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1. Introduction

The string theory holds the promise of unifying the fundamental forces of Nature. There have been
several important steps to achieve this goal [1]. String theory has also resolved many important
issues in quantum gravity with considerable success. The computation of Bekenstein-Hawking
entropy and insight into the nature of Hawking radiation in black hole physics from a microscopic
theory are considered as important achievements. Moreover, outcome of important investigations
of string theory have influenced research in the frontiers of cosmology. It is well known that string
theory is very rich in symmetries. These can be identified as local and global symmetries. The
former is generally associated with the massless states of the strings such as graviton and antisym-
metric tensor field (for closed string). Moreover, the string theory is endowed with symmetries on
the worldsheet in the first quantized formulation as well as through its description from the perspec-
tive of target space effective action. The duality symmetries play an important role to understand
string dynamics [2]. The web of dualities unravel the intimate relationships between the five super-
string theories in various dimensions [3, 4] although they are perturbatively distinct in the critical
dimension, D̂ = 10. The target space duality, T-duality, is a special attribute of the theory which
owes its origin to the one dimensional nature of the string. In its simplest form, we encounter
T-duality in the worldsheet description of string’s evolution. If σ denotes its coordinate, in the
temporal evolution (τ-evolution), a string sweeps a surface and therefore, its coordinates, X µ̂(σ ,τ)

are parametrized by them. Thus τ↔ σ interchange describes the same physical evolution process.
When particles, which belong to the string spectrum, scatter they form strings as intermediate states
corresponding to exchange of towers of particles. Interchange of τ and σ is to be interpreted as
direct channel and crossed channel processes from the quantum field theory perspective.
I shall present recent investigations [5] on duality symmetry associated with massive excited stated
of closed bosonic string in the Hamiltonian formalism from the worldsheet view point. The evo-
lution of the string in the background of its massless excitation corresponds to a 2-dimensional
σ -model where the backgrounds are identified as coupling constants of the theory. These are con-
strained if we demand that the theory respects conformal invariance. We intend to follow a similar
approach where the string evolves in the background of higher massive levels in order to study the
duality symmetry associated with the excited states.
Let us recall that all the massive states of closed string belong to irreducible representations of
rotation group, SO(D̂−1), D̂ being the number of spacetime dimensions. Moreover, at each level
of the spectrum, the states are degenerate with different spins. The importance of massive string
states is recognized when one computes the β -functions associated with the massless states, in the
σ -model approach, beyond the leading order. In particular, when one computes the second order
corrections to the β -function in the graviton background, it was observed that [7, 8] it is necessary
to introduce counter terms which correspond to infinite number of massive modes to cancel the
loop diverges that appear in the bosonic theory. One could couple the string to excited massive
states analogously, generalizing the procedures of coupling to the massless excitations; however,
such terms will be suppressed by appropriate factors α ′ on dimensional considerations. Therefore,
the resulting effective actions (obtained for such massive states) will play a subdominant role in the
low energy regime. Let us recall that compactification of string effective action, derived for a string
in critical dimensions(26 and 10 for bosonic and superstrings respectively), leads to appearance

2



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
9
7

Massive Stringy States Jnanadeva Maharana

of noncompact duality group (see [6] and references therein). Thus it is worth while to examine
whether excited states are endowed with any duality-like symmetry. We conjecture that there are
evidences for dualities which can be verified, for toroidally compactified closed bosonic string, in
the case of a few excited levels. Moreover, we present a systematic procedure to verify the validity
of our proposal that such dualities persist for all massive levels. It is well known that the excited
states are endowed with several interesting attributes. The degeneracy of higher states, for a given
mass, grows exponentially which is the raison de etre for limiting (Hagedorn) temperature. More-
over, it has been argued that in the Planckian energy scattering regime, such stringy states play an
important role [9, 10]. There are hints that these states might be endowed with higher gauge sym-
metries [11, 12, 13, 14, 15, 16]. The recent interests to study high spin massless field theories have
utilized properties of excited stringy states in certain limits [17, 18]. We recall some of the useful
results in order to formulate our problem. In this optics, it is worth while to investigate duality
symmetry associated with excited massive levels of closed string where d of its spatial coordinates
are compactified on T d .

2. T-DUALITY SYMMETRY FOR EXCITED LEVELS

In this section we discuss T-duality properties of massive excited states of closed bosonic
string. We consider a scenario where some of the spatial coordinates of the string are compactified
on T d . We designate noncompact string coordinates as spacetime coordinates (which includes time
coordinate). We choose the massless background along spacetime directions to be trivial i.e. the
metric is Minkowskian and antisymmetric tensor, Bµν = 0. Thus the free Hamiltonian density is
sum of two pieces; one expressed in terms of spacetime coordinates and their conjugate momenta
and the other piece contains compact coordinates and their conjugate momenta. Then we supplent
it with terms coming from various vertex operators which are treated in the weak field approxima-
tion. If we require the vertex operators to be (1,1) primaries [12, 13, 14] then they satisfy equations
of motion as well as some transversality conditions. We shall not provide details of these calcula-
tions which are available in the literature [12, 13], although we shall utilize them when the need
arises. The target space duality has been examined from several perspectives [19]. Now we recall
some salient results of T-duality in the frame work of the worldsheet theory [20, 21, 6, 22]. In
particular we focus on toroidal compactification for massless states in the worldsheet approach
[20, 21, 6]. In this context it is assumed that string coordinates Y α(σ ,τ),α,β = 1,2, ..d are
compactified on torus T d . The noncompact coordinates are X µ(σ ,τ),µ,ν = 0,1,2..D− 1 with
D+ d = D̂. The corresponding backgrounds after dimensional reduction[6], for the metric, are
Gµν(X),A(1)

µα(X)and Gαβ (X) and from the 2-form we get Bµν(X),Bµα and Bαβ (X). It is assumed
that all the backgrounds depend only on the spacetime string coordinates X µ . The gauge fields
A(1)

µα are associated with the isometries and Bµα are another set of gauge fields coming from di-
mensional reductions of the 2-form. It was shown that, after introducing a set of dual coordinates
Ỹ α the combined worldsheet equations of motion (of Y and Ỹ ) can be cast in a duality covariant
form. Note that if one resorts to the Hamiltonian formulation for a slightly simplified version of
above compactification [23], the resulting Hamiltonian is expressed in duality invariant form [24].
Our strategy will be to utilize the results of Hamiltonian formulation and adopt a simple compact-
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ification procedure for the higher levels and unveil the duality symmetry for these states. Let us
consider toroidal compactification where we set Gαβ = δαβ and Bαβ = 0; in other words the radii
of T d are set to unity. The stress energy momentum tensors used to compute the conformal weights
are

T++ =
1
2
(G(0)

µν∂X µ
∂Xν +δαβ ∂Y α

∂Y β ) (2.1)

T−− =
1
2
(G(0)

µν ∂̄X µ
∂̄Xν +δαβ ∂̄Y α

∂̄Y β ) (2.2)

where G(0)
µν = diag(1,−1,−1..) is the flat D-dimensional metric, ∂X µ = Ẋ µ +X ′µ , ∂Y α = Ẏ α +Y ′α ,

∂̄X µ = Ẋ µ −X ′µ and ∂̄Y α = Ẏ α −Y ′α ; ’overdot’ and ’prime’ stand for derivatives with respect to
τ and σ here and everywhere. Note that the string coordinates, X µ and Y α will be decomposed
as right and left movers, X µ = X µ

R +X µ

L , and Y α = Y α
R +Y α

L and therefore, ∂ ∂̄X µ = ∂ ∂̄Y α = 0.
Therefore, we do not include such terms in construction of excited level vertex operators. The
vertex operator for first excited massive state [12, 13] for the uncompactified closed string is

φ̂1 = V̂ (1)
1 +V̂ (2)

1 +V̂ (3)
1 +V̂ (4)

1 (2.3)

where

V̂ (1)
1 = A(1)

µ̂ ν̂ ,µ̂ ′ν̂ ′(X)∂X µ̂
∂X ν̂

∂̄X µ̂ ′
∂̄X ν̂ ′ (2.4)

V̂ (2)
1 = A(2)

µ̂ ν̂ ,µ̂ ′(X)∂X µ̂
∂X ν̂

∂̄
2X µ̂ ′ , V̂ (3)

1 = A(3)
µ̂,µ̂ ′ν̂ ′(X)∂ 2X µ̂

∂̄X µ̂ ′
∂̄X ν̂ ′ (2.5)

V̂ (4)
1 = A(4)

µ̂,µ̂ ′(X)∂ 2X µ̂
∂̄

2X µ̂ ′ (2.6)

The subscript ’1’ appearing in V̂ (i)
1 , i = 1− 4 is indicative of the fact that they correspond to ones

for the first excited massive level. Notices that the tensor indices are labeled with unprimed and
primed indices. This convention is adopted to keep track of the operators (or oscillators in mode
expansions of X µ̂ ) coming from the right moving sector such as ∂X µ̂ and from the left moving
sector, ∂̄X µ̂ ′ , or powers of ∂ , ∂̄ acting on X µ̂ . It facilitates our future computation and will be
useful notation when we dwell on duality symmetry in sequel. If we demand φ̂1 to be a (1,1)
primary, with respect to T±±, then V (i)

1 are are constrained (actually the X µ̂ -dependent tensors,A(i)

are restricted). It is a straight forward calculation to obtain these conditions. We follow the methods
of [12, 13] and summarize the relevant results below. These will be utilized when we explore the
associated T-duality properties of these vertex operators for the compactified scenario. Note that
each one of the functions, (V (2)

1 −V (4)
1 ), is not (1,1) on its own; however, V (1) is (1,1) as is easily

verified. Second point, we mention in passing, is that conformal invariance imposes two types of
constraints on these vertex functions. We designate A(i)

1 or V (i)
1 as vertex functions to distinguish

them from full vertex operator for a given level, like φ̂1 for the first excited sate, which is expressed
as sum of vertex functions : each one satisfies a mass-shell condition (recall that same is true for
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tachyon and all massless vertex operators) and gauge (or transversality) conditions which is also
known for all the massless sectors. These are listed below

(∇̂2−2)A(1)
µ̂ ν̂ ,µ̂ ′ν̂ ′(X) = 0, (∇̂2−2)A(2)

µ̂ ν̂ ,µ̂ ′(X) = 0, (2.7)

and

(∇̂2−2)A(3)
µ̂,µ̂ ′ν̂ ′(X) = 0, (∇̂2−2)A(4)

µ̂,µ̂ ′(X) = 0 (2.8)

The D̂-dimensional laplacian, ∇̂2, is defined in term of the flat spacetime metric. The mass levels
are in in units of the string scale which has been set to one in eqs.(2.7) and (2.8). The four vertex
functions are also related through following equations

A(2)
µ̂ ν̂ ,µ̂ ′ = ∂

ν̂ ′A(1)
µ̂ ν̂ ,µ̂ ′ν̂ ′ , A(3)

µ̂,µ̂ ′ν̂ ′ = ∂
ν̂A(1)

µ̂ ν̂ ,µ̂ ′ν̂ ′ , A(4)
µ̂,µ̂ ′ = ∂

ν̂ ′
∂

ν̂A(1)
µ̂ ν̂ ,µ̂ ′ν̂ ′ (2.9)

Here ∂ µ̂ etc. stand for partial derivatives with respect to spacetime coordinates. Furthermore,
besides eqs. (2.7),(2.8) and eq. (2.9) there are further constraints (like gauge conditions) which
also follow from the requirements of that the vertex functions be (1,1) primaries [12, 13]

A(1)µ̂
µ̂

,µ̂ ′ν̂ ′+2∂
µ̂

∂
ν̂A(1)

µ̂ ν̂ ,µ̂ ′ν̂ ′ = 0, and A(1)
µ̂ ν̂ ,µ̂ ′

µ̂ ′

+2∂
µ̂ ′

∂
ν̂ ′A(1)

µ̂ ν̂ ,µ̂ ′ν̂ ′ = 0 (2.10)

The above relations, eq.(2.9) and eq.(2.10), will be useful for our investigation of the duality in
what follows.
Let us very briefly recapitulate how the T-duality group O(d,d) plays an important role in the
worldsheet Hamiltonian description of a closed string compactified on T d . We shall proceed in two
steps. First consider a simple compactification scheme [23]where the metric and and the 2-form
decompose as follows

Gµ̂ ν̂(X) =

(
gµν(X) 0

0 Gαβ (X)

)
, Bµ̂ ν̂ =

(
bµν(X) 0

0 Bαβ (X)

)
(2.11)

We shall consider the following action. We intend to go over to canonical Hamiltonian description;
note that γab is already chosen to be ON gauge metric).

S =
1
2

∫
dσdτ

(
γ

ab√−γGµ̂ ν̂(X)∂aX µ̂
∂X ν̂ + ε

abBµ̂ ν̂(X)∂aX µ̂
∂bX ν̂

)
(2.12)

We introduce a pair of vectors V and W of dimensions 2D and 2d respectively as defined below

V =

(
P̃µ

X ′µ

)
, W =

(
Pα

Y ′α

)
(2.13)

where P̃µ and Pα are conjugate momenta of string coordinates X µ and Y α respectively. The canon-
ical Hamiltonian is expressed as sum of two terms

Hc =
1
2

(
V T M̃V +W T MW

)
(2.14)
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whereas M̃ is a 2D×2D matrix and M is another 2d×2d matrix, given by

M̃ =

(
gµν −gµρbρν

bµρgρν gµν −bµρgρλ bλν

)
, M =

(
Gαβ −GαγBγβ

BαγGγβ Gαβ −BαγGγδ Bδβ

)
(2.15)

Let us focus on the second term of (2.14), define it to be H2 =
1
2W T MW , which is of importance

to us. Under the global O(d,d) transformations

M→ΩMΩ
T , W →ΩW , Ω

T
ηΩ = η , Ω ∈ O(d,d), η =

(
0 1
1 0

)
(2.16)

η is the O(d,d) metric and 1 is d× d unit matrix and W is the O(d,d) vector and M ∈ O(d,d).
Since, M̃ and V are inert under this duality transformation; as a consequence, Hc is indeed T-
duality invariant. The moduli, M̃ and M are classical backgrounds. However, we shall work in the
weak field approximation: Gαβ = δαβ + hαβ . Let us focus on the O(d,d) invariance of graviton
vertex operator along compact directions

Vh = hαβ ′∂Y α
∂̄Y β ′ (2.17)

hαβ ′ is a symmetric tensor. Noting that Pα = δαβ Ẏ α , we rewrite (2.17) as

Vh = hαβ ′PαPβ ′−hαβ ′Y
′αY ′β

′
(2.18)

This is expressed in O(d,d) invariant form

Vh = W T HW , H =

(
h 0
0 −h

)
(2.19)

H ∈ O(d,d) and transforms according to (2.16); the appropriate assignment of indices can be
read off from (2.18). We can repeat the same procedure for the combined vertex of graviton and
antisymmetric tensor, bαβ ′ .
Let us examine T-duality properties of the first excited massive level where we adopt a simple
compactification scheme. We focus the attention on V (1)

1 as an example. Note that if we follow the
toroidal comactification scheme adopted in [6] in the context of worldsheet duality for the case at
hand the vertex function A(1)

µ̂ ν̂ ,µ̂ ′ν̂ ′(X)∂X µ̂∂X ν̂ ∂̄X µ̂ ′ ∂̄X ν̂ ′ will decompose into following forms: (i)

A tensor A(1)
µν ,µ ′ν ′ , one which has all Lorentz indices (ii) another which has three Lorentz indices

and one index corresponding to compact directions, (iii) a tensor with two Lorentz indices and
two indices in compact directions, (iv) another, which has a single Lorentz index and three indices
in in internal directions and (v) a tensor with all indices corresponding to compact directions i.e.
A(1)

αβ ,α ′β ′ . It is obvious these tensors will be suitably contracted with ∂X µ , ∂̄X µ ,∂Y α , ∂̄Y α with all

allowed combinations. We adopt, to start with, a compactification scheme where only A(1)
αβ ,α ′β ′ is

present and the tensors with mixed indices are absent. We shall return to more general case later.
We may allow the presence of A(1)

µν ,µ ′ν ′ ; note however, that its presence is not very essential for the
discuss of T-duality symmetry since the spacetime tensors and coordinates are assumed be to inert
under the T-duality transformations, as a consequence this term will be duality invariant on its own
right. Therefore, we shall deal with a single vertex function to discuss T-duality symmetry as a
prelude

V (1)
1 = A(1)

αβ ,α ′β ′(X)∂Y α
∂Y β

∂̄Y α ′
∂̄Y β ′ (2.20)
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As argued earlier, if we expand out the expression for V (1)
1 , eq.(2.20), in terms of Pα and Y ′α we

get terms of the following type contacted with the tensor A(1)
αβ ,α ′β ′(X); note that we do not use any

symmetry(antisymmetry) properties of this tensor under α ↔ β and α ′↔ β ′. Moreover, although
we express the vertex in terms of Y ′ and P, we still like to retain the memory whether these terms
came from left movers or right movers. The full expression for the vertex function is classified into
five types. These are listed below: (I) All are Pα ’s (index raised by δ αβ ): A(1)

αβ ,α ′β ′(X)PαPβ Pα ′Pβ ′ .

(II) All are Y ′α ’s: A(1)
αβ ,α ′β ′(X)Y ′αY ′βY ′α

′
Y ′β

′
.

(III) The four terms with three Pα ’s;e.g - A(1)
αβ ,α ′β ′(X)PαPβ Pα ′Y ′β

′
.

(IV) There are also four terms with three Y ′α ’s which combine with the terms in (III) to give a
T-duality invariant term; one such term is: -A(1)

αβ ,α ′β ′(X)Y ′αY ′β Pα ′Y ′β
′
.

(V) There are six terms, each of is a product of a pair of momenta (Pα and a pair Y ′α . A generic
term is: A(1)

αβ ,αβ ′P
αPβY ′α

′
Y ′β

′
.

We conclude from careful inspections of altogether 16 terms that, we can combine terms in (I) and
(II), those in (III) and (IV) and those in (V) to compose O(d,d) invariant functions. However, this
is not an efficient method.
Let us consider the following three vertex functions in the present compactification scheme

V (2)
1 = A(2)

αβ ,α ′(X)∂Y α
∂Y β

∂̄
2Y α ′ , V (3)

1 = A(3)
α,α ′β ′(X)∂ 2Y α

∂Y α ′
∂Y β ′ (2.21)

and

V (4)
1 = A(4)

α,α ′(X)∂ 2Y α
∂̄

2Y α ′ (2.22)

It follows from (2.9) that these vertex functions are related to derivatives of A(1) as a consequence
of the constraints that they be (1,1) primaries. For the case in hand, when these carry all internal
indices and our focus is on (2.20), they will vanish. Moreover, in order to study T-duality properties,
of (2.21) and (2.22) we encounter another problem since higher order derivatives, ∂ , ∂̄ act on Y ;
consequently, the classification scheme adopted to group terms as in (I)-(V), discussed above are
not quite suitable.
Furthermore, we must recognize that, verifying T-duality symmetry for higher excited states will
provide obstacles since we have to deal with product of a string of ∂Y, ∂̄Y and more and more
worldsheet derivatives acting on Y α when we consider higher mass levels. One of the vertex
functions for second massive level is

V (1)
2 =C(1)

αβγ,α ′β ′γ ′∂Y α
∂Y β

∂Y γ
∂̄Y α ′

∂̄Y β ′
∂̄Y γ ′ (2.23)

expressed as products of Pα , Y ′α , Pβ ′ and Y β ′ , all the terms can be reorganized and reexpressed in
such a way that V (1)

2 is T-duality invariant. However, second level has lot more terms and it is not
easy to verify whether these vertex functions are T-duality invariant following the method alluded
to above.
If one considers vertex operators for higher massive levels, the vertex operator for each level is
composed of large number of vertex functions. We propose the following procedure to systemat-
ically organize various vertex functions at a given level. (i) The first observation is that the basic
building blocks of vertex functions are ∂Y α = Pα +Y ′α and ∂̄Y α ′ = Pα ′ −Y ′α

′
. (ii) Each vertex

7
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function at a given level is either string of products of these basic blocks or these blocks are op-
erated by ∂ and ∂̄ respectively so that each vertex operator at a given mass level has the desired
dimensions. Thus it is not convenient to deal with Pα and Y ′α separately in order to study the
T-duality properties and the same is true for the combinations P±Y ′. However, Pα and Y ′α can be
projected out from the O(d,d) vector, W .
Let us first introduce following projection operators for later conveniences

P± =
1
2
(1± σ̃3), σ̃3 =

(
1 0
0 −1

)
(2.24)

where 1 is 2d×2d unit matrix and and the diagonal entries (1,−1) stand for d× d unit matrices.
It is easy to check that the projection operators are O(d,d) matrices since each one of them is. We
project out two O(d,d) vectors as follows

P = P+W , Y ′ = P−W (2.25)

Therefore,

P+Y ′ =
1
2

(
P+W +ηP−W

)
, P−Y ′ =

1
2

(
P+W −ηP−W

)
(2.26)

notice that η flips lower component Y ′ vector to an upper component one. Thus when we have
only products of P+Y ′ and P−Y ′, we can express them first as products of O(d,d) vector and
subsequently contract their indices with appropriate tensors endowed with O(d,d) indices. Next
we deal with worldsheet partial derivatives ∂ and ∂̄ operating on basic building blocks. Let us
define

∆τ = P+∂τ , ∆σ = P+∂σ and ∆±(τ,σ) =
1
2
(∆τ ±∆σ ) (2.27)

Therefore,

∂ (P+Y ′) = ∆+(τ,σ)

(
P+W +ηP−W

)
(2.28)

Thus the above expression is an O(d,d) vector. Similarly, when ∂̄ operates on P−Y ′, we can
express it as

∂̄ (P−Y ′) = ∆−(τ,σ)

(
P+W −ηP−W

)
(2.29)

The vertex operators we have considered in eqs.(2.20) and (2.23) which are expressed as only string
of products of ∂Y α and ∂̄Y α ′ can be rewritten in terms of the O(d,d) vectors W and subsequently
contracted with suitable O(d,d) tensors. We remind the reader that, now familiar, M-matrix which
expresses the Hamiltonian in O(d,d) invariant form is also parametrized in terms of backgrounds
Gαβ and Bαβ . Let us turn our attentions to the other three vertex operators appearing in (2.21)

and (2.22). The procedure outlined above can be adopted to cast V (2)
1 ,V (3)

1 and V (4)
1 in a straight

forward manner using the relations (2.28) and (2.29).
In order to illustrate the variety of vertex functions that can arise as we go to higher levels; let
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us consider the second massive state as an example. We list below the vetex function which is
assumed to be sum of all vertex functions with only internal indices, momentarily assume all other
vertex functions are set to zero and this is the vertex operator. Thus vertex operator assumes the
form [13]

φ2 =V (1)
2 +V (2)

2 +V (3)
2 +V (4)

2 +V (5)
2 +V (6)

2 (2.30)

The vertex functions V (i)
2 , i = 1,6 are given below (expression for V (1)

2 is given by (2.23)).

V (2)
2 =C(2)

αβ ,α ′β ′γ ′∂
2Y α

∂Y β
∂̄Y α ′

∂̄Y β ′
∂̄Y γ ′+C(3)

αβγ,α ′β ′∂Y α
∂Y β

∂Y γ
∂̄

2Y α ′
∂̄Y β ′ (2.31)

These vertex functions have a term of the form ∂ 2Y α or ∂̄ 2Y α ′ and rest of the structure is decided
by dimensional considerations. Some of the other vertex functions are

V (3)
2 =C(4)

α,α ′β ′γ ′∂
3Y αY α ′

∂̄Y β ′
∂̄Y γ ′+C(5)

αβγ,α ′∂Y α
∂Y β

∂Y γ
∂̄

3Y α ′ ,

V (4)
2 =C(6)

αβ ,α ′β ′∂
2Y α

∂Y β
∂̄

2Y α ′
∂̄Y β ′ (2.32)

and

V (5)
2 =C(7)

α α ′β ′∂
3Y α

∂̄
2Y α ′

∂̄Y β ′+C(8)
αβ ,α ′∂

2Y α
∂Y β

∂̄
3Y α ′ , V (6)

2 =C(9)
α,α ′∂

3Y α
∂̄

3Y α ′ (2.33)

The tensors C(2)−C(9) appearing in eqs.(2.31-2.33) are all functions of X µ , independent of com-
pact coordinates Y α , and constrained by requirements of conformal invariance (not necessarily
nonvanishing in the compactification scheme we envisage). We observe from the structures of ver-
tex functions V (1)

2 −V (6)
2 that, each one with the combinations of the terms will be O(d,d) invariant

when we follow the prescriptions of introducing projection operators, rewrite the combinations
P+Y ′ and P−Y ′ as O(d,d) vectors and convert ∂ and ∂̄ to ∆±(τ,σ) to operate on P±Y ′ (reex-
pressed in terms of the projected W ’s) respectively. Let us consider nth excited massive level as an
example. The the dimension of all right movers obtained from products of ∂Y higher powers of ∂

acting on ∂Y should be (n+1) and same hold good for the left moving sector as well. Consider the
right moving sector of the type ∂Y α1∂Y α2 ..∂Y αn+1 and the left moving sector ∂̄Y α ′1 ∂̄Y α ′2 ....∂̄Y α ′n+1

The vertex function is

Vα1,α2...αn+1,α
′
1α ′2...α

′
n+1

(X)Πn+1
1 ∂Y αiΠ

n+1
1 ∂̄Y α ′i (2.34)

and these products of ∂Y αi and ∂̄Y α ′i can be converted to products of (n+1) projected W for right
movers and (n+1) projected W from left movers. Let us consider for a vertex function for such a
high level state. A generic vertex will have a structure

∂
pY αi∂

qY α j ∂
rY αk ...∂̄ p′Y α ′i ∂̄

q′Y α ′j ∂̄
r′Y α ′k ..., p+q+ r = n+1, p′+q′+ r′ = n+1 (2.35)

The product is an O(d,d) tensor whose rank is decided by the constraints on sum of p,q and r
and p′,q′ and r′ since number of Y αi’s and Y α ′i ’s appearing in (2.35) is determined from those
conditions. Thus this tensor will be contracted with an appropriate tensor Tαiα jαk..,α

′
i α
′
jα
′
k..
(X) which

will give us to a vertex function. Let us discuss how to express eq.(2.35) as a product of O(d,d)
vectors using the projection operators introduced earlier.

9
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(i) The first step is to rewrite
∂ pY = ∂ p−1(P+Y ′), ∂̄ p′(P−Y ′) = ∂̄ p′−1(P−Y ′)
(ii) We arrive at
∂ p−1(P+Y ′) = ∆+

p−1(P+Y ′), ∂̄ p′−1(P−Y ′) = ∆−
p′−1(P−Y ′)

from (2.28) and (2.29)
(iii) Finally, using the projection operators (2.26) we get

∆+
p−1(P+Y ′) = ∆+

p−1
(

P+W +ηP−W

)
, ∆p′−1(P−Y ′) = ∆−

p′−1
(
(P+W −ηP−W

)
Thus the products in (2.35) can be expressed as products of O(d,d) vectors. We need to contract
these indices with suitable O(d,d) tensors which have the following form:

Vn+1 = Aklm..,k′l′m′..∆+
p−1W k

+∆
q−1W l

+∆+
r−1W m

+ ..∆−
p′−1W k′

− ∆−
p′−1W l′

− ∆−
p′−1W m′

− (2.36)

where W± = (P+W ±ηP−W ) with p+ q+ r = n+ 1 and p′+ q′+ r′ = n+ 1. Note that super-
scripts {k, l,m;k′, l′,m′} appearing on W± in eq. (2.36) are the indices of the components of the
projected O(d,d) vectors. Moreover, Aklm..,k′l′m′.. is X-dependent O(d,d) tensor. Note that (2.36)
will be O(d,d) invariant if coefficients transform as follows

Aklm..,k′l′m′..→Ω
p
k Ω

q
l Ω

r
m...Ω

p′
k′Ω

q′
l′ Ω

r′
m′Apqr..,p′q′r′.. (2.37)

since each term in the product ∆p−1W k
+ ....∆

p′−1
− W k′ , above, transforms like an O(d,d) vector. Now

we turn our attention in another direction. Note that φ2 was expressed as sum of vertex functions
where tensors with only internal indices were contracted with various types of derivatives of Y α .
All these levels are scalars under SO(D−1). However, once we allow tensors appearing in vertex
functions to carry Lorentz indices, these tensors will be contracted with derivatives of X µ and
internal indices will contract with derivatives of compact coordinates. We claim that those vertex
functions which have expressions with contraction of Lorentz indices with X µ ’s will be O(d,d)
invariant with respect to rest of the tensor indices contracted with indices of Y α ’s. Let us consider
the first excited massive level to illustrate our strategy which can be generalized to any level. We
claim that full vertex operator, for this level, are O(d,d) invariant. We recall X µ and tensors with
only spacetime indices (i.e. µ,ν , ..etc.) a tensor transform trivially under the T-duality for these set
of indices. Thus

Ṽ (1)
1 = Ã(1)

µν ,µ ′ν ′∂X µ
∂Xν

∂̄X µ ′
∂̄Xν ′ (2.38)

is O(d,d) invariant as per above prescription. Similarly, vertex function constructed out of :
Ã(2)

µ,µ ′ν ′∂
2X µ ∂̄X µ ′ ∂̄Xν ′ , Ã(3)

µν ,µ ′∂X µ∂Xν ∂̄ 2X µ ′ and Ã(3)
µ,µ ′∂

2X µ ∂̄ 2X µ ′ are also O(d,d) invariant. Let
us classify the vertex functions according to the spacetime and ’internal’ indices they carry (with
appropriate contractions of course).
(A) Vertex functions which have one Lorentz index and three internal indices:
B̃(1)

µα,α ′β ′∂X µ∂Y α ∂̄Y α ′ ∂̄Y β ′+ other terms by permuting the indices.
(B) Vertex functions which have two Lorentz indices and two internal indices:
B̃(2)

µβ ,µ ′β ′∂X µ∂Y β ∂̄X µ ′ ∂̄Y β ′+ other similar terms.
(C) Vertex functions with three Lorentz indices and one internal index:

10
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B̃(3)
µν ,µ ′β ′∂X µ∂Xν ∂̄X µ ′ ∂̄ 2Y β ′+ other similar terms.

(D) Vertex functions of the type:
(i)B̃(4)

µν ,α ′∂X µ∂Xν ∂̄Y β ′+ other similar terms.

(ii) B̃(5)
µβ ,α ′∂X µ∂Y α ∂̄ 2Y β ′+ other similar terms.

(iii) Vertex functions with second derivatives:
B̃(6)

α,µ ′∂
2Y α ∂̄ 2X µ ′ and B̃(7)

µ,α ′∂
2X µ ∂̄ 2Y α ′

The vertex functions whose Lorentz index/indices are contracted with ∂X µ ,∂ 2X µ , ∂̄X µ ′ ,∂ 2X µ

will be inert under O(d,d) rotations; however, rest of the indices correspond to internal indices
and those are contracted with ∂Y α , ∂̄Y α ′ ,∂ 2Y α , ∂̄ 2Y α ′ and so on. Moreover, the vertex functions
considered above, (A)-(D), do not necessarily vanish unlike the cases when some vertex function,
carrying only internal indices (V (2)

1 - V (4)
1 ), vanished as the consequences of conformal invariance

i.e. that these are (1,1) primaries. This conclusion can be easily verified from relations eqs. (2.9)
and (2.10). We conclude that only the worldsheet variables with internal indices, such as P±Y ′

are relevant to construct O(d,d) vectors which contract with corresponding indices of the relevant
tensors. We have laid down a procedures to construct O(d,d) vectors from ∂Y α , ∂̄Y α ′ ,∂ 2Y α , ∂̄ 2Y α ′

and other higher derivative objects. For example, B̃(1)
µα,α ′β ′∂X µ∂Y α ∂̄Y α ′ ∂̄Y β ′ has three ’internal’

indices of B̃(1) contracted with ∂Y α ∂̄Y α ′ ∂̄Y β ′ and therefore, this vertex function will be converted
to an O(d,d) invariant vertex function which has a generic form

T̃ (1)
k,k′l′W

kW k′W l′ (2.39)

This argument can be carried forward for all vertex operators at any massive level of the closed
bosonic string. Moreover, the type of vertex functions discussed in (A)-(D) correspond to massive
particles of various spins which fall into the representations of SO(D−1). Therefore, we are able
to conclude that vertex functions for massive levels of a closed bosonic string can be cast in an
O(d,d) invariant form for every level following the procedure presented here.

3. SUMMARY AND DISCUSSION

We have proposed a systematic procedure to obtain T-duality invariant vertex operators for
massive levels of a closed bosonic string when it is compactified on T d . It is assumed that the tensor
fields associated with these vertex operators depend only on the spacetime coordinates, X µ(σ ,τ)

and are independent of the compact coordinates, Y α(σ ,τ). The duality invariance is manifest for
vertex operators of each level aided by the projection technique to convert {P,Y ′} to O(d,d) vectors
and/or their ∆± derivatives.
The T-duality symmetry plays an important role in string theory. We expect that these symmetry
properties will have important applications. The T-duality symmetry has been widely applied to
obtain new solutions to the background configurations through judicious implementations of the
solution generating techniques. Thus given a configuration of massive level background field it
will be possible, in principle, to generate another background within the same massive level. Fur-
thermore, there are evidences that massive excited states are endowed with local symmetries. It is
worth while to examine the implications of T-duality for those local symmetries.
Another point which deserves attention is to study the zero-norm states in this formulation. It is
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well known that the existence of zero-norm states is quite essential in order that the bosonic string
respects Lorentz invariance in critical dimensions i.e. D̂ = 26. This issue has been carefully ana-
lyzed in [13, 25]. We expect that these results will continue to hold good for toroidally compactified
closed bosonic string.
It is well known that very massive stringy states possess exponential degeneracy which has played
crucial role in deriving Bekenstein-Hawking entropy relation for stringy back holes from the count-
ing of microscopic states. This high degree of degeneracy is also instrumental in deducing the
thermal nature of emission spectrum of a stringy black hole. We expect that some of supermassive
states which also belong to the spectrum of the compactfied string might exhibit symmetry proper-
ties which are yet to be discovered.
In summary, we have investigated T-duality properties of the vertex operators of excited massive
closed string. We have proposed a prescription to show that the vertex operators at every level
can be expressed in manifestly duality invariant form. These results might have important conse-
quences to discover new stringy symmetries.
It will be very interesting to implement the toroidal compactification procedure adopted in [6]
for the vertex operators of excited states extending the method presented here. There are need
to improve this prescription considerably in order to overcome some difficulties. However, the
toroidal compactification in its totality applied to vertex operators through dimensional reduction
is expected to unravel more interesting features of T-duality in string theory.
Acknowledgments: This work was primarily supported by the People of the Republic of India
through Raja Rammana Fellowship of DAE.
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