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1. Introduction

The study of the QCD phase diagram started even before the discovery of asymptotic freedom.
One early question was the high-temperature fate of a gas of hadrons with an ever increasing den-
sity of states. After the advent of QCD, important developments in our understanding of thermal
field theory took place. The motivation was, and to a large extent still is, earlyuniverse cosmology,
since for a time on the order of the microsecond the temperature was high enough for the elemen-
tary degrees of freedom of QCD to be in a deconfined state. Experimentally, the access to such
extreme conditions of temperature is possible through heavy-ion collisions (see for instance the
overview given by J.-P. Blaizot in these proceedings). Since an extremely dynamical system is cre-
ated in these collisions, making contact with the equilibrium properties of finite-temperature QCD
is a non-trivial task which motivates in turn that a robust control over these properties be reached
computationally. The leading ab-initio computational method to achieve this goal is the Monte-
Carlo importance sampling of the lattice-regularized QCD path integral. An educated guess for the
equation of state could be made by the early eighties (see for instance [1]),but it was impossible to
infer the order of the QCD transition (1st order, 2nd order or crossover) based on general arguments,
and showing convincingly that it is a crossover is a unique achievement oflattice QCD [2, 3, 4].

In this review for non-experts we consider the phase diagram as a function of temperature
and baryon chemical potential (see [5] for an introduction to the subject).A representation of
our current knowledge of the QCD phase diagramfrom lattice simulationsis displayed in Fig. 1.
First, at vanishing chemical potential the transition from the low-temperature,hadronic phase to
the high-temperature, deconfined and chirally symmetric phase, is a crossover [2, 3, 4]. Second,
the transition temperatureTc is only weakly dependent on the chemical potential [6, 7]. As a rule of
thumb, to lowerTc by 10MeV, the chemical potential must be turned up to half the nucleon mass.
Furthermore, it has been shown that the width of the transition is initially only weakly dependent
on the chemical potential [6] (see Sec. 3). What happens beyondµB = 500MeV remains, however,
uncertain, due to the limitation of the current Monte-Carlo methods.

2. Static quantities at µB = 0

The thermodynamic properties of QCD have been calculated with different lattice actions. The
most commonly used action, with so far the most complete results, is the rooted staggered formu-
lation of lattice QCD. Even within this formulation, a lot of freedom remains to completely specify
the action. The most recently used actions are the ‘stout’ action [8] and the ‘HISQ’ action [9].
Typical criteria used to optimize the choice of action are the requirement of a continuum-like dis-
persion relation and small mass splittings among the sixteen pseudoscalar bosons. Indeed, in the
hadronic phase the latter turn out to be the dominant source of discretizationerrors on the static
quantities. At this point, good agreement has been reached between the Budapest-Wuppertal and
the hotQCD collaborations, in particular for the renormalized Polyakov loop and the quark number
susceptibilities [8, 9].

The WHOT collaboration obtained results with (O(a) improved) Wilson fermions using the so-
called fixed-scale approach, which means that the temperature is varied bychangingNt [10]. This
has the significant advantage that the bare parameters of the theory do not need to be tuned to yield
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Figure 1: Status of our knowledge of the phase diagram at smallµB from lattice QCD. For comparison the
freezeout curve determined in heavy ion collisions is sketched as well.

a ‘line of constant physics’ where the renormalized quark masses are kept fixed in physical units.
In this approach the discretization errors behave radically differently: they become large at high
temperatures, whereNt is no longer large enough. This also makes the approach complementary to
the fixed-Nt method that has been pursued with the staggered formulation. The results obtained so
far are not competitive yet from the point of view of statistical accuracy,but it should be pointed
out that in these calculationsNt ≥ 12 in the hadronic phase.

Although computationally more expensive, domain wall fermions have the advantage over
Wilson fermions that the lines of constant physics are easier to determine andthey facilitate the
computation of certain chiral observables. See [11] for a recent calculation.

Since the QCD transition is a crossover, different definitions of the transition temperature
can lead to different results. The Budapest-Wuppertal collaboration obtains, from the peak of the
chiral susceptibilityχψ̄ψ/T4, Tc = 147(2)(3)MeV, and from the inflection point ofmq〈ψ̄ψ〉/m4

π ,
Tc = 155(3)(3)MeV [3]. The hotQCD collaboration proceeds by performing an O(4) scaling fit to
the chiral condensate and chiral susceptibility and obtainsTc = (154±9)MeV [4].

Let
f (T,~µ)

T4 =−
1

VT3 logZ(V,T,~µ), ~µ ≡ (µB,µS,µQ) (2.1)

be the free energy in the presence of baryon, strangeness and electric charge chemical potentials.
Recently, the quark number susceptibilities, for instance

χS
2 ≡−

∂ 2 f

∂ µ2
S

(2.2)

for strangeness, have been investigated in detail with an eye on systematic effects. These observ-
ables are expected to change substantially when the parton degrees of freedom deconfine, because
at sufficiently high temperature the quark flavor quantum number is carriedby quark quasiparticles
rather than by hadronic quasiparticles. Fig. (2) displays the three susceptibilities obtained by two
independent lattice collaborations [8, 9]. Their results are in good agreement and they provide good
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Figure 2: Top: baryon number susceptibility. Middle: strangeness susceptibility. Bottom: electric charge
susceptibility. The left plots are taken from [9] (hotQCD collaboration) and the right plots from [8]
(Budapest-Wuppertal collaboration).
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evidence that discretization errors are under control in the crossoverregion. The baryon number
susceptibility is at the same time the first non-trivial Taylor coefficient in the expansion of the free
energy in the baryon chemical potential (see next section).

The electric charge fluctuations have a relatively precocious inflection point around 155MeV.
One notices that the inflection point of the strangeness susceptibility is locatedabout 15MeV above
that value. A recent calculation of the charm fluctuations presented by C.Ratti at this conference
indicates that the charm susceptibility rises much later. Finally, the expectation value of the renor-
malized Polyakov loop, which measures the free energy of a static quark, has an inflection point
around 200MeV [4]. Thus it appears that the heavier the carrier of thefundamental color charge,
the later its properties go over to their high-temperature behavior.

2.1 Comparison with the hadron resonance gas model (HRG)

Consider an ideal gas of hadrons with the free energyf (T,~µ) = ∑i∈speciesfi(T,~µ),

fi(T,~µ)
T4 = −

di

2π2

M2
i

T2

∞

∑
k=1

(±)k+1 zk
i

k2K2(kMi/T), zi = exp[(BiµB+QiµQ+SiµS)/T].

The upper sign corresponds to mesons and the lower sign to baryons anddi is the multiplicity
factor. Although most hadrons are unstable, it has been shown a long time ago [12, 13] that if
hadron interactions proceed dominantly through resonant scattering, it isappropriate to sum over
those states that have a widthΓ . T.

The predictions of the HRG model for quark number susceptibilities are compared to the lattice
QCD results in Fig. (2). They compare quite well for the strangeness and baryon susceptibilities up
to T ≃ 150MeV. As for the electric charge susceptibility, the agreement is clearly less good. Part of
the discrepancy is thought to be a lattice artifact related to the mass splittings of the pseudoscalar
bosons in the staggered lattice action. Finer lattice spacings and high statistics are needed to test
the HRG model at low temperatures.

3. Topology of the QCD phase diagram

Returning to Fig. (1), one central question in the field is to establish whether or not the QCD
transition becomes a sharp phase transition at some finite value ofµB. Due to the sign problem
encountered at finite baryon chemical potential, this question is difficult to answer using lattice
QCD methods. The commonly used methods are reweighting ([14], see [15] for a discussion of the
method), Taylor expansion [16, 17] and analytic continuation from imaginary chemical potential
(see [7] for a review). The basic idea behind the Taylor expansion methodis that if the Taylor
coefficients of the free energy all have the same sign, then the radius of convergence is on the real
µB axis and can be determined from the asymptotic ratio of two successive coefficients. Since only
the first few terms can be calculated in practice (at mostµ8

B), it is hardly possible to prove the
existence of a singularity of the partition function in this way. The question of how many terms are
necessary to locate the critical point has been investigated in toy models [18,19], where simulations
at the critical point are possible and the results can be checked.

One question that can be addressed reliably in lattice QCD is whether the transition initially
becomes narrower or broader as one moves away from the vertical axis.
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Figure 3: Two scenarios for the quark mass dependence of the order of the QCD phase transition atµB = 0.

3.1 The QCD transition at small µB

The behavior of the pseudocritical line in the(µB,T) plane can be probed on the basis of the
following considerations [6]. One chooses a physical observableφ(T,µB) (for instance, the chiral
condensate) and considers the differential in terms of the(T,µ2

B) variables,

dφ =
∂φ
∂T

dT +
∂φ
∂ µ2

B

dµ2
B.

If the crossover curve is defined byφ taking a certain specific value (one could think of other
criteria), then the change of the pseudocritical temperature is given by

dTc

dµ2
B

∣

∣

∣

∣

µB=0

= R(T = Tc), R(T)≡−
∂φ/∂ µ2

B

∂φ/∂T
(T,µB = 0).

To probe theµB-dependence of the width of the crossover, defined byW = 1
φ

∂φ
∂T |T=Tc, Endrodi et

al. use the relation
T2

c

W
∂W

∂ µ2
B

= T2
c

(

∂R
∂T

)

(T = Tc).

In the case whereφ is the chiral condensate, they find for this quantity 0.030(18). This result
suggests a very slight broadening of the transition. The main point is that thechemical potential
has initially little effect on either the transition temperature or the width of the crossover.

3.2 Dependence of the phase diagram on the quark masses

The order of the QCD phase transition as a function of theu,d quark mass and the strange
quark mass is summarized in the ‘Columbia plot’ displayed in Fig. (3). In the ‘standard’ scenario
(on the left), there is a tricritical point in the strange quark mass. The chiraltransition in two-flavor
QCD (i.e. whenms→ ∞) is second order and in the O(4) universality class. An alternative scenario
is that there is no critical point inms, instead the second-order transition line (in the Z(2) class)
extends all the way toms = ∞. The chiral transition inNf = 2 QCD is then of first order. Which of
these scenarios is realized is under active investigation [20, 21, 22, 23]. See [24] and Refs. therein
for the potential role of the effective restoration of theU(1)A symmetry aroundTc.
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4. Conclusion and outlook

It is by now well-established that the QCD transition is a crossover. The chiral transition
takes place somewhat before the partonic degrees of freedom are fullydeconfined. Calculations
of equilibrium properties atµB = 0 are at quite an advanced stage and the systematic errors are
being reduced. An achievable goal in the near future is to compute several Taylor coefficients of
the free energy expanded in powers ofµB with controlled uncertainties. Computational methods to
investigate the phase diagram at larger baryon chemical potential [15] aswell as reliable methods
to extract dynamical properties [25, 26] (spectral functions and in particular transport properties)
need to be further developed.
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