz field theories. The quantum anomaly of the axial current conservation
law of massless fermions is independent of the anisotropy scaling parameter and coincides with
the result obtained for the relativistic case in the background of gauge and metric fields. Like-
wise, the index of the Dirac-Lifshitz operator is universal given by the integrated form of the axial
anomaly. This is in agreement with the infra-red nature of the axial anomaly, which is inert to
higher derivative terms that become relevant in the ultra-violet regime.

The difference between relativistic and Lifshitz field theories lies in the ability of their in-
stantons to affect the conservation law of chiral charge. The main result in this context is the
construction of simple instanton solutions of gravitational Lifshitz theories and their use to induce
chiral symmetry breaking for certain range of the couplings, leading to baryon and lepton number
violation triggered by gravity. This novel possibility does not arise in general relativity. It re-
mains to construct instanton solutions of Lifshitz gauge theories and examine their effect on chiral
symmetry breaking in comparison to ordinary gauge theories.

Acknowledgments

I thank the conference organizers for their kind invitation to give an account of this work in an
exciting scientific environment as well as for the partial financial support.

12



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
8
1

Anomalies, instantons and chiral symmetry breaking at a Lifshitz point

References

[1] I. Bakas and D. Lüst, Axial anomalies of Lifshitz fermions, Fortschr. Phys. 59 (2011) 937
[arXiv:1103.5693 [hep-th]].

[2] I. Bakas, More on axial anomalies of Lifshitz fermions, Fortschr. Phys. 60 (2012) 224
[arXiv:1110.1332 [hep-th]].

[3] I. Bakas, F. Bourliot, D. Lüst and M. Petropoulos, Geometric flows in Hořava-Lifshitz gravity, JHEP
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