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1. Introduction

During the last four decades there has been significant progress in our understanding of the
world of elementary particles. The predictions of Standard Model (SM) of Electroweak and Strong
interactions developed in early 70’s are now confirmed by an enormous amount of experimen-
tal data. Nowadays, highly sophisticated experiments like those performed at the Large Hadron
Collider (LHC) at CERN intend to find the missing ingredient -the Higgs field- to complete the
anticipated picture of the SM. However, from the theoretical point of view, it was soon realised that
the SM falls rather short for a complete and final theory of elementary particles and their funda-
mental forces. Among other shortcomings, the SM involves a large number of arbitrary parameters,
while the gauge symmetry of the model is a product of gauge groups rather than a simple unified
one. Furthermore, gravity is not included, therefore the SM cannot be considered a truly unified
theory of all fundamental forces. However, from the extrapolation of the three SM gauge couplings
there are hints indicating that they probably merge at a common mass scale at high energies and
therefore it is expected that indeed, there is a larger symmetry, i.e., a Grand Unified Group (for
reviews see [1]) with the SM gauge group incorporated in it. Nevertheless, the SM alone cannot
account for this since it is plagued by quadratic divergences at large energies where the Unification
of couplings is expected. The large difference between the weak energy scale where the strong,
and electroweak interactions are manifest (of the order of 100 GeV) and the expected energy where
they unify (around 1016 GeV), is known as the hierarchy problem. There is belief that these diffi-
culties might be evaded if supersymmetry is introduced. There are significant theoretical reasons
indicating that if supersymmetry (for reviews see [2]) is indeed the solution to the SM drawbacks,
then it should be relevant at low scales accessible to present day experiments. The existence of
superpartners will be checked at LHC in the forthcoming years.

Essential role in the theoretical developments and in particular the way supersymmetry is
contributing to the solutions of the various theoretical issues, has been played by String Theory
according to which our world is “immersed" in a “hyperspace" consisting of ten space-time di-
mensions where six of them are compactified and extremely small to be observed. String Theory
reconciles in a nice way supersymmetry, Grand Unified symmetries and unification of gauge cou-
plings at a high (string) scale. Besides, quantization of gravity occurs naturally in the context of
String Theory since the ultraviolent infinities can be avoided. Thus, one of the most important
tasks is to embed the successful Standard Model of electroweak and strong interactions in a unified
String derived model. The unification of all interactions can be realised in a quantum gravity theory
free of anomalies. At present, the only candidate theory for this role is String Theory.

Some two decades ago a major effort had been devoted to develop unified models in the context
of Heterotic String Theory and there was a perception that it was the only one that includes the
Standard Model. The great progress made in recent years has shown that other theories such as Type
I Strings can also reproduce the Standard Model. One of the interesting features of Type I string
theory is that the scale where the theory leaves its trace could in principle be very low [3], even at the
order of a few TeV, and therefore gives us the opportunity to solve the problem of hierarchy without
requiring the existence of supersymmetry. Additionally the low unification scenario allows the
possibility to seek experimental evidence in appropriately designed experiments. In this scenario
an important role is played by extensive solitonic-type objects that appear in the Type I theory
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and are known as Dp-branes [4]. Our world could be localised on such a brane immersed in a
higher dimensional space. In this scenario, known as Brane-World scenario, the interactions of the
Standard Model are confined on the brane while the gravitational interactions are spread throughout
the whole 10d space and this explains the fact that the gravitational interactions in four-dimensional
world are weaker compared to other fundamental interactions.

The last decade, considerable efforts were concentrated in model building and the fermion
masses from intersecting D-brane configurations (for related reviews see [5]) embedded in a ten di-
mensional space. In effective field theory models emerging from intersecting D-branes, the matter
fields are represented by strings attached on pairs of different D-brane stacks and they are localised
at the intersections. The gauge symmetry of these constructions consists of gauge group factors
U(n1)×·· ·×U(nk), with matter accommodated in the various available bifundamental represen-
tations. Hence, in this context, the Standard Model gauge group could naturally emerge from some
appropriate D-brane configuration. Since the various D-brane stacks span different dimensions of
the ten dimensional space, the corresponding gauge couplings g1,...,k, depend on different world
volumes and therefore they generally have different values. Therefore, although there are many
interesting features and success in the above approach, these models do not incorporate the an-
ticipated gauge coupling unification in a natural way since there is no underlying symmetry that
would force these couplings to be equal at the unification (string) scale. We note that it is possible
to assume a D-brane set up with U(5) gauge group1, which contains all SM group factors in a
single gauge symmetry and leads automatically to gauge coupling unification at the string scale.
The main shortcoming of this possibility however, -in the context of intersecting D branes- is the
absence of the tree level perturbative Yukawa coupling 10M · 10M · 5H to provide fermion masses.
We will see how these issues are resolved in the context of F-theory models.

2. The Framework

Work done during the last few years provides convincing evidence that the above drawbacks
can be evaded when the desired grand unified theory symmetries (GUTs) are realised in F-theory[6]2

compactified on Calabi-Yau fourfolds. Recent progress in F-theory model building [10]-[30] has
shown that old successful GUTs including the SU(5), SO(10) models etc, are naturally realised on
the world-volume of non-perturbative seven branes wrapping appropriate compact surfaces. The
rather interesting fact in F-theory constructions is that because they are defined on a compact ellip-
tically fibered Calabi-Yau complex four dimensional Manifold the exceptional groups E6,7,8, can
be naturally incorporated into the theory too [10, 11, 13, 30]. Although exceptional gauge symme-
tries suffer from several drawbacks when realised in the context of four-dimensional grand unified
theories, in the case of F-theory models they are more promising as new possibilities arise for the
symmetry breaking mechanisms and the derivation of the desired massless spectrum.

Present studies have led to remarkable progress on model building in F-theory [20]-[74] with
a considerable amount of them focusing on three generation SU(5)-GUT models. The vital issues
of proton decay, the Higgs mixing term and the fermion mass structure require the computation of

1Notice that in intersecting D-brane constructions of this type, the available gauge symmetries are of U(N) and
SO(N) type, whilst exceptional groups are absent.

2For reviews see [7, 8, 9].
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Yukawa couplings [20, 23, 60, 34, 35, 36, 37, 49, 65, 52, 53]. F-model building gave rise to some
interesting mechanisms to generate Yukawa hierarchy either with the use of fluxes [20, 49] and the
notion of T-branes [64] or with the implementation of the Froggatt-Nielsen mechanism [34, 35, 36,
37, 65]. In [49] (and further in [53, 54]) it is shown that when three-form fluxes are turned on in
F-theory compactifications, rank-one fermion mass matrices receive corrections, leading to masses
for lighter generations and CKM mixing. Flipped SU(5) [20, 62, 35, 57, 59, 58], as well as some
examples of SO(10) F-theory models [20, 39, 40] were also considered. Many of these models pre-
dict exotic states below the unification scale, and the renormalization group (RG) analysis of gauge
coupling unification including the effect of such states and flux effects has been discussed in a se-
ries of papers [43]-[48, 69]. Other phenomenological issues such as neutrinos from KK-modes[51],
proton decay [42] and the origin of CP violation [63] have also been discussed. A systematic clas-
sification of semi-local F-theory GUTs arising from a single E8 point of local enhancement, leading
to simple GUT groups based on E6, SO(10) and SU(5) on the del Pezzo surface has been presented
in [71]. Here I focus on some phenomenological aspects of effective F-theory models mainly with
SU(5) symmetry. To make this presentation self-contained in the next section I review in brief the
basics of F-theory and elliptic fibration. Section 4 is devoted to the methodology of F-theory model
building. In section 5 the spectral cover approach is reviewed whilst the remaining sections deal
with various phenomenological issues of specific examples in the context of SU(5) models.

3. Rudiments of F-theory and Elliptic fibration

We start with a short description of the salient features of F-theory and F-theory model building
following mainly the works of [10] and [11, 13]3. F-theory can be considered as a 12-dimensional
theory which arises from the geometrization of the type IIB 10-dimensional string theory. The
effective theory is described by the type IIB supergravity whose bosonic field content contains
the metric gMN the dilaton field eϕ and the p-form potentials Cp, p = 0,2,4 which imply the cor-
responding field strengths Fp+1 = dCp. An important observation is that when p-form magnetic
fluxes are turned on in the internal manifold, new string vacua may appear and a tree-level moduli
potential will be generated. Further, there are two scalars contained in the aforementioned bosonic
spectrum, namely C0 and eϕ which can be combined into a complex modulus

τ =C0 + ı e−ϕ ≡C0 +
ı

gs
(3.1)

In addition, it is convenient to define the field combinations

G3 = F3 − τH3 (3.2)

F̃5 = F5 −
1
2

G2 ∧H3 −
1
2

B2 ∧F3 (3.3)

The 5-form field defined in (3.3) has to obey the selfduality condition ∗F̃5 = F̃5 where ∗ stands for
the Hodge star. With these ingredients one can write an action leading to the correct equations of
motion [7]

SIIB ∝
∫

d10x
√
−gR− 1

2

∫ 1
(Imτ)2 dτ ∧∗dτ̄ +

1
Imτ

G3 ∧∗G3 +
1
2

F̃5 ∧∗F̃5 +C4 ∧H3 ∧F3

3see also [9, 18]
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The action is invariant under the following SL(2,Z) duality transformations

τ → aτ +b
cτ +d

(3.4)(
H
F

)
→

(
d c
b a

)(
H
F

)
(3.5)

together with F̃5 → F̃5 and gMN → gMN . This action looks like it has been obtained from a compact-
ified 12-dimensional theory on a torus with modulus τ defined in (3.1). The F3,H3 fields appear in
SIIB as if they have been obtained from a 12-d field strength F̂4 reduced along the two radii of the
torus. In F-theory τ is interpreted as the complex structure modulus of an elliptic curve generating
a complex fourfold which constitutes the elliptic fibration over the CY threefold. Since the fibration
relies on the τ = C0 + ı/gs, this means that the gauge coupling is not a constant and the resulting
compactification is not perturbative. Hence, according to the above picture, F-theory[6] is defined
on a background R3,1 ×X with R3,1 our usual space-time and X an elliptically fibered Calabi-Yau
(CY) complex fourfold with a section over a complex three-fold base B3.

In [75] a specific example was presented where there is an equivalence between F-theory
compactifications on a K3 surface and the Heterotic theory compactification on T 2. A K3 surface
is a complex smooth regular manifold with trivial canonical bundle. The general elliptically fibered
K3 is described by the Weierstrass equation

y2 = x3 + f (z,w)xu4 +g(z,w)u6 (3.6)

where z,w,x,y,u are parameters of the fibration and f ,g homogeneous polynomials of degree 8 and
12 respectively. The equation is invariant under the following two rescalings

{z,w,x,y,u}→ {λ z,λw,λ 4x,λ 6y,u} ; {z,w,x,y,u}→ {z,w,µ2x,µ3y,µu}

Indeed, for the first rescaling the left hand side becomes y2 → λ 12y2 and the same weight emerges
for the right hand side of (3.6). Similarly, one finds that for the second rescaling from both terms
of the equation a weight µ6 is factored out. There are five coordinates compared to two rescalings
and one equation, thus the equation describes a two complex dimensional surface. For the first
rescaling we observe that the sum of the weights is 1+1+4+6+0 = 12, i.e. equal to the weight
12, and the second is 0+0+2+3+1 = 6 is equal to the weight of the second equivalent equation.
Therefore, this is a CY manifold.

Fixing u = 1,w = 1 the above equation becomes

y2 = x3 + f (z)x+g(z) (3.7)

We now observe that f ,g transform as sections f ∈ K−4
B3

,g ∈ K−6
B3

. This can be understood if we
assign the scalings x → λ 2x and y → λ 3y so that (3.7) becomes λ 6 y2 = λ 6x3 + f̃ λ 2 x+ g̃ implying
f̃ → λ 4 f and g̃ → λ 6 g.

The functions f (z),g(z) now are considered 8 and 12 degree polynomials in z. For each point
of the base, the equation describes a torus labeled by the coordinate z. (To get an intuition, note
that fixing f ,g to be real numbers, (3.6) reduces to elliptic curves, see fig.1).
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Figure 1: Fixing the values of the polynomials (f,g) to certain real numbers in the Weierstraß equation,
elliptic fibrations reduce to elliptic curves. The three cases correspond to the three possible cases of the
discriminant, bigger, smaller or equal to zero respectively.

The modular parameter of the torus is related to the functions f ,g through the SL(2,Z) modular
invariant function j(τ)

j(τ) =
4(24 f )3

4 f 3 +27g2 (3.8)

where

j(τ) = e−2πiτ +744+O(e2πiτ) (3.9)

The curve described by (3.6) is non-singular provided that the discriminant

∆ = 4 f 3 +27g2 (3.10)

in non-zero. At the zero loci of the discriminant ∆, (i.e., at ∆ = 0 ) the elliptic curve becomes
singular with one cycle shrinking to zero size and the fiber degenerates4. There are 24 zeros zi of
the discriminant which are in general distinct and different from the zeros of f ,g. This corresponds
to 24 7-branes located at zi, i = 1,2, . . . ,24. In the vicinity of such a point using (3.8) and (3.10)
we have

j(τ(z))∼ 1
z− zi

→ τ(z)≈ 1
2πi

log(z− zi) (3.11)

up to SL(2,Z) transformations. In the limit z → zi, we observe that τ → i∞ and since τ = C0 +

i/g this means that we are in the weak coupling regime since g → 0. Further, since ln(z− zi) =

ln |z− zi|+ iθ , performing a complete rotation around zi, τ undergoes a monodromy τ → τ +1, or
equivalently

C0 →C0 +1,→
∮

zi

F1 =

∮
zi

dC0 = 1

This implies the existence of a 7-brane at zi, while totally there are 24 such branes in the compact
transverse space. However, since the space is compact the sum

∮
zi

F1 must vanish. Further con-
siderations along these lines lead to the conclusion that F-theory is strongly coupled. There are

4The Discriminant locus may have several irreducible components, so that ∆ = ∑i niSi where Si are the divisors of
B3 and ni represent their multiplicities. The singularities of the CY 4-fold are developed along the divisors with ni > 1.
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limiting cases however where F-theory has a perturbative expansion. Indeed, suppose that f 3/g2 is
constant which can be satisfied by assuming that [75]

g = ϕ 3, f = aϕ 2, ϕ =
4

∏
i=1

(z− zi)

Substituting one finds

j(τ) =
4(27a)3

27+4a3

which gives a weak coupling regime everywhere on the base for 27+4a3 ≈ 0 i.e., a ∼− 3
41/3 .

We discuss now how this geometric picture is associated to the gauge group structure and the
spectrum of an effective low energy theory model. Recall first that in intersecting D-brane con-
structions non-abelian gauge symmetries emerge when more than one D-branes coincide. While a
single D-brane is associated to a U(1) symmetry, when n of D6 branes coincide the gauge group
becomes SU(n). In F-theory when D7 branes coincide at certain point, then at this point there is a
singularity of the elliptic fibration. The singularities of the manifold are classified with respect to
the vanishing order of the polynomials f ,g and the zeros of the discriminant ∆. They determine the
gauge group and the matter content of the F-theory compactification. By adjusting the coefficients
of the polynomials f ,g we can obtain A ,D ,E types of gauge groups.

Figure 2: CY four-fold constituting an elliptic fibration over a three-fold base B3 (only two dimensions
are shown). Every point of B3 is represented by a torus with modulus τ = C0 + ı/gs. Red points represent
7-branes, orthogonal to B3. The torus degenerates at these ‘points’ (vanishing cycle). Going around the
non-trivial cycle, the vanishing cycle undergoes monodromy.

3.1 Tate’s Algorithm

According to the interpretation above, in F-theory the gauge symmetry is associated to the
singularities of the internal compact manifold. A systematic analysis of these singularities has
started with the work of Kodaira [76]. Given the form of the Weierstrass equation

y2 = x3 + f (z)x+g(z)

7
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ord( f ) ord(g) ord(∆) fiber type Singularity
0 0 n In An−1

≥ 1 1 2 II none
1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+6 I∗n Dn+4

≥ 2 3 n+6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 1: Kodaira’s classification of Elliptic Singularities

the Kodaira classification relies on the vanishing order of the polynomials f ,g and the discriminant
∆. This is summarised in Table 3.1. A useful tool for the analysis of the gauge properties of
an F-theory GUT is Tate’s algorithm [77] 5. Tate’s Algorithm gives an algorithmic procedure to
describe the singularities of the elliptic fiber and determine the local properties of the associated
gauge group.

We follow [78] to sketch how this analysis works for a few simple cases. We assume a small
set U of the base and that the restriction S|U will have a defining equation {z = 0}. In this patch we
expand the coefficients of the Weierstrass equation in powers of z

f (z) = ∑
n

fnzn, g(z) = ∑
m

gmzm (3.12)

Plugging into the discriminant the above expansions we get

∆ = 4
[

f0 + f1z+O(z2)
]3
+27

[
g0 +g1z+O(z2)

]2
= 4 f 3

0 +27g2
0 +(12 f1 f 2

0 +54g0g1)z+(12 f2 f 2
0 +12 f 2

1 f0 +27g2
1 +54g0g2)z2 +O(z3)

We can demand z/∆ which requires that the zeroth order coefficient is zero, i.e. 4 f 3
0 + 27g2

0 = 0.
Assuming that f0,g0 are simple functions of a new variable t, f0 = at2,g0 = bt3, the coefficients
a,b must obey

4a3 +27b2 = 0

which is satisfied for a =−1/3,b = 2/27, thus

f0 =−1
3

t2, g0 =
2

27
t3 (3.13)

The discriminant now becomes

∆ =
4
3

t3 ( f1t +3g1)z+
(

4 f2t4

3
+4g2t3 −4 f 2

1 t2 +27g2
1

)
z2 +O(z3) (3.14)

5For recent advances on Tate’s classification see [78, 79, 80].
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We turn now to the Weierstrass equation. To put it in the Tate form we make the substitution

x → x+
1
3

t

Substituting and reorganising in powers of x, we get

y2 = x3 + t x2 +( f2z2 + f1z)x+
1
3
[
( f1t +3g1)z+( f2t +3g2)z2 +( f3t +3g3)z2 + · · ·

]
By redefining gi → g̃ = gi + fit/3 to absorb the terms ∼ t, we write

y2 = x3 + t x2 +( f1z+ f2z2 + · · ·)x+ g̃1z+ g̃2z2 + · · ·

This is the Tate form I1. The discriminant takes also the simpler form

∆ = 4t3g̃1 z+
(
4g̃2t3 − f1 (18g̃1 + t f1) t +27g̃2

1
)

z2 +O(z3) (3.15)

Let us now examine the conditions to obtain z2/∆. From the form (3.15) obtained for ∆ we
see that the coefficient of z is zero if

g̃1 ≡
f1

3
t +g1 = 0

This condition eliminates also several other terms, the result being

∆ = (4g̃2t − f 2
1 )t

2 z2 +O(z3)

In addition, the Weierstrass equation becomes

y2 = x3 + t x2 +( f1z+ f2z2 + · · ·)x+ g̃2z2 + · · ·

which is the Tate form for I2 in Table 2. For global obstructions with regard to the general validity
of the Tate forms see [78].

The procedure can be continued for the next order and so on. Partial results are summarised
in the Table 2. (for complete results see Table of refs[77, 16, 78]).

We then write the general Tate form of the Weierstrass equation as follows

y2 +a1xy+a3y = x3 +a2 x2 +a4x+a6 (3.16)

with an being polynomial functions on the base. The indices of the coefficients an have been chosen
so to indicate the section they belong to, i.e. an ∈ Kn

B3
. Thus each term is a section K−6

B3
.

To make connection with the previous standard form (3.7) of the Weierstrass equation we
complete the square and the cube as follows. We form the square on the left hand side(

y+
a1x+a3

2

)2

= x3 +a2 x2 +a4x+a6 +

(
a1x+a3

2

)2

while we equate the RHS with
(x+λ )3 + f (x+λ )+g

9
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Comparing, we get

f =
1
48

(
24a1 a3 −

(
a2

1 +4a2
)2
)
+a4

g =
1

864
(
a6

1 +12a4
1a2 −36a3

1a3 +48a2
1a2

2

−72a4
(
a2

1 +4a2
)
−144a1a2a3 +64a3

2 +216a2
3
)
+a6 (3.17)

Using the definitions

β2 = a2
1 +4a2, β4 = a1a3 +2a4, β6 = a2

3 +4a6

the functions f ,g can be rewritten in a simpler form

f = − 1
48
(
β 2

2 −24β4
)

g = − 1
864

(
−β 3

2 +36β2β4 −216β6
)

(3.18)

If we further define
β8 = β2a6 −a1a3a4 +a2a2

3 −a2
4

we can write the discriminant

∆ =−β 2
2 β8 −8β 3

4 −27β 2
6 +9β2β4β6

f ,g are assumed to be functions of a complex coordinate z on the base B3.
In summary, we have the following picture: assuming a hypersurface S ∈ B3 singularity of

A DE type at z = 0 at a certain point of the base we generate a fibration of this base parametrised
by the coordinate z. As z ̸= 0 the original symmetry breaks leading to a subgroup. Going around
this z-point where the fiber degenerates we return to the same singularity up to a monodromy action.
In general the effect of the monodromy action cannot be absorbed by some gauge transformation
and as a result the gauge symmetry is not fully restored. Thus, one ends up with a reduced gauge
symmetry. The order of vanishing of ai = bi zni characterises the type of singularity, i.e, the gauge
group supported by the divisor S. For example, the choice

a1 =−b5,a2 = b4z,a3 =−b3z2,a4 = b2z3,a6 = z5b0

where bi are independent of z, lead to the equation

y2 = x3 +b0z5 +b2xz3 +b3yz2 +b4x2z+b5xy (3.19)

which as can be seen from table 2 implies an SU(5) Singularity. The coefficients bi are in general
non-vanishing and can be seen as sections of line-bundles on S. We denote with c1 the 1st Chern
class of the Tangent Bundle to SGUT and −t the 1st Chern class of the Normal Bundle to SGUT . It
is also customary to define the quantity

η = 6c1 − t

10
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Type Group a1 a2 a3 a4 a6 ∆

I0 0 0 0 0 0 0 0

I1 − 0 0 1 1 1 1

I2 − 0 0 1 1 2 2

Is
2n SU(2n) 0 1 n n 2n 2n

Is
2n+1 SU(2n+1) 0 1 n n+1 2n+1 2n+1

I∗s
1 SO(10) 1 1 2 3 5 7

IV ∗s E6 1 2 3 3 5 8

III∗s E7 1 2 3 3 5 9

IIs E8 1 2 3 4 5 10

Table 2: Particular cases of Tate’s algorithm. (For the complete results see [77, 16].) The order of vanishing
of the coefficients ai ∼ zni , the discriminant ∆ and the corresponding gauge group. The highest singularity
allowed in the elliptic fibration is E8.

while c1(B3)|S = c1(S)− t. Returning to (3.19) defining the SU(5) singularity, the various coeffi-
cients bk and parameters x,y,z are sections of line bundles as they appear in the following Table

section c1(bundle)
x : 2(c1 − t)
y : 3(c1 − t)
z : −t
bk : η − k c1 = (6− k)c1 − t

(3.20)

With these definitions, each term of the equation (3.19) is a section of the same class 6(c1 − t), in
accordance with (3.6). Indeed, for example

b2xz3 : {(6−2)c1 − t}+{2c1 −2t}−3t = 6(c1 − t) (3.21)

Substituting ai = bizni , the βk take the form

β2 = b2
5 +4b4z

β4 = b3b5z2 +2b2z3

β6 = b2
3z4 +4b0z5

β8 =
β2β6 −β 2

4
4

= z5(R+ z(4b0b4 −b2
2))

R = b2
3b4 −b2b3b5 +b0b2

5

We can check how the symmetry is enhanced for certain choices. For example, choosing b5 = 0
we see that β2 ∝ zb4, β4 ∝ z3b2 etc while the discriminant becomes ∆ ∝ z7. Comparing with Tate’s
results in Table 2, we see that this corresponds to an SO(10) singularity. Thus, a matter curve is
defined along the intersection with another brane where we expect to find the 10 of SU(5) in the
adjoint decomposition of SO(10), therefore we write

Σ10 = {b5 = 0}

11
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Demanding R = 0, we see that ∆ ∼ z6 and this corresponds to an SU(6) singularity. The SU(6)
adjoint induces the 5 of SU(5), therefore we define the matter curve

Σ5 = {R = 0}

Further enhancements are obtained setting additional coefficients equal to zero. They result
to triple intersections of branes which define points in the internal geometry where the Yukawa
couplings are formed. Choosing b4 = b5 = 0, we can proceed as above and see that we obtain an
E6 enhancement. This involves the top Yukawa coupling. Similarly, b3 = b5 = 0 implies an SO(12)
enhancement which is the origin of the bottom mass term:

{b5 = b4 = 0}→ λt , {b5 = b3 = 0}→ λb

Using the homology classes derived previously for bi’s we can also deduce those of the matter
curves. In particular we find

[Σ10] = c1 − t, [Σ5] = 8c1 −3t,

or
[Σ5]−3[Σ10]−5c1 = 0

The last one is equivalent to the anomaly cancellation condition [27].

4. Model building

In the previous section we have analysed in some detail the geometric singularities and their
interpretation as gauge symmetries. In the present section we describe the basic steps for model
building following closely the analysis of [11, 13].

The ultimate goal is to associate this geometrical conception to a GUT model and make a
choice of a compact ‘surface’ S of suitable topological type to build an effective field theory with
the desired massless spectrum. Hence, the required set up consists of a 7-brane stack wrapping a
compact Kähler surface S of two complex dimensions while the gauge theory of a particular model
is associated with the geometric singularity of the internal space [16, 10, 11, 13].

To make a more specific choice of S we must require some further phenomenological con-
straints. For example, we have pointed out in the introduction that the MSSM spectrum drives the
three SM gauge couplings to a common value at a high scale which is nevertheless at least two
orders smaller than the Planck scale. It has been argued [11] that in order to achieve a decoupling
limit of gravity the spacetime filling sevenbrane associated to the gauge symmetry GS must wrap a
del Pezzo surface. The simplest ones are P1 ×P1 and P2. There are eight more del Pezzo surfaces
dPn constructed from an operation known as ‘blow up’ of P2 at generic points. (for a detailed
discussion see [11, 13]). We may further specify this choice to the del Pezzo dP8 surface since all
other del Pezzo surfaces can be obtained from this one by blowing down various two cycles of the
latter. In correspondence with the del Pezzo surfaces, it is now possible to assume singularities
associated to exceptional gauge symmetries E8 and its subgroups, which incorporate the known
successful GUT symmetries such as SU(5) and SO(10).

We discuss now the breaking mechanism of the gauge group down to SM. In general, in F-
theory there are two mechanisms available. Higgs mechanism and fluxes (we mention also discrete

12



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
9
5

FGUTs G. K. Leontaris

Wilson lines used in the heterotic string, but this mechanism will not be implemented here). We
aim to build a unified theory, the minimal one being SU(5), thus a Higgs breaking mechanism
requires the adjoint representation. But if S is a del Pezzo surface, zero mode adjoint Higgs fields
are not at our disposal. Even if for some other choice of S the Higgs adjoint is available, this usually
leads to a conventional GUT model with resulting spectrum involving undesired matter fields. For
example, the SU(5) GUT breaking by the 24-Higgs adjoint allows in the spectrum the dangerous
triplet fields which mediate proton decay. The alternative possibility is to turn on U(1) fluxes on the
worldvolume of the 7-brane. We will see that the breaking of the GUT group with this mechanism
gives the opportunity to eliminate unwanted fields from the light spectrum. We note in passing that
in heterotic string theory the U(1) flux mechanism cannot be implemented for the SU(5) breaking.
This would require a flux along U(1)Y and the corresponding gauge boson would develop a string
scale mass via the Green-Schwarz mechanism. On the contrary, in F-theory we can arrange so that
although the cohomology class of the flux on the seven-brane can be non-trivial, it can represent a
trivial class in the base of the compactification. Thus, we can break SU(5) turning on a U(1)Y flux
for example, while keeping the corresponding gauge boson massless.

Next we come to the matter and Higgs fields. Matter can be found in the bulk from the
decomposition of the adjoint representation as well as on Riemann surfaces which are located at
the intersection between the GUT model seven-brane and additional seven-branes. In several cases,
the bulk matter can be of exotic type and has to be eliminated by some suitable condition. We will
see that this is possible when the GUT symmetry is SU(5) but it is not true for SO(10) and possible
higher groups. It is possible however to turn on singlet vevs with appropriate U(1)-‘charges’ to
make some of these states massive or to associate some of them to ordinary matter.

Suppose then that we start with a legible gauge symmetry group GS associated to the singular-
ity of S. To determine the massless spectrum of a given GUT model, we first turn on a non-trivial
background field configuration on S along some subgroup HS of GS. Then the effective field theory
gauge group is given by the commutant subgroup of HS in GS, i.e,

GS ⊃ ΓS ×HS

Let us start with the matter in the bulk. The spectrum is found in representations which arise
from the decomposition of the adjoint of GS under ΓS ×HS

6

ad(GS) =
⊕

τ j ⊗Tj (4.1)

In general, the net number of chiral minus anti-chiral states is given in terms of a topological index
formula [11], nτ − nτ∗ = χ(S,T ∗

j )− χ(S,T j) where τ∗ is the dual representation of τ , T is the
bundle transforming in the representation T and χ is the Euler character 7. If hi = dimCH i, i.e.
the dimension of the Dolbeault cohomology groups, then χ = h0 − h1 + h2. Moreover, if S is a
del Pezzo (or Hirzebruch) surface then H2

∂̄ (S,Tj) = 0 while when the holomorphic bundle Tj is
irreducible and non-trivial we also have H0

∂̄ (S,Tj) = 0.

6If HS contains semi-simple U(1) factors, ΓS corresponds to a proper subgroup of the four-dimensional subgroup.
This is the case of GS = E6 with HS, where the commutant is SO(10)×U(1).

7For HS = SU(n), the spectrum on the bulk is always non-chiral since the corresponding instanton solutions have
vanishing first Chern class.
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As a more specific example, let us assume that the bulk gauge group is E6. Under the decom-
position E6 ⊃ SO(10)×U(1), we get

78 → 450 +10 +16−3 +163 (4.2)

Thus, in addition to the adjoint of SO(10) we also get the zero modes 16−3 and 163 characterised
by the line bundles L −3 and L +3 respectively. If we assign the number of states by n16 and n16
respectively in order to obtain chirality we need to have n16 − n16 ̸= 0. We recall that the number
of states is minus the Euler character n16 =−χ(S,L). For S a del Pezzo and L a line bundle over
S, the Riemann-Roch theorem states

χ(S,L ) = 1+
1
2

c1(L ) · c1(L )+
1
2

c1(L ) · c1(S)

χ(S,L ∗) = 1+
1
2

c1(L
∗) · c1(L

∗)+
1
2

c1(L
∗) · c1(S)

= 1+
1
2

c1(L ) · c1(L )− 1
2

c1(L ) · c1(S) (4.3)

Therefore, the difference

χ(S,L ∗)−χ(S,L ) =−c1(L ) · c1(S)

counts the number of chiral states n16 −n16.
Now in this set up one may assume other 7-branes spanning different directions of the internal

space. In particular, when other seven branes S1,S2, · · · intersect with the GUT brane wrapping
the surface S, they form Riemann surfaces 8 denoted subsequently with Σi. Chiral matter and
Higgs fields reside on these Riemann surfaces thus we call them matter curves. Along these matter
curves gauge symmetry is enhanced. These chiral states appear in bifundamental representations
in close analogy to the case of intersecting D-brane models. Along the intersections the rank of the
singularity increases. Designating GS the gauge group on the surface S and GSi that associated with
Si, the gauge group on Σi is enhanced to GΣi ⊃ GS ×GSi whose the adjoint in general decomposes
as

ad(GΣi) = ad(GS)⊕ ad(GSi)⊕ (⊕ jU j ⊗ (Ui) j) (4.4)

with U j,(Ui) j being the irreducible representations of GS,GSi . In the simple case of GS = SU(n),
GSi = SU(m), and GΣi = SU(n+m) for example, the chiral N = 1 multiplet is the bifundamental
(n,m).

We assume that a non-trivial background gauge field configuration acquires a value in a sub-
group HS ⊂GS and similarly in HSi ⊂GSi . If GS ⊃ ΓS×HS and GSi ⊃ ΓS1 ×HSi , with ΓS,Si being the
corresponding maximal GS,Si subgroups, the GS ×GSi symmetry breaks to the commutant group
Γ = ΓS ×ΓSi . Denoting also H = HS ×HSi , the decomposition of U ⊗Ui into irreducible represen-
tations of Γ×H give

U ⊗Ui =⊕ j(r j,R j) (4.5)
8A Riemann Surface (RS) is a connected Hausdorff topological space together with a complex structure; according

to the Riemann famous mapping theorem, a simply connected RS is isomorphic to: the Riemann sphere, or to C , or to
the open unit disc |z|< 1,z ∈ C .
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Let us see how this works for GS = E6 [11, 71]. Choosing a HS =U(1) flux, E6 breaks to SO(10)×
U(1). If we set GΣ1 = SU(3) and recall the breaking pattern

E8 ⊃ E6 ×SU(3)⊃ SO(10)×U(1)×SU(3)

we have the decomposition of the E8 adjoint

248 → (78,1)+(27,3)+(27,3)+(1,8) (4.6)

Matter and Higgs fields are found on matter curves and in the bulk, in the following representations

(27,3) → (1,3)4 +(10,3)−2 +(16,3)1 (4.7)

(27,3) → (1,3)−4 +(10,3)2 +(16,3)−1 (4.8)

(78,1) → (45,1)0 +(1,1)0 +(16,1)−3 +(16,1)3 (4.9)

The net number of chiral fermions in a specific representation is given as before by nr j − nr∗j . In
the case of an algebraic curve Σi the Euler character is written as a function of the genus g of the
Riemann surface Σi and the first Chern class [11]:

nr j −nr∗j = (1−g) rk(Σi,K
1/2
Σi

⊗R j)+
∫

Σi

c1(Σi,K
1/2
Σi

⊗R j) (4.10)

with K1/2
Σi

being the spin bundle over Σi and R j the corresponding bundle which transforms as a
representation R j. A recent analysis on E6 can be found in [71].

4.1 Two or... three things we should know about Del Pezzo surfaces

Since the role of the compact surface S is pivotal for the properties of the model, let us review
a few things about them.

• We are mainly interested to del Pezzo surfaces. The simplest ones are P1 ×P1 (= F0 e.g. a
Hirzebrough surface 9) and dP0 = P2. The are eight more del Pezzo surfaces dPn constructed from
an operation known as ‘blow up’ of P2 at generic points. To blow-up a surface (manifold) at a
marked point, we remove the point and replace it with a line gluing it in such a way so that we still
get a manifold. The points of this line correspond to different directions from the marked point on
the plane. Del Pezzo surfaces are obtained by applying the ‘blow-up’ operation up to eight points
on the plane. A dPn is generated by the hyperplane divisor H from P2 and the exceptional divisors
E1,...,8 with intersection numbers

H ·H = 1, H ·Ei = 0, Ei ·E j =−δi j (4.11)

The canonical divisor (and the first Chern class c1(dPn)) is given by

KS = −c1(dPn) =−3H +
n

∑
i=1

Ei (4.12)

The dPn generators Ci are given in Table 3.
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Surface Generators Ci Indices # of Gen.

dP1 E1,H −E1 1 2

dP2 Ei,H −E1 −E2 i = 1,2 3

dP3 Ei,H −Ei −E j i, j = 1,2,3 6

dP4 Ei,H −Ei −E j i, j = 1,2,3,4 10

dP5 Ei,H −Ei −E j,2H −Ei −E j −Ek −El −Em i, j,k, l,m = 1,2,3,4,5 16

· · · · · · · · · · · ·
dP8 Ek, H −Ek −El, 2H −∑5

j=1 En j k, l, ...= 1,2, . . . ,8 240

3H −2Ek −∑6
j=1 En j , 4H −2(Ek +El +Em)−∑5

j=1 En j

Table 3: The generators of a few del Pezzo surfaces (see [30]). All effective classes can be written as linear
combinations of Ci with coefficients non-negative integers.

• The effective class C of a curve can be written as a sum of the generators Ci, C = ∑i niCi

for ni > 0. The characteristic property of a del Pezzo surface is that c1 is ample, that is, it has
positive intersection with every effective curve. This in particular implies that K must have positive
self-intersection,

KS ·KS = 9−n

which gives the restriction n ≤ 8.
A Kähler class can be defined as follows

ω = AH −
n

∑
i=1

aiEi

For a line bundle L on del Pezzo with c1(L) = ∑n
i=1 miEi, (mi integers) the condition ω · c1(L) = 0

implies

∑
i

aimi = 0

while for sufficiently large A, for any divisor D, the intersection is positive ω ·D > 0.
• To see the connection of dPn with exceptional algebras let’s define the generators (for n ≥ 3)

a1 = E1 −E2, . . . , an−1 = En−1 −En, an = H −E1 −E2 −E3 (4.13)

Using the dot product for the Ei,H generators, we get

ai ·a j = 2δi j −δi, j+1 −δ j,i+1 =


2 i = j

−1 i = j+1
−1 j = i+1

(4.14)

The intersection product of ai’s is identical to minus the Cartan matrix for the dot product of
the simple roots of the corresponding algebra En. In the particular case of dP2 there is only one
generator E1 −E2 which is identified as a root of SU(2).

9A Hirzebruch surface is a P1 fibration over a P1; the general type is classified by an integer index n, and denoted by
Fn. It is spanned by two generators S ,E with the properties S ·S =−n, S ·E = 1, E ·E = 0. The canonical divisor
(and Chern class) is given by KS =−c1(S) =−2S − (n+2)E and any effective class is a combination aS +bE , with
a,b ≥ 0.
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4.2 The SU(5) model

The F-theory derivation of the SU(5) model has attracted the interest of many authors. So,
let us consider now that we have a singularity GS = SU(5). We assume that the gauge symmetry
breaks to SM by turning on a U(1)Y flux. We write the decomposition of the SU(5) gauge multiplet
as

24 → R0 +R−5/6 +R5/6

where

R0 = (8,1)0 +(1,3)0 +(1,1)0, R−5/6 = (3,2)−5/6, R5/6 = (3̄,2)5/6 · (4.15)

As we have seen above, massless fields in the bulk are given by the Euler characteristic χ . In order
to avoid the massless exotics R±5/6 we impose the condition χ(S,L±5/6) = 0. Taking the difference

0 = χ(S,L5/6)−χ(S,L−5/6) = c1(L5/6) · c1(dP8) =−c1(L5/6) ·KS

so c1(L5/6) ·KS = 0 which means that c1(L5/6) is orthogonal to KS, i.e. it is a vector in the orthog-
onal complement of the canonical class. Substituting to the Euler character we find

χ(S,L5/6) = 0 ⇒ 1+
1
2

c1(L5/6) · c1(L5/6) = 0 (4.16)

The vanishing of the latter implies

c1(L5/6) · c1(L5/6) = −2 (4.17)

This is the condition for c1(L5/6) to correspond to a root of En (see (4.14)) while it implies a
fractional line bundle L = O(Ei −E j)

1/5 (yet consistent with bulk gauge field configurations [13]).
To obtain the chiral and Higgs spectrum, we should consider the intersections with other

branes. Recall that chiral matter and Higgs fields reside on the 10 and 5, 5̄ representations.
In the F-theory set up, the 5 and 5̄ reside on curves where SU(5) enhances to SU(6). Similarly

the 10’s are localised on curves where SU(5) enhances to SO(10). When three of these matter
curves meet at one point, a trilinear Yukawa coupling is generated while the gauge symmetry is
further enhanced. There is a pellucid way to see these enhancements with the help of Dynkin
diagrams. In figure 3 we start with an A4 singularity which corresponds to SU(5). There are two
ways to extend this diagram: in the first one we observe that the symmetry is enhanced to SU(6) and
the 5-representation of SU(5) is found in the decomposition of the SU(6) adjoint, 35 → 240+10+

56+ 5̄−6. In the second case we observe from figure 3 that we can also have an SO(10) enhancement
while the 10 of SU(5) is found in the adjoint decomposition 45 → 240 +10 +104 +10−4. The top
Yukawa coupling 10 · 10 · 5 originates from an E6 enhancement and the bottom 10 · 5̄ · 5̄ from an
SO(12).

For an implementation of the above, consider the particular case of SU(5) toy model discussed
in section 17 of ref [13]. The surface S is of the del Pezzo type dP8 which is generated by the
hyperplane divisor H from P2 and the exceptional divisors E1,...,8 with intersection numbers and
canonical divisor for dP8 given by (4.11) and (4.12). Denoting with C and g the class and the genus
of a given matter curve respectively, one has

C · (C+KS) = 2g−2 (4.18)
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Figure 3: Enhancements of the A4 singularity at double and triple intersections.

In this particular example the 10M chiral matter of the three generations resides on one Σ10, with
C = 2H −E1−E5 and the three 5̄M on a single Σ1

5 curve with C = H. Higgs fields 5H and 5̄H̄ reside
on different Σ2,3

5 matter curves with classes C = H −E1 −E3 and H −E2 −E4 respectively, giving
g = 0 for all curves, three families and a Higgs pair. Further details of this model can be worked
out using the properties of dP8 and can be found in [13].

Next we will discuss in detail the SU(5) model and other cases in the spectral cover picture.

5. Spectral cover approach

An equivalent description of the supersymmetric configurations of the 8-dimensional gauge
theory can be given in terms of adjoint scalars and gauge fields, corresponding to the so called
Higgs bundle picture [10]. In the spectral cover picture we concentrate in the vicinity of the chosen
surface S associated to the GUT group GS, while its neighborhood is described by a spectral surface.
The intersections of the spectral cover with the surface S encode the information about the spectrum
and its properties.

In local F-theory models we consider the maximum singularity of the elliptic fibrations, i.e. E8,
thus assuming that our effective theory has a GUT group GS the spectral cover group corresponds
to its commutant with respect to E8. We recall that all viable gauge groups GS embedded in E8, can
be inferred by the embedding formula [11]

En ×SU(m)

Zm
⊂ E8, n+m = 9 (5.1)

Of particular interest are the cases where GS is one of the phenomenologically viable GUTs
E6,SO(10) or SU(5). The corresponding decompositions are

E8 ⊃ E6 ×SU(3)→ E6 ×U(1)3 → [SO(10)×U(1)]×U(1)2 (5.2)

E8 ⊃ E5{= SO(10)}×SU(4) (5.3)

→ [SU(5)×U(1)]×SU(4)→ [SU(5)×U(1)]×U(1)3

E8 ⊃ SU(5)×SU(5)⊥ → SU(5)×U(1)4 (5.4)

A complete list of all possibilities can be found in [11]. Here we will construct the SU(5) and
flipped SU(5) models, while similar analysis for the E6 model can be found in [71].
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5.1 The SU(5) model from the spectral cover

If we take GS = SU(5) the corresponding spectral surface is SU(5)⊥. Matter resides in the
adjoint representation of E8 which in this case decomposes as

248 = (24,1)+(1,24)+(5,10)+(5̄,10)+(10, 5̄)+(10,5)

The decomposition appears under SU(5)GUT ×SU(5)⊥ where the SU(5)⊥ is the group describing
the bundle in the vicinity.

We label the weights of SU(5)⊥ with ti subject to ∑5
i=1 ti = 0, while we assume further breaking

of SU(5)⊥ to
SU(5)⊥ →U(1)4

Thus the 10 representations of SU(5)GUT originate from the (10, 5̄) component they reside on
matter curves Σ10ti

and are characterised by the weights ti. Similarly, the 5/5̄ representations reside
on Σ5ti+t j

.
The corresponding spectral cover equation is obtained by defining the homogeneous coordi-

nates
z →U, x →V 2, y →V 3

so that the Weierstrass equation becomes

0 = b0U5 +b2V 2U3 +b3V 3U2 +b4V 4U +b5V 5

with U,V being sections of −t and c1 − t respectively. We can turn this equation to a fifth degree
polynomial in terms of the affine parameter s =U/V :

P5 =
5

∑
k=0

bks5−k = b5 +b4s+b3s2 +b2s3 +b1s4 +b0s5

where we have divided by the fifth power V 5, so that each term in the last equation becomes section
of c1 − t. The roots of the spectral cover equation [10, 22]

0 = b5 +b4s+b3s2 +b2s3 +b0s5 ∝
5

∏
i=1

(s+ ti) (5.5)

are identified as the SU(5) weights ti.
In the above the coefficient b1 is taken to be zero since it corresponds to the sum of the roots

which for SU(n) is always zero, ∑ ti = 0. Also, it can be seen that the coefficient b5 is equal to
the product of the roots, i.e. b5 = t1t2t3t4t5 and the Σ10 curves where the corresponding matter
multiplets are localised are determined by the five zeros

Σ10i , b5 =
5

∏
=i=1

ti = 0 → ti = 0, i = 1,2,3,4,5 (5.6)

The model effectively appears with a symmetry SU(5)GUT ×U(1)4. In order to write a Yukawa
term, this symmetry should be respected. Thus, writing the coupling involving the up quark masses

W ⊃ 10ti 10t j 5−ti−t j
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would appear to involve two different generations. On the other hand, phenomenology requires a
rank one mass matrix at tree-level to account for the heavy top mass. A similar conclusion holds
for the bottom mass term. More generally, the known hierarchical fermion mass spectrum and
the heaviness of the third generation however, is compatible with rank one structure of the mass
matrices at tree-level. This requires a solution where at least two of the curves are identified through
some (discrete) symmetry.

This idea of identification is corroborated also by the following fact. In the spectral cover
approach, we have seen that the properties of the manifold are encoded into the coefficients bi.
Matter curves on the other hand are associated to the roots ti which are polynomial solutions with
factors combinations of bi’s, thus

bi = bi(t j)

Generically, the inversion of these equations will lead to branchcuts. The solutions t j = t j(bi) are
then subject to monodromy actions.

To get a feeling of the procedure we present an example (given in [30]) by considering the
simplest case of the Z2 monodromy. Suppose that two of the roots in (5.5) do not factorize. This
implies that the second degree polynomial

a1 +a2s+a3s2 = 0

cannot be expressed in simple polynomials of the base coordinates. The solutions can be written

s1 =
−a2 +

√
w

2a3
, s2 =

−a2 −
√

w
2a3

with w = a2
2 −4a1a3. These exhibit branchcuts and since

√
w = eiθ/2

√
|w|

under a 2π rotation around the brane configuration θ → θ +2π we get
√

w →−
√

w and

s1 ↔ s2

This means that the two branes interchange locations s = s1 and s = s2. This is equivalent of taking
the quotient of the parent theory with a Z2 symmetry. If this is among t1 ↔ t2 the coupling now
reads

W ⊃ 10t1 10t2 5−t1−t2 → 10t1 10t1 5−2t1

providing a diagonal mass term since the two curves are identified.
Since the SU(5) spectral cover is described by the 5-degree polynomial shown above, the var-

ious monodromy actions are associated to the possible ways of splitting the polynomial according
to

Z2 : (a1 +a2s+a3s2)(a4 +a5s)(a6 +a7s)(a8 +a9s)

Z2 ×Z2 : (a1 +a2s+a3s2)(a4 +a5s+a6s2)(a7 +a8s)

Z3 : (a1 +a2s+a3s2 +a4s3)(a5 +a6s)(a7 +a8s)

Z4 : (a1 +a2s+a3s2 +a4s3 +a5s4)(a6 +a7s)

Z3 ×Z2 : (a1 +a2s+a3s2 +a4s3)(a5 +a6s+a7s2)

nosplit : (a1 +a2s+a3s2 +a4s4 +a5s5)
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6. The case of Z2 monodromy

Up to this point we have discussed the constraints from the gauge symmetry GS that should be
imposed on the Yukawa sector of the effective field theory. We have seen that the U(1) factors are
not entirely independent since they undergo a series of monodromies. In general, the theory must be
the quotient by some monodromy group which leaves the roots of the gauge symmetry GS invariant.
In the following we attempt to implement the constraints obtained from the previous symmetry
breaking stages into the SU(5)GUT model imposing a Z2 monodromy among t1, t2. Expanding,
we may determine the homology class for each of the coefficients ai by comparison with the bk’s.
Thus, one gets

b0 = a3a5a7a9

b1 = a3a5a7a8 +a3a4a9a7 +a2a5a7a9 +a3a5a6a9

b2 = a3a5a6a8 +a2a5a8a7 +a2a5a9a6 +a1a5a9a7 +a3a4a7a8 +a3a4a6a9 +a2a4a7a9

b3 = a3a4a8a6 +a2a5a8a6 +a2a4a8a7 +a1a7a8a5 +a2a4a6a9 +a1a5a6a9 +a1a4a7a9

b4 = a2a4a8a6 +a1a5a8a6 +a1a4a8a7 +a1a4a6a9

b5 = a1a4a6a8

(6.1)

We first solve the constraint b1 = 0. We make the Ansatz [36]

a2 =−c(a5a7a8 +a4a9a7 +a5a6a9), a3 = ca5a7a9

Substituting into bn’s we get

b0 = ca2
5a2

7a2
9

b2 = a1a5a7a9 −
(
a2

5a2
7a2

8 +a5a7 (a5a6 +a4a7)a9a8 +
(
a2

5a2
6 +a4a5a7a6 +a2

4a2
7
)

a2
9
)

c

b3 = a1 (a5a7a8 +a5a6a9 +a4a7a9)− (a5a6 +a4a7)(a5a8 +a4a9)(a7a8 +a6a9)c

b4 = a1 (a5a6a8 +a4a7a8 +a4a6a9)−a4a6a8 (a5a7a8 +a5a6a9 +a4a7a9)c

b5 = a1a4a6a8

Next, we observe that we have to determine the homology classes [ai] of nine unknowns a1, . . .a9

in terms of the bk-classes [bk]. From (6.1) we deduce that the latter satisfy the general equation
[bk] = [al]+ [am]+ [an]+ [ap] for k+ l +m+n+ p = 24. Three classes are left unspecified which
we choose them to be [al] = χl, l = 5,7,9. The rest are computed easily and presented in Table 4.

The Σ10 curves are found setting s = 0 in the polynomial

b5 ≡ Π5(0) = a1a4a5a6 = 0 → a1 = 0, a4 = 0, a5 = 0, a6 = 0 (6.2)

Thus, after the monodromy action, we obtain four curves (one less compared to no-monodromy
case) to arrange the appropriate pieces of the three (3) families. The Σ5 curves are treated similarly.
To determine the properties of the fiveplets we need the corresponding spectral cover equation.
This is a 10-degree polynomial

P10(s) =
10

∑
n=1

cns10−n = b0 ∏
i, j
(s− ti − t j), i < j, i, j = 1, . . . ,5
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a1 a2 a3 a4 a5 a6 a7 a8 a9

η −2c1 −χ η − c1 −χ η −χ −c1 + x5 x5 −c1 + x7 x7 −c1 +χ9 χ9

Table 4: Homology classes for coefficients ai for the Z2 (SU(5)) case

Field U(1)i homology U(1)Y -flux U(1)-flux
10(1) = 103 t1,2 η −2c1 −χ −N M101

10(2) = 101 t3 −c1 +χ7 N7 M102

10(3) = 102 t4 −c1 +χ8 N8 M103

10(4) = 10′2 t5 −c1 +χ9 N9 M104

5(0) = 5hu −t1 − t2 −c1 +χ N M5hu

5(1) = 52 −t1,2 − t3 η −2c1 −χ −N M51

5(2) = 53 −t1,2 − t4 η −2c1 −χ −N M52

5(3) = 5x −t1,2 − t5 η −2c1 −χ −N M53

5(4) = 51 −t3 − t4 −c1 +χ −χ9 N −N9 M54

5(5) = 5hd −t3 − t5 −c1 +χ −χ8 N −N8 M5hd

5(6) = 5y −t4 − t5 −c1 +χ −χ7 N −N7 M56

Table 5: Field representation content under SU(5)×U(1)ti , their homology class and flux restrictions [36]
for the model [37]. Superscripts in the first column are numbering the curves, while subscripts indicate the
family, the Higgs etc. For convenience, only the properties of 10,5 are shown. 10,5 are characterized by
opposite values of ti →−ti etc. Note that the fluxes satisfy N = N7+N8+N9 and ∑i M10i +∑ j M5 j = 0 while
χ = χ7 +χ8 +χ9.

We can convert the coefficients cn = cn(t j) to functions of cn(b j). In particular we are interested
for the value P10(0) given by the coefficient c10 which can be expressed in terms of bk according
to

c10(bk) = b2
3b4 −b2b3b5 +b0b2

5 = 0

Using the equations bk(ai) and the Ansatz, we can split this equation into seven factors which
correspond to the seven distinct fiveplets left after the Z2 monodromy action.

P5 = (a1 − ca4 (a7a8 +a6a9))× (a1 − c(a5a6 +a4a7)a8)× (a1 − ca6 (a5a8 +a4a9))

× (a4a7a9 +a5 (a7a8 +a6a9))× (a5a6 +a4a7)× (a5a8 +a4a9)(a7a8 +a6a9)
(6.3)

Their homologies can be specified using those of ai. Notice that in the first line of the above the
three factors correspond to three fiveplets of the same homology class [a1] = η − 2c1 − χ . The
complete spectrum is presented in Table 5. Recall now that the SU(5) multiplets decompose to
Standard Model multiplets according to

10 → (3,2) 1
6
+(3̄,1)− 2

3
+(1,1)1 → (Q,uc,ec)

5 → (3,1)− 1
3
+(1,2) 1

2
→ (dc, ℓ)

(6.4)

We have pointed out that in F-theory constructions one of the possible ways to break the GUT
symmetry is to turn on a flux on the worldvolume of the seven-brane supporting the unified gauge
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group. In the present case, the SU(5) gauge symmetry can be broken by turning on a non-trivial flux
along the hypercharge with QY = diag{−1

3 ,−
1
3 ,−

1
3 ,

1
2 ,

1
2}. As a result, SU(5) multiplets residing

on certain curves where the flux restricts non-trivially, might split. This means that some SM pieces
of the (6.4) decomposition could be swept away by flux. In the case of Higgs fiveplets in particular,
this mechanism could be used to remove the unwanted triplets. To implement this idea in a specific
scenario, we recall first the SU(5) embedding to E8

E8 → SU(5)GUT ×U(1)4

The SU(5) chiral and Higgs matter fields descend from the adjoint representation of the E8 symme-
try and reside on the various curves denoted with Σ10 j ,Σ5̄i

. Suppose that M10 j ,M5i are two integers
representing the number of 10 and 5̄ representations in a specific construction. The U(1) fluxes
(those not included in SU(5)GUT ) together with the tracelessness condition ∑i FU(1)i = 0 imply the
following condition on the numbers of multiplets [36, 55]

∑
i

Mi
5 +∑

j
M j

10 = 0 (6.5)

Consider first the case that we have all 10-type chiral matter accommodated only on one Σ10 curve
and all chiral states 5̄ respectively on a single Σ5̄ curve. Then condition (6.5) implies the relation
M10 =−M5 = M.

We denote with NY5 ,NY10 the corresponding units of Y flux which splits the SU(5) multiplets
according to

Σ5̄ :

{
n(3,1)−1/3

−n(3̄,1)1/3
= M5

n(1,2)1/2
−n(1,2)−1/2

= M5 +NY5

Σ10 :


n(3,2)1/6

−n(3̄,2)−1/6
= M10

n(3̄,1)−2/3
−n(3,1)2/3

= M10 −NY10

n(1,1)1 −n(1,1)−1 = M10 +NY10

(6.6)

Notice that these formulae count the number of 5-components minus those of 5̄ and the number
of 10 components minus those of 10. Since we know that families are accommodated on 5̄’s
we require n(3̄,1)1/3

> n(3,1)−1/3
which implies M5 < 0. Similarly, because the remaining pieces

of fermion generations live on 10’s, we wish to end up with 10-components after the symmetry
breaking, hence we should have M10 > 0. For example, for exactly three generations we should
demand M10 = −M5 = 3 and NY j = 0. In general various curves belong to different homology
classes and flux restricts non-trivially to some of them, thus NY j ̸= 0 at least for some values of j.

6.1 A realistic model with Doublet-Triplet splitting

We will discuss here the model of [37] which emerges from the general class [36] presented
in Table 5. The first two columns give the field content under SU(5)×U(1)ti for the case of Z2

monodromy. The third column presents the homology classes expressed in terms of c1,η and the
χi the latter being unspecified subject only to the condition χ = χ7 + χ8 + χ9. If FY denotes the
U(1)Y flux, to avoid a Green-Schwarz mass for the corresponding gauge boson we must require
FY ·η = FY · c1 = 0. Then, we get Ni = FY · χi and consequently N = FY · χ = N7 +N8 +N9.
Using these facts, all remaining entries of column 4 in Table 5 are easily deduced.
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We now take the flux parameters to be M101,2,3 = 1, M51,2,4 =−1 and N = 0, while we have the
freedom to choose N7,8,9 subject only to the constraint N = N7 +N8 +N9. This choice of Mi,N j’s
ensures the existence of three 10 and three 5̄ representations which are needed to accommodate the
three chiral families.

Next we use the U(1)Y flux mechanism to realise the doublet triplet splitting and make the
model free from dangerous color triplets at scales below MGUT . We choose M5hu

= 1, to accom-
modate the Higgs 5hu . In addition we choose M5hd

= 0 and N8 = 1 so that we are left only with the
hd-doublet in the corresponding Higgs fiveplet

Σ5hd
:

{
n(3,1)−1/3

−n(3,1)1/3
= M55 = 0

n(1,2)1/2
−n(1,2)−1/2

= M55 +N −N8 =−1
(6.7)

In order to satisfy the trace conditions we choose M56 =−1, N7 =−1 so that 5̄(6) has only a colour
triplet component:

Σ5(6) :

{
n(3,1)−1/3

−n(3,1)1/3
= M56 =−1

n(1,2)1/2
−n(1,2)−1/2

= M56 +N −N7 = 0
(6.8)

We observe that in this simple example we have succeeded to disentangle the colour triplet from
the Higgs curve at the price of generating however a new one in a different matter curve. Yet, this
allows the possibility of realising the doublet-triplet splitting since we can generate a heavy mass
MD for the triplet by coupling it to an antitriplet via the appropriate superpotential term [37]. This
way we obtain the corresponding Higgs doublets light.

However from Table 5 one may see that the matter on the Σ10(2,3) curves will be affected by the
N7,8 flux. In particular the content of 10/10-representations on Σ10(2,3) splits as follows

Σ10(2) :


n(3,2)1/6

−n(3,2)−1/6
= M102 = 1

n(3,1)−2/3
−n(3,1)2/3

= M102 −N7 = 2

n(1,1)1 −n(1,1)−1 = M102 +N7 = 0

(6.9)

Σ10(3) :


n(3,2)1/6

−n(3,2)−1/6
= M103 = 1

n(3,1)−2/3
−n(3,1)2/3

= M103 −N8 = 0

n(1,1)1 −n(1,1)−1 = M103 +N8 = 2.

(6.10)

We observe that in the presence of flux one ec = (1,1)1 state is ‘displaced’ from Σ10(2) to the Σ10(3)

curve. A similar dislocation occurs for one uc = (3̄,1)−2/3 of Σ10(3) which ‘reappears’ in Σ10(2) . We
note that this fact implies a different texture for the up, down and charged lepton mass matrices. It
can be checked that the particular distribution of the chiral matter on the specific matter curves can
lead to interesting results with respect to the fermion mass structure and other phenomenological
properties of the model [37]. For clarity, the final distribution of the MSSM spectrum along the
available matter curves is summarized in Table 6.

We close the section with a few remarks about the SU(5) singlets. These are found on curves
extending away from the GUT surface S. In particular, singlet fields inhabit on curves in B3 that
project down to the curves on the GUT surface [33]. However, some of their properties could in
principle be captured by the corresponding defining equation. Thus, if we work in analogy with the
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Chiral Matter

M N Q uc ec M N dc L
10(1) (F3) 1 0 1 1 1 5(4) ( f̄1) -1 0 -1 -1
10(2) (F2,1) 1 -1 1 2 0 5(1) ( f̄2) -1 0 -1 -1
10(3) (F1,2) 1 1 1 0 2 5(2) ( f̄3) -1 0 -1 -1
10(4) (−) 0 0 0 0 0 5(3) (−) 0 0 0 0

Higgs and Colour Triplets

M N T hu,d

5(0) (hu,T ) 1 0 1 1
5(5) (hd) 0 -1 0 -1
5(6) (T̄ ) -1 1 -1 0

Table 6: The distribution of the chiral and Higgs matter content of the minimal model along the available
curves, after the U(1)Y flux is turned on. The three families Fi = 10i, f̄ j = 5̄ j are assigned on the curves as
indicated. The Higgs doublets hu,d and T/T̄ triplets descend from three different curves.

non-abelian representations, we could determine their homologies by examining the polynomial
equation ∏i ̸= j(ti − t j) in terms of bn’s. The zeroth order term of the polynomial gives [71]

P0 = 3125b4
5b5

0 +256b5
4b4

0 −3750b2b3b3
5b4

0 +2000b2b2
4b2

5b4
0 +2250b2

3b4b2
5b4

0

−1600b3b3
4b5b4

0 −128b2
2b4

4b3
0 +144b2b2

3b3
4b3

0 −27b4
3b2

4b3
0 +825b2

2b2
3b2

5b3
0

−900b3
2b4b2

5b3
0 +108b5

3b5b3
0 +560b2

2b3b2
4b5b3

0 −630b2b3
3b4b5b3

0

+16b4
2b3

4b2
0 −4b3

2b2
3b2

4b2
0 +108b5

2b2
5b2

0 +16b3
2b3

3b5b2
0 −72b4

2b3b4b5b2
0

which subsequently should be written in terms of ai’s. This can be factorised [71] to give the
homologies of the singlet fields θi j.

6.2 Flipped SU(5)

Flipped SU(5) can naturally emerge in the context of F-theory [35, 57, 62]. This can be easily
noticed in the spectral cover approach where the second SU(5) in the chain E8 → SU(5)×U(5)⊥
breaks to U(1)X ×SU(4)

E8 → SU(5)×U(5)⊥ → [SU(5)×U(1)X ]×SU(4)→ [SU(5)×U(1)X ]×U(1)3

U(1)X can be chosen to accommodate part of the hypercharge while monodromies may be imposed
among the remaining abelian factors U(1)3 ⊂ SU(4). The SO(10) = E5 embedding of SU(5)×
U(1)X can be easily detected through the following E8 breaking pattern

E8 ⊃ E5 ×SU(4)→ [SU(5)×U(1)X ]×SU(4)→ [SU(5)×U(1)X ]×U(1)3
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The adjoint representation of E8 then has the SO(10)×SU(4) and successively the SU(5)×SU(4)×
U(1)X decomposition given by

248 → (45,1)+(16,4)+(16, 4̄)+(10,6)+(1,15)

→ (24,1)0 +(1,15)0 +(1,1)0 +(1,4)−5 +(1, 4̄)5 +(10,4)−1 +(10,1)4

+(10, 4̄)1 +(10,1)−4 +(5̄,4)3 +(5̄,6)−2 +(5, 4̄)−3 +(5,6)2 (6.11)

In flipped SU(5) we have the following accommodation of fields. The chiral matter fields, -as in
the ordinary SU(5)- constitute the three components of the 16 ∈ SO(10), (16 = 10−1 + 5̄3 + 1−5

under the SU(5)×U(1)X decomposition). However, the definition of the hypercharge includes a
component of the external U(1)X in such a way that flips the positions of uc,dc and ec,νc, while
leaves the remaining unaltered. Indeed, employing the hypercharge definition Y = 1

5

(
x+ 1

6 y
)

where
x is the charge under the U(1)X and y the diagonal generator in SU(5), we obtain the following
‘flipped’ embedding of the SM representations

Fi = 10−1 = (Qi,dc
i ,νc

i )

f̄i = 5̄+3 = (uc
i , ℓi) (6.12)

ℓc
i = 1−5 = ec

i

The Higgs fields are found in

H ≡ 10−1 = (QH ,Dc
H ,νc

H) , H̄ ≡ 10+1 = (Q̄H , D̄c
H , ν̄c

H) (6.13)

h ≡ 5+2 = (Dh,hd) , h̄ ≡ 5̄−2 = (D̄h,hu) (6.14)

There is a remarkable fact in the flipped SU(5) model, which is going to be crucial for the viability
in the F-theory construction: we observe that matter antifiveplets carry different U(1)X charges
from the Higgs anti-fiveplets, thus they are distinguished from each other. Consequently, they do
not contain exactly the same components. Several R-parity violating terms are not allowed because
of this distinction.

For rank one mass textures these couplings predict mt = mντ at the GUT scale. However, in
contrast to the standard SU(5) model, down quarks and lepton mass matrices are not related, since
at the SU(5)×U(1)X level they originate from different Yukawa couplings. Indeed, the mass terms
descend from the following SU(5)×SU(4)×U(1)X invariant trilinear couplings

Wd = 10−1 ·10−1 ·5h
2 → Qi u j hd (6.15)

Wu = 10−1 · 5̄3 · 5̄h̄
−2 → Quc hu + ℓνc hu (6.16)

Wl = 1−5 · 5̄3 ·5h
2 → ec ℓhd (6.17)

This gives the opportunity to obtain a correct fermion mass hierarchy at MW
10. Moreover, a higher

order term providing Majorana masses for the right-handed neutrinos can be written

Wνc =
1

MS
10H̄10H̄ 10−1 10−1 (6.18)

10E.g., we can evade the naive MGUT -mass matrix relation m0
down = m0

lepton of the minimal SU(5) GUT. We know
that in order to obtain the observed lepton and down quark mass spectrum at low energies, at the GUT scale we should
have the relations m0

τ ≈ m0
b, m0

µ ≈ 3m0
s and m0

e ≈ 1/3m0
d .
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F ∈ 10 j, j = 1,2,3 f̄ ∈ 5̄ j, j = 1,2,3 ℓc ∈ 1 j, j = 1,2,3

(10,4)−1 :


10(1)−1 : {t1, t2}
10(2)−1 : {t3}
10(3)−1 : {t4}

(5̄,4)3 :


5̄(5)3 : {t1, t2}
5̄(6)3 : {t3}
5̄(7)3 : {t4}

(1,4)−5 :


1c(1)
−5 : {t1, t2}

1c(2)
−5 : {t3}

1c(3)
−5 : {t4}

Table 7: Matter curves (labeled by the SU(4) weights ti, where ∑i ti = 0), available to accommodate the
fermion generations in the case of Z2 monodromy in flipped SU(5).

In the present context, the above terms descend from the following SU(5)×SU(4)×U(1) invariant
trilinear couplings

Wdown ∈ (10,4)−1 · (10,4)−1 · (5,6)2 (6.19)

Wup ∈ (10,4)−1 · (5̄,4)3 · (5̄, 6̄)−2 (6.20)

Wℓ ∈ (1,4)−5 · (5̄,4)3 · (5,6)2 (6.21)

Further, in general the following Higgs terms can be written

HiHih j + H̄iH̄ih̄ j (6.22)

When H, H̄i acquire vevs, one obtains mass terms for the colour triplets

⟨Hi⟩dc
Hi

D j + ⟨H̄i⟩d̄c
Hi

D̄ j (6.23)

As we have explained in previous sections, the abelian symmetries descending from the breaking
of SU(4)→U(1)3 prevent tree-level couplings for the third generation, thus as in the case of SU(5)
we need to appeal to monodromies among the U(1)’s. Given that for the flipped model the highest
accompanying symmetry is SU(4), there are three possible choices for the monodromy group,
namely S3, Z2 ×Z2 and Z2. The first two cases reduce the number of the available matter curves
to two. The Z2 case gives exactly three matter curves. In the first two cases at least two families
should reside on the same matter curve. Hierarchy is then generated by flux effects [49, 53, 73]. If
we wish to accommodate the families on different matter curves, only the Z2 monodromy allows
the possibility of distinct localization of the three families.

As an example, let us see how matter curves are organised in the case of Z2 monodromy.
Assuming ti, i = 1, . . . ,4, with ∑4

i=1 ti = 0 we have the following correspondence between ti and the
representations11

4 → ti, 4̄ →−ti, 6 → ti + t j, i ̸= j, 6̄ →−(ti + t j), i ̸= j

Tables 7 and 8 show the flipped content for the case of Z2 monodromy. The resulting fermion mass
textures and other phenomenological issues are discussed in [35].

11Note that, although 6 ≡ 6̄, we ‘distinguish’ them under the weights ti 6/6̄ →±(ti + t j). This will only result to a
relabeling of the curves since ti + t j =−(tk + tl) where all i, j,k, l differ.
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h̄ ∈ 5̄i
−2, i = 1,2,3,4 h ∈ 5i

2, i = 1,2,3,4 θi j ∈ 1i j
0

(5̄, 6̄)−2 :


5̄(1)−2 : {−t1 − t2}
5̄(2)−2 : {−t3 − t4}
5̄(3)−2 : {−t1,2 − t3}
5̄(4)−2 : {−t1,2 − t4}

(5,6)2 :


5(1)2 : {t1 + t2}
5(2)2 : {t3 + t4}
5(3)2 : {t1,2 + t3}
5(4)2 : {t1,2 + t4}

1i j : {ti − t j}

Table 8: Higgs curves, and their labeling under the four SU(4) weights ti .

7. Gauge coupling unification in F-theory models

The spectrum of the minimal supersymmetric extension of the Standard Model is consistent
with a gauge coupling unification at a scale MGUT ∼ 2× 1016 GeV. In the simplest case, the SM
gauge symmetry is embedded in the SU(5) GUT with the SM matter content incorporated into
SU(5) multiplets. However, in a string derived SU(5) model, one must confront the mismatch
between MGUT and the natural gravitational scale MPl ∼ 1.2× 1019 GeV. We have pointed out
earlier, that in F-theory it is possible to decouple gauge dynamics from gravity by restricting to
compact surfaces S that are of del Pezzo type. The exact determination of the GUT scale however,
may depend on the spectrum and other details of the chosen gauge symmetry and on the particular
model. In F-theory SU(5) we are examining here, there are several sources of threshold effects that
have to be taken into account [12, 43, 44, 45, 46, 47, 69]. Thus, we encounter thresholds related
to the flux mechanism which induce splitting of the gauge couplings at the GUT scale [12, 43]. A
second source concerns threshold corrections generated from heavy KK massive modes [12, 46].
Furthermore, corrections to gauge coupling running arise due to the appearance of probe D3-branes
generically present in F-theory compactifations and filling the 3+1 non-compact dimensions while
sitting at certain points of the internal manifold [47].

We focus here on two sources of thresholds, namely the ones induced by fluxes and those by
KK-modes. Thresholds induced by the flux mechanism have been extensively analysed in recent
literature [12, 43, 45]. There, it was shown that the U(1)Y -flux induced splitting is compatible with
the GUT embedding of the minimal supersymmetric standard model, provided that no extra matter
other than color triplets is present in the spectrum. Thresholds originating from KK-massive modes
have been discussed in [12] and were found to be related to a topologically invariant quantity, the
Ray-Singer analytic torsion [81]. In F-theory, KK-massive modes exist for both the gauge and the
matter fields. Taking also into account that several low energy effective models involve exotics in
the light spectrum, it is possible that they might threaten the gauge coupling unification. Here it
will be argued that under reasonable assumptions for the matter curve bundle structure, in a class of
SU(5) models the KK-massive modes do not have any effect on the unification[48]. Alternatively,
one may implement the requirement of unification to constrain thresholds from KK modes of SU(5)
gauge and matter field [12, 45, 46, 69].

We start with the SU(5) gauge multiplet under (4.15) and recall the fact that the massless
exotics R±5/6 have been eliminated by imposing the condition χ(S,L5/6) = 0 (see eq. 4.16). At the
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one-loop level we write

16π2

g2
a(µ)

=
16π2ka

g2
s

+ba log
Λ2

µ2 +S
(g)

a , a = 3,2,Y · (7.1)

Here Λ is the gauge theory cutoff scale, ka = (1,1,5/3) are the normalization coefficients for the
usual embedding of the Standard Model into SU(5), gs is the value of the gauge coupling at the
high scale, and ba the one-loop β -function coefficients. The massive modes in representations
(4.15) induce threshold effects to the running of the gauge couplings denoted by S

(g)
a . These can

be written [12, 48] in terms of the Ray-Singer torsion Ti

S
(g)

a =
4
3

b(g)a
(
T5/6 −T0

)
+20kaT5/6· (7.2)

We absorb the term proportional to ka into a redefinition of gs while the remaining part suggests
that we can define MGUT as [46]

MGUT = e2/3(T5/6−T0)MC · (7.3)

Here we have associated the world volume factor V−1/4
S with the characteristic F-theory compacti-

fication scale MC.
Next we will consider contributions arising from chiral matter and the Higgs fields transform-

ing under the standard 10,10 and 5, 5̄ non-trivial representations. We should mention that the
U(1)Y -flux introduced in order to break SU(5) might eventually lead to incomplete SU(5) repre-
sentations, spoiling thus the gauge coupling unification. However, in the previous sections we have
already discussed realistic cases where the matter fields add up to complete SU(5) multiplets, so
that the bx

a-functions contribute in proportion to the coefficients ka. Under the above assumptions,
we may write threshold terms for the KK-states leaving in (6.4) representations as follows [46]

S5̄
a = −4

3
βa (T−1/2 −T1/3)+ ka (2 ·T−1/2) (7.4)

S10
a = +

4
3

βa (T−2/3 −T1/6)+ ka (6 ·T1/6)· (7.5)

with βa = β3,2,1 = { 3
2 ,0,1} while Tqi is the torsion and the indices refer to hypercharges. We

now observe that the hypercharge differences not proportional to ka in both Σ10 and Σ5̄ satisfy the
same condition qi − q j = −5

6 . Given this property and the fact that the torsion is a topologically
invariant quantity, one could assume the existence of bundle structures for Σ10 and Σ5̄ so that the
above differences vanish. Then, only the terms proportional to ka remain which can be absorbed in
a redefinition of the gauge coupling at MGUT .

We will assume that matter resides on at most genus one (g = 1) matter curves (see example
discussed in section 4.1 as well as in [13]) with chiral matter forming complete SU(5) multiplets.
For g = 1 in particular, according to Ray-Singer[81, 48], the analytic torsion is

Tv ≡ Tz=u−τv = ln

∣∣∣∣∣eπ iτ v2ϑ1(u− τv,τ)
η(τ)

∣∣∣∣∣ (7.6)
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For v → v−1, making use of known theta-function identities we observe

Tv−1 ≡ Tz=u−τ(v−1) = ln

∣∣∣∣∣eπ iτ (v−1)2ϑ1(u− τ(v−1),τ)
η(τ)

∣∣∣∣∣= Tz=u−τv · (7.7)

In order to use this result, we need to make a proper identification of the hypercharge qi. Consider-
ing now two successive hypercharge values qi,q j such that |qi −q j|= 5

6 and using the association

vi =
qi

|qi −q j|
(7.8)

we get the identification
Tu−τvi ↔ Tqi ·

With this embedding we can easily see that the differences T−2/3−T1/6 = 0 and T−1/2−T1/3 = 0
so that threshold corrections vanish and unification is retained. Thus, adding matter contributions
of complete SU(5) representations to (7.1), while assuming that the Higgs-triplet pair decouples at
MX we finally get

16π2

g2
a(µ)

=
16π2

g2
G

ka +(b(g)a +ba) log
M2

GUT
µ2 +bT

a log
M2

GUT

M2
X

(7.9)

where bT
a ,ba MSSM beta functions with and without the triplet-pair contribution and the GUT

value of the gauge gG coupling is related to the string gs coupling by

16π2

g2
G

=
16π2

g2
s

+20T5/6 +6T1/6 +2T1/3·

8. Summary and recent progress

In the previous sections we have presented techniques for the construction of F-theory SU(5)
models and analysed ways and novel mechanisms for symmetry breaking and doublet triplet split-
ting. In F-theory, important properties of the effective field theory model depend on the specific
geometry of the compact space and the internal fluxes. Thus, we have investigated how the triplet-
doublet splitting problem for example can be solved by judicious choice of fluxes in order to split
the SU(5) Higgs fiveplets [13, 33, 36, 37].

Several other important issues of GUT models have been successfully treated in their F-theory
analogues. Thus, it has been suggested [82] that unwanted proton decay operators can be avoided
through the incorporation of an R-symmetry by invoking symmetries of the manifold and of the
fluxes [35, 36]. Alternative ways have also been presented based on the abelian factors [42, 65, 57,
83] and the extension of the SU(5) gauge group to flipped SU(5)×U(1)X discussed in the previous
section.

Further progress has also been made towards the computation of the Yukawa couplings and
the determination of the fermion mass spectrum[53, 73, 84]. We have already explained that in F-
theory chiral matter is localised along the intersections of the surface S with other 7-branes, while
Yukawa couplings are formed when three of these curves intersect at a single point on S. Their
computation relies on the knowledge of the profile of the wavefunctions of the states participating
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in the intersection. When a specific geometry is chosen for the internal space (and in particular for
the GUT surface) these profiles are found by solving the corresponding equations of motion [11].
Besides, the precise knowledge of the common gauge coupling value at the GUT scale is crucial
for the determination of the Yukawa couplings involved in the calculation of the fermion mass
spectrum [46]. Then, their values are obtained by computing the integral of the overlapping wave-
functions at the triple intersections. Despite this important success towards a reliable computation
of undetermined parameters of GUTs and the Standard Model, yet a lot of work is required to for-
mulate a complete picture of an F-theory derived effective low energy model; because a theory, no
matter how beautiful it is, has to face the relentless test of the experimental proof.
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