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Heterotic Standard Models Andre Lukas

1. Introduction

Compactification of the heterotic string on Calabi-Yau manifolds [1, 2] is the oldest approach
to string phenomenology and remains one of the most promising avenues towards connection string
theory with low-energy physics. However, despite considerable progress over the years, only a
relatively small number of such models with a standard model spectrum [3]-[11] were known until
recently, owing mainly to the mathematical difficulties of the construction. Any small number of
string models with the right basic properties is likely to fail when confronted with more detailed
phenomenological requirements, such as the correct spectrum of fermion masses. Constructing
a true string standard model therefore depends on being able to construct quasi-realistic models
systematically and in significant numbers.

Here, we would like to report on recent progress in this direction [12, 13]. The main idea is
to depart from traditional approaches to heterotic Calabi-Yau model building which have, for the
most part, been using internal gauge fields with structure group SU (n). Instead, we will consider
gauge fields with an Abelian structure group. The resulting conceptual and technical simplifica-
tions, together with computational ground-work laid out in earlier papers [11, 14, 15], lead to the
construction of several hundred heterotic standard models, that is models with the MSSM matter
spectrum, one or more pairs of Higgs doublets and no exotics charged under the standard model
group.

To explain this in more detail we have to recall the data required for a Calabi-Yau compact-
ification of the Eg x Eg heterotic string. In additional to a Calabi-Yau three manifold X, we need
“observable" and “hidden" vector bundles V and V on X, both supersymmetric and with a structure
group which is a sub-group of Eg, and a holomorphic curve C C X which is wrapped by five-branes.
These various objects are subject to the anomaly constraint

chy (V) +chy (V) —chy(TX) = [C], (1.1

where the square brackets indicate the homology class of the curve C. Here, we will only construct
the Calabi-Yau three-fold X and the observable bundle V explicitly. However, we will ensure that
a supersymmetric, anomaly-free completion of the model always exists. To do this we require that
chy (V) —chy(TX) is such that the anomaly condition (1.1) can be satisfied by a suitable choice of
holomorphic curve C. (In more technical terms, we require chy (V) — chy(TX) to be an element of
the Mori cone of X.)

A typical choice for the structure group of the bundle V has been the group SU(5) which leads
to a low-energy SU(5) GUT theory. Here, we use instead bundles V with the Abelian structure
group S(U (1)) C SU(5). Such bundles are easily constructed as a sum of five line bundles

V=L, (1.2)

a=1
satisfying ¢; (V) = ¥, c¢1(L,) = 0. Line bundles are classified by their first Chern class and, hence,
such line bundle sums can be constructed systematically. Moreover, properties of V required to
compute properties of the associated low-energy theory are much easier accessible for line bundles.
An interesting general feature of such models is that the structure group S(U(1)°) is self-
commuting and, hence, also appears as a low-energy gauge symmetry. The full low-energy gauge
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group, before Wilson-line breaking, for such line bundle models is therefore SU(5) x S(U(1)%).
Usually, the additional U (1) symmetries are Green-Schwarz anomalous so that the associated vec-
tor bosons are super-massive and do not cause a phenomenological problem. However, the U (1)
symmetries still restrict the set of allowed operators in the four-dimensional theory. This leads to
a range of interesting phenomenological possibilities, for example in relation to proton stability,
fermion masses, t-problem etc. In order to discuss these issues, we should first introduce heterotic
line bundle models in more detail.

2. Heterotic line bundle models

To construct heterotic line bundle models we start with a Calabi-Yau three-fold X, with A"! (X)
Kahler parameters, t', so that the Kahler form can be written as J = ' ;, relative to some basis of
harmonic two-forms {@;}. We will also require the existence of a freely-acting symmetry I" of X,
in order to be able to form the non simply-connected quotient X = X /T". On this quotient, Wilson
lines can be introduced in a subsequent step of the construction which can break the SU(5) GUT
group to the standard model.

As mentioned above, line bundles L are characterized by their first Chern class ¢1(L) = k'a;
and, hence, by a set of 1! (X) integers k = (k'). We will write a line bundle with this Chern class as
Ox (k). A line bundle sum of the required form (1.2) then consists of five line bundles L, = Ox (k,)
and is, hence, simply given by an integer matrix (k) of size h!"!(X) x 5, satisfying

5
Y k=0, 2.1y
a=1

to ensure that ¢;(V) = 0. Such line bundle sums are supersymmetric if all their slopes vanish
simultaneously, that is, if the equations

dijt't’k, =0, (22)

(where d;j; are the triple intersection numbers of the Calabi-Yau manifold X) have a common
solution ¢#; in Kahler moduli space. A necessary condition for the existence of such a solutions is

rank (k1) < h"1(X) . (2.3)

Since we are considering rank five bundles this constraint means that model building options are
severely restricted for Calabi-Yau manifolds with a small number of Kahler paramenters, 1! (X) <
5.

The heterotic string on X with such a line bundle sum V leads to a four-dimensional GUT
theory with gauge group SU(5) x S(U(1)?) and matter multiplets

loega I_O—ea; 5ea-&-eba S—eg—ehv lea—e;, . (2-4)

Here, e, denotes the a™ standard unit vector in five dimensions and the subscripts indicate the
charges of the respective SU(5) multiplet under the S(U(1)°) symmetry. In general, we describe
irreducible S(U(1)°) representations by integer vectors q = (¢1, .. .,gs). Due to the special unitarity
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condition, two such vectors, ¢ and q, describe the same representation and have to be identified if
q—qeZ(,1,1,1,1).

The additional U (1) symmetries in S(U (1)) are normally Green-Schwarz anomalous and,
hence, the associated vector bosons are super-massive. However, in special cases, some of the
U (1) symmetries may be massless and, hence, anomaly-free. The number of such symmetries can
be easily computed from

(Number of massless U(1) symmetries) = 4 — rank(k’) . (2.5)

Comparison with Eq. (2.3) shows that models on Calabi-Yau manifolds with 2" (X) < 5 necessar-
ily have at least one massless U (1) symmetry. For 2'"!(X) > 5 massless U (1) symmetries can arise
for special, non-generic choices of the line bundles k. In any case, the appearance of such massless
U (1) symmetries is not necessarily a phenomenological disaster. We note from the spectrum (2.4)
that the GUT singlets do, in fact, carry charges under S(U(1)°). Hence, turning on VEVs for these
singlets (which corresponds to moving to a locus in the bundle moduli where the bundle becomes
non-Abelian), these massless U (1) symmetries can easily be broken spontaneously.

Note that each GUT multiplet comes with specific S(U (1)) charges which significantly re-
strict the allowed operators in the four-dimensional theory. For example, the standard SU(5)
Yukawa couplings

5 ¢, 10e.10¢, , 5. 5e e, 10, (2.6)
are only allowed if e, +e, =e.+e; and e, +e, +e.+e;+e, = (1,1,1,1,1), respectively.

The number of each type of GUT multiplet can be computed from line bundle cohomology as
summarized in Table 1. As we will discuss later, for certain classes of Calabi-Yau manifolds the

’ multiplet ‘ S(U(1)°) charge ‘ associated line bundle L ‘ contained in ‘

10, e, L, \%
10_, —e, L V¥
Se,te, e, +ep L,®QLy X%
5 ee, —e,—e L:®Ly NZV*
Lo, e, e, — € L,®L; Vv
1 e, te, —e;+¢ep L;®Ly

Table 1: Multiplet content, charges and associated line bundles of the SU(5) x S(U (1)) GUT theory. The
indices a,b, ... are in the range 1,...,5 and e, denotes the standard five-dimensional unit vector in the a™
direction. The number of each type of multiplet is obtained from the first cohomology, H'(X,L), of the
associated line bundle L.

techniques required to calculate these line bundle cohomologies are available, so that the complete
GUT spectrum, including the values of the S(U(1)?) charges can be computed explicitly. To obtain
a standard model spectrum we require the absence of mirror families. At the present GUT stage this
means we should not allow any 10 multiplets. Hence, we will only use line bundles L, satisfying

W (X,Ly) = h'(X,L}) =0. 2.7)
Further, in order to produce three chiral families downstairs, we demand that

RX,V) =Y R (X,L) =3|0],  A'(X,APV) =k (X, A2V*) = 3|1, (2.8)
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’ SU(5) repr. ‘ Gswm repr. ‘ name ‘ cohomology ‘

10, 321 | Qa W (X, Loy Xa @W* @ W)
(B 1)-s | ug h' (X, La, Yo @W* @ W¥)
(1,1)6 ea h' (X, Lo, Xa @ W* @W¥)
geaJreb (37 1)2 da,b7 E,b hl (La ®Lbea Oy W)
(172)*3 La,baHa,b hl(La ®Lb7%a ®Xb®W)
5fe‘,fel, (3’ 1)*2 Ta.,h hz(La ®LbaXa XX W)
(172)3 Hu,b hz(La ®Lby%a®Xb®W)
Le,—e, (L1)o | Sap h' (Lo ® Ly, Xa @ X3)

Table 2: Cohomologies which compute the downstairs spectrum. The Wilson line is char-
acterized by the two representations W and W of the freely-acting Abelian symmetry T and
X are the characters of the line bundles L,. The notation h'(X,L,R) in the last column de-
notes the dimension of the subspace of H' (X, L) which transforms under the representation
R of T.

where |I'| is the order of the discrete symmetry group I". Note that we do not require the absence
of 5 multiplets. Indeed, we need at least one such multiplet in order to be able to obtain a pair of
Higgs doublets, so we require that

|
(X, A?V*) > 0. (2.9)

To break the GUT models to the standard model, we need to divide by the freely-acting sym-
metry I' and introduce Wilson lines. In addition, the bundle V needs to descend to a bundle V
on the quotient manifold X = X /I". The corresponding mathematical notion is that the bundle V
be equivariant under I', a condition which can be checked explicitly for line bundle sums, at least
on certain Calabi-Yau manifolds. The complete downstairs bundle is then Vo W, where # is a
flat bundle which corresponds to the Wilson line. The number of downstairs multiplets is given
in terms of the cohomology of V @ %#, but can, more easily, be computed by considering the I’
representation properties of the upstairs GUT spectrum.

To discuss this more explicitly, we assume that I' = ®,Z,, is an Abelian symmetry and that
the bundle is I" equivariant due to every line bundle L, being equivariant individually. In this case,
the equivariant structure on V can be described by an arbitrary choice of five I'-representations
(“characters") y,. Further, the Wilson line, embedded in the hypercharge direction in SU(5), is
characterized by two I'-representations, W and W, subject to the condition W3 @ W? = 1. Within
this set-up, the number of downstairs multiplets can be computed by working out the I" represen-
tation content of upstairs cohomologies, as indicated in Table 2. For certain classes of Calabi-Yau
manifolds this can be carried out explicitly, as we will discuss in the following section.

Note from Table 2 that each standard model multiplet will inherit the S(U (1)) representation
of its underlying GUT multiplet. The pattern of operators allowed or forbidden under S(U(1%) is,
therefore, consistent with an SU (5) grand unified symmetry, although the actual values of coupling
constants can, of course, break the GUT symmetry. For example, the tau and bottom Yukawa
couplings are either both forbidden or allowed by S(U(1)?), however, in the latter case, their values
are not necessarily identical.
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In order to obtain a spectrum without any exotics we should impose further phenomenological
constraints which eliminate all Higgs triplets, T, T and ensure we are left with at least one pair of
Higgs doublets. From Table 2 this means we should require that

B (La® Ly, o ® x5 @ W) = 0 for all a, b (2.10)
hz(La®Lb,xa®xb ®W) > 0 for at least one a,b . (2.11)

If these and the previous phenomenological constraints are satisfied, the resulting four-dimensional
theory has N = 1 supersymmetry, a standard model gauge group (times S(U(1)?), normally anoma-
lous), three families of matter, one or more pair of Higgs doublets, a set of standard model singlets
which, however, are charged under S(U(1)°) and no exotics charged under the standard model
group of any kind. In other words, we have an NMSSM-like model with a number of additional
singlet field. Operators in this theory will be restricted by S(U(1)%), in a way which is consistent
with an SU(5) GUT symmetry. As we will now see, all of the above mathematical and physical
requirements can indeed be met for certain classes of Calabi-Yau manifolds.

3. Line bundle standard models on CICYs

Complete intersection Calabi-Yau manifolds (CICYs) are defined as the common zero locus of
polynomials in products of projective spaces. They are arguably the simplest Calabi-Yau manifolds
(with the quintic in P* as their most prominent representative) and, according to the classification
of Ref. [16], there are about 8000 such spaces. All required quantities, such as second Chern
class, Euler number, Hodge numbers and intersection numbers have been explicitly computed for
these manifolds !. The range of allowed Kahler parameters (the “Kahler cone") for favourable
CICYs is t' > 0, for all i. Crucially, more recently, freely-acting symmetries for these manifolds
have been classified [17] and methods to compute line bundle cohomology on CICYs have been
developed [11, 15]. Hence, all the required technical ingredients discussed in the previous section
are available for CICYs and, currently, they constitute the only class of Calabi-Yau manifolds for
which this is the case.

As we have discussed, the complication of our models increases with increasing number,
h'1(X), of Kahler parameters, since each line bundle is characterized by as many integers. For
this reason, we have searched through the list of CICYs starting with a small number of Kahler
parameters and gradually increasing 4! (X). In this way, we have covered all (favourable) CI-
CYs with 2"1(X) < 5, in total about 60 manifolds. For each such manifold, we have generated
all line bundle sums, (k), with entries in a given range, and have checked the various mathemati-
cal and physical conditions explained in the previous section. On manifolds with 2'!(X) = 1 the
bundle supersymmetry constraints (2.2) cannot be satisfied, so such manifolds (which include the
quintic) are ruled out for line bundle models. For the manifolds with A'"!(X) =2 (k! (X) = 3),
we have covered the range —10 < k; <10(-3< kfl < 3). In either case, no examples consistent
with all requirements have been found, that is, there are no line bundle standard model on such
CICYs. Intuitively, the reason for this is the condition (2.3) which is necessary for supersymmetry

IThe complete set of intersection numbers is currently only available for “favourable” CICYs, that is CICYs for
which the entire second cohomology descends from the ambient space. Here, we will focus on such favourable CICYs.
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of the bundle. It constitutes a strong constraint for small 2!:!(X) and, combined with the physical
conditions on the spectrum, it rules out all models for 4! (X) = 2,3.

For the A" (X) = 4 (h"!(X) = 5) manifolds we have covered the range —3 < ki <3 (-2 <
ki, < 2) and we have found a substantial number of viable models. At the level of the underlying
GUT theories, there are about 200 models with the right properties. It turns out, they are all
associated to discrete symmetries I' = Z, or I' = Z, x Z;. Each of these models is divided by I
and all possible choices, x:, for the bundle equivariant structure and the Wilson line, W and W,
are explored. This leads to between ¢(100) to ¢/(1000) choices for each of the 200 GUT models.
Not all of these choices are viable, for example, for some the resulting spectrum contains Higgs
triplets. Keeping only the models with a viable spectrum and only one representative per spectrum
obtained we end up with 399 standard models.

Each of these 399 models has a standard model gauge group times S(U(1)°, precisely three
standard model families, one, two or three pairs of Higgs doublets, a number of standard model
singlets (bundle moduli) and no exotics charged under the standard model group. For 233 of the
models all four additional U(1) symmetries are Green-Schwarz anomalous and, hence, massive,
the remaining models have one or occasionally two massless U(1) symmetries. The numbers of
models with one, two and three pairs of Higgs doublets are (259,72,63).

The matter field content for each of these models consists of the three families (10,,) =
(Qa,sta,»eq,) and (5p,c,) = (dp, c,sLb,c,), Where p,q,... = 1,2,3 are family indices, and one or
more pairs, Hy ,, H 2. of Higgs doublets and singlets Sy, 7, The notation is such that the S(U (1)°
charges, Q, for these multiplets are given by

Q(loap) = €q, ) Q(gbp,cp) = €, +ecp
Q(HgJ,) =e,+e; Q(Hg‘,l_z) = —e; —¢€j 3.1)
Q(Sdavfa) = ed(x _efa :

The indices a,,bp,... = 1,...,5 specify the S(U(1)%) charges for the various multiplets and are of

course fixed for each of our explicit models. For a given model, the pattern of these charges restricts
the allowed operators in the four-dimensional theory which has potential implications for a whole
range of phenomenological issues. For example, the S(U(1)> symmetry may forbid dimension four
and five proton decay violating operators. This indeed happens for 195 out of the 399 models. It
is important to note that the singlet fields, S, also carry S(U(1)%) charges so that their couplings
to standard model fields are constrained. For example, this means that the S(U(1)°) symmetry,
together with (small) singlet VEVs can form the basis of a Froggatt-Nielsen type appoach towards
obtaining the correct fermion masses. An elementary phenomenological requirement is that the top
Yukawa coupling is allowed by the S(U(1)’) symmetry. This turns out to be the case for 45 of our
models. If we combine the requirements of precisely one pair of Higgs doublets, a stable proton, no
massless U(1) symmetry and an allowed top Yukawa coupling, we find 13 corresponding models.

A searchable database of all 399 models, suitable for a more detailed phenomenological anal-
ysis, can be obtained from the webpage [18]. In addition to the underlying Calabi-Yau and bundle
data this database also includes lists of the four-dimensional operators allowed by S(U(1)°).
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4. An example

To be more specific, we would now like to present an explicit example from the database [18].
The underlying CICY manifold for this example if defined by the common zero locus of two
polynomials with multi-degrees (0,1,1,1,1) and (2,1,1,1,1) in the ambient space (P!)*>. The
two generators of the freely-acting symmetry I' = Z; x Z, act as

1 0 01
(0—1) ’ (1 o) @D

on the two homogeneous coordinates of each ambient space P! factor. This CICYSs has five Kahler
parameters, 2! (X) = 5, so that a line bundle is specified by five integers. The relevant line bundle
sum for our example is given by

1 1 0 0-2
~-1-1 1 0 1

(ky=1 0—-1 0 1 0 (4.2)
0 0-2 1 1
01 1-2 0

Note that the columns of this matrix, the vectors k,, define the five line bundles L, = Ox(k,).
The Wilson line is chosen as W = (0,0), W = (0,1) and the equivariant structure as (x}) =
((0,0),(0,0),(0,0),(0,1),(0,0)), where the integer pairs denote Z, x Z, charges. Then, the re-
sulting matter spectrum is

(103,104,105,5, 3,51 4,545, H3.4, H3.4,54,1,3S5,1,3542,3852,253.4,254.3,353 5) - 4.3)

We recall, that the subscripts specify the S(U (1)) charges. For example, the notation 105 indicates
that this multiplet has charge Q(103) = e3.

It is easy to see that the up-type Yukawa coupling H3 4103104 is allowed, so that this model can
accommodate on order one top Yukawa coupling, while all down-type Yukawa couplings, H 510,
are forbidden. In fact, the down-type Yukawa couplings remain zero even if we allow singlet VEV
insertions of the singlet fields available in the spectrum (4.3). This means that non-perturbative
effects are required in this model to generate the down-type Yukawa couplings. It can also be
checked from the charges in (4.3) that all dimension four and five proton-decay violating operators
of the form 1055 and 5101010, are forbidden even when singlet VEV insertions are allowed.

5. Conclusion

We have seen that heterotic line bundle models constitute an interesting class of string models
which allows for the construction of large numbers of quasi-realistic models. In addition, thanks to
the additional S(U(1)®) symmetry in those models, a number of relevant phenomenological issues
can be discussed without the need for a full-scale calculation of the four-dimensional coupling
constants from string theory.

A relatively modest scan, based on 60 Calabi-Yau manifolds and line bundles with entries &/, in
a fairly restricted range, has already led to about 400 standard models which are accessible from a
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database [18]. Significant extensions of this scan, both to a larger number of Calabi-Yau manifolds
and a larger class of line bundles, are feasible and currently underway. We anticipate that this will
lead to many thousands of standard models. A large set of quasi-realistic string models is required
in order to search for a true string standard model, that is, a model which reproduces all known
features of low-energy physics. We hope that a comprehensive scan for quasi-realistic line bundle
standard models will provide such a starting point and will ultimately lead to the construction of a
fully realistic string standard model.
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