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1. Introduction

The two Higgs doublets model (2HDM) is the minimal extension of Standard Model (SM).
The introduction of extra Higgs doublet can lead to the tree level flavour-changing-neutral-currents
(FCNC), which should be strongly suppressed. Therefore it’s necessary to restrict the general
two Higgs doublets model in the Yukawa couplings sector. One of common ways is to impose
Z2 symmetry for the two Higgs doublets on the Lagrangian [1]. Under this symmetry only one
Higgs doublet is allowed to interact with each type of fermions so that Yukawa coupling matrix is
diagonal at any energy scale.

Recently a more flexible way of avoiding tree level FCNC has been proposed [2]. This idea
simply requires that the two Yukawa couplings to the Higgs doublets should proportional to each
other, so they can be diagonalized simultaneously. This restriction is fine in giving energy scale but
the tree level FCNC will be reintroduced in higher energy scale [3]. There are also more general
proposals which the tree level FCNC Yukawa couplings are suppressed enough, e.g. the Cheng-
Sher ansatz [4].

We will study the properties of all these models by taking into account the theoretical and
experimental constraints on FCNC. And then we will evolve all the Yukawa couplings to higher
energy according to the Renormalization Group Equations (RGE). In some cases the off-diagonal
matrix elements which relate to the FCNC grow quickly, which indicates certain assumptions be-
hind the theory are not stable. Those theories are either fine-tuned or incomplete in certain way,
e.g. there may be additional particles appearing when going to high energy scale.

2. The general 2HDM and RGE equations

One of standard convention to write the two Higgs doublets with the Goldstone bosons is

Φ1 =
1√
2

( √
2(G+ cosβ −H+ sinβ )

vcosβ −hsinα +H cosα + i
(
G0 cosβ −Asinβ

)) , (2.1)

Φ2 =
1√
2

( √
2
(
G+ sinβ +H+ cosβ

)
vsinβ +hcosα +H sinα + i

(
G0 sinβ +Acosβ

)) . (2.2)

Where G± and G0 are the Goldstone bosons to be eaten by the EW gauge bosons during EW
symmetry breaking, and H± is the charged Higgs boson. The neutral Higgs scalar can be divided
into CP even scalars (h,H) and CP odd pseudo-scalar A. α and β is the mixing angle between
(h, H) and the two vacuum expectation values (VEV).

For Yukawa coupling analysis, it’s convenient to use Higgs basis

H1 = cosβ Φ1 + sinβ e−iθ Φ2 ,

H2 = −sinβ Φ1 + cosβ e−iθ Φ2 . (2.3)

Where the nonvanishing VEV is only assigned to H1 which plays the role of Standard Model Higgs
doublet while H2 contains the new particles H± and A. The general Yukawa coupling is

−LY = QLH̃1κU
0 UR +QLH1κD

0 DR +LLH1κL
0 ER

+QLH̃2ρU
0 UR +QLH2ρD

0 DR +LLH2ρL
0 ER +h.c. . (2.4)
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Where the subscript "0" stands for flavor basis. In mass basis, the 3× 3 matrix κF is related to
diagonal fermion mass matrix by bi-diagonalizing with the unitary matrices V F

L ,V F
R

κF = V F
L κF

0 V F†
R =

√
2

v
M F

ii (2.5)

The coupling matrix ρF is still general and complex if there are no further restrictions. The Cheng-
Sher ansatz suggests

ρF
i j = λ F

i j

√
2mim j

v
. (2.6)

Where the mi are the different fermion masses, the λ F are expected to be of O(1) and should be
small enough to suppress FCNC to the observed level. In EW scale, the Z2 symmetric and aligned
models can be treated as special case of Cheng-Sher ansatz.

3. Numerical analysis

3.1 SM input and Constraints

The most stringent constrains for tree level FCNC is from neutral meson mixing. The master
formula for tree level F0 − F̄0 mixing can be found in [5].

Using current experimental and theoretical data, we estimated the bounds for nondiagonal λ F
i j

with the following assumption of Higgs scalar mass [6]:

• mh = mH = mA = 120 GeV: {λuc . 0.13 ,λds . 0.08 ,λdb . 0.03 ,λsb . 0.05};

• mh = mH = 120 GeV, mA = 400 GeV: {λuc . 0.30 ,λds . 0.20 ,λdb . 0.08 ,λsb . 0.12}.

According to these results, we choose λ F
i j . 0.1 as a representive value which will be used as

generic value later in RGE analysis.

3.2 Z2 Symmetric Models

The first example we study is the models with Z2 symmetry, in which the tanβ is a physical
parameter. The tree level FCNC is protected by the Z2 symmetry, so the nondiagonal Yukawa
couplings stay as zero in any energy scale. The only thing we can study is to detect the place of
Landau pole, where at least one of the Yukawas blow up. Beyond the Landau pole the perturbation
theory is not valid anymore.

In Table 1 we show the diagonal λ F
ii in terms of tanβ for the four different 2HDM types in Z2

symmetric models. The position of the Landau pole depends on the initial value of tanβ in EW
scale. In Fig. 1 we plot the upper and lower limit of tanβ . The plots can be understood by whether
the evolution is driven by λtt , λbb ,λττ or combination of them.
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Type λU
ii λ D

ii λ L
ii

I 1/ tanβ 1/ tanβ 1/ tanβ
II 1/ tanβ − tanβ − tanβ

III/Y 1/ tanβ − tanβ 1/ tanβ
IV/X 1/ tanβ 1/ tanβ − tanβ

Table 1: The diagonal λ F
ii in 2HDM models with Z2 symmetry.

Figure 1: The starting val-
ue of tanβ as a function
of the position of the cor-
responding Landau pole
(ΛLandau−pole) in the differ-
ent 2HDM types. There
are lower limits on tanβ
for all four types (left), but
only type II, type III/X and
type IV/Y have an upper
limit of tanβ (right).
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3.3 Z2-breaking Models

3.3.1 Aligned models

In Yukawa alignment model, the two Yukawa couplings κF and ρF are proportional to each
other so they can be diagonalized simultaneously. In this model the λ F is also diagonal in EW
scale. However the nondiagonl element will start to grow when the Yukawas evolve to higher
energy via RGE. Similarly to the Z2-breaking models, we limit the alignment model with three
different cases:

• Aligned I/II: λU
ii , λ D

ii = λ L
ii

• Aligned III: λ D
ii , λU

ii = λ L
ii

• Aligned IV: λ L
ii , λU

ii = λ D
ii

In Fig. 2 we plot the energy scale at which the Landau pole or large nondiagonal λ F
i̸= j = 0.1 is

encountered as a function of pairwise combinations of the starting values for λU
ii and λ D

ii .

3.3.2 Diagonal models

Next we consider the models with Z2 symmetry breaking in either the up or the down sector.
First we break the Z2 symmetry in the up-sector with λ D = λtt (type I) or λ D = −1/λtt (type II),
and set λuu = λcc. Then we break the Z2 symmetry in the down-sector with λbb = λU

ii (type I) or
λbb =−1/λU

ii (type II), and set λdd = λss.

3.3.3 Non-diagonal models

In the end we consider the models of Z2 symmetry breaking from having non-zero non-
diagonal elements in the up or down sectors. We set λU

i̸= j = 0.1 or λ D
i̸= j = 0.1 at the EW scale
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Figure 2: The constraints from the Landau pole
and non-diagonal λ F

i ̸= j. The plot shows the same
results for Aligned I/II or Aligned III. The λ L

ii
only play a very minor role so we don’t show the
plots for Aligned IV case. The areas inside a giv-
en contour are allowed by the requirement of the
two condition above. The different contours are
as follows starting from the center: 1015, 1010,
105, 103, and 300 GeV. The Z2 symmetric case
is also plotted as a reference.
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Figure 3: The energy scale where the Landau pole or non-diagonal λ F
i ̸= j = 0.1 is reached as a function of

λss and λbb. In the left (right) panels λU = λbb(−1/λbb) and in all cases λ L = λbb.
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Figure 4: The constraints from the Landau pole and the off-diagonal elements as a function of λU
ii and

the off-diagonal elements λU
i ̸= j (up) or λ D

i ̸= j (down) at the input scale for the type I (left) and type II (right)
relations for the diagonal elements.

and then evolve to higher energy. The analysis shows the constraints from off-diagonal elements
are small compare to the previous cases.

4. Conclusions

RGE evolution is a useful tool to analyse different 2HDM models on stability of underlying as-
sumptions. A quick appearance of Landau pole or large off-diagonal Yukawa coupling under RGE
evolution may indicate the model is either fine tuned or incomplete, e.g., new particles appearing
at high energy.
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