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1. Introduction

The case of the elastic low-lying resonances on the lattice has been investigated in detail.
Namely, the Lüscher formula [2] enables one to uniquely relate the discrete energy levels in a
finite box to the elastic scattering phase shift in the infinite volume, measured at the same energy.
This eventually opens the way for the extraction of the parameters of the elastic resonances – their
masses and widths – in the lattice QCD (for illustration see, e.g., Refs. [3, 4]).

The case of the inelastic resonances however, is more complicated. Inelastic resonances, such
as the Roper resonance N(1440), have a significant decay rate into the three and more particle final
states. A priori, in such a system one may expect significant finite-volume effects, which can not
be evaluated by using the standard Lüscher approach. Thus, it is highly desirable to construct a
framework that will allow one to systematically calculate the finite-volume effects, coming from
the tree-body final states.

Formulating a counterpart of the Lüscher approach in a three-body case represents a major
challenge. For this reason, at the first step, we want to simplify the problem as much as possible.
Namely, we consider a non-relativistic quantum-mechanical model with coupled two-particle and
three-particle channels. For three spinless non-identical particles with the masses mα , α = 1,2,3
the Hamiltonian of the model is given by a sum

H = H0+H2→2+H2→3
.
= H0+HI , (1.1)

where H0 is a free Hamiltonian, H2→2 the pair interaction Hamiltonian and H2→3 describes the
transition from two- to three-particle state 1+2 → 1+2+3. Starting from the Faddeev formalism
for three particles in the infinite volume the model can be reformulated [1] in a finite cubic box of
a size L.

2. An alternative derivation of the Lüscher Equation via the splitting of the
two-particle Green’s function

In order to find the energy spectrum in a finite volume, one can try to solve the finite volume
Faddeev equations numerically applying, e.g., the method of Ref. [6]. However, these equations
contain potentials as well as off-shell two-body scattering matrices, which are model-dependent.
The central question is, whether the predicted energy levels are also model-dependent. In other
words, if two different potential models lead to the same S-matrix in the infinite volume, can the
finite-volume spectra in these models be different.

In case of the two-particle elastic scattering, the answer is given by the Lüscher formula,
which relates the finite-volume spectrum to the (on-shell) S-matrix element. Our aim is to rewrite
the three-particle equations in a finite volume in a similar fashion, in terms of the on-shell S-matrix
elements only.

To see this let us first consider a free finite volume two-particle Green’s function in momentum
space

GL
0(k;z) =

2µ
L3 ∑

p

(2π)3δ 3(p−k)
p2 −q2

0
, (2.1)
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where µ is the reduced mass and z = m1 +m2 +
q2

0
2µ

. Applying the regular summation theorem [5]

the above equation can be decomposed into an infinite volume contribution GK = G0 +GU and the
finite volume corrections GF

GL
0(k;z) = 2µ

{
1

k2 −q2
0 − i0

− iπ∆(k2,q2
0)+∆(k2,q2

0)∑
lm

Y ∗
lm(k̂)

2
ν l+1 Zlm(1;ν2)

}
.
= G0(k;z)+GU(k;z)+GF(k;z) .

= GK(k;z)+GF(k;z) , (2.2)

where ν = q0L/(2π), and Zlm(1;ν2) stands for the Lüscher zeta-function

Zlm(1;ν2) = lim
λ→∞

{
∑

n∈Z3

θ(λ 2 −n2)
Ylm(n)
n2 −ν2 −δl0δm0

√
4πλ

}
, λ =

ΛL
2π

. (2.3)

The splitting of the Green’s function is understood in terms of a distribution which is integrated
with a regular function (such as a potential) and the quantity ∆(p2,q2

0) is defined in the following
manner

− iπ
∫ d3p

(2π)3 ∆(p2,q2
0)Φ(p) =

√
−q2

0 − i0

(4π)3/2 Φ0(q0) f (q2
0/µ2), (2.4)

which acts similar to the usual δ -Dirac distribution in the sense that it projects the quantities
GU(k;z) and GF(k;z) on the energy shell. The function f serves the purpose of a regulator such
that it is f (q2

0/µ2) = 1 for q2
0 ≥ 0 and effectively cuts the contributions for −q2

0 > µ2. Note that
the presence of the cutoff function in a two-particle case is not essential, because q0 is an external
parameter. For this reason, one may, e.g., make a simple choice f (x) = 1 here.

Next, we define

T = (−V)+(−V)G0T ,

K = (−V)+(−V)(G0 +GU)K = T+TGUK ,

TL = (−V)+(−V)(G0 +GU+GF)TL = K+KGFTL . (2.5)

It is immediately seen that T and K are the two-body T - and K-matrices in the infinite volume,
respectively. After carrying out the partial-wave expansion and integrating over the angles, the last
line of Eq. (2.5) can be solved on shell by requiring that the resulting system of linear equations
is singular. This procedure yields the Lüscher formula in terms of the on-shell K-matrix which is
related to the infinite volume scattering phase by

tanδl(q0) =
µ p
2π

Kl(q0,q0;z) . (2.6)

3. Splitting of the three-particle Green’s function

In analogy to the two-particle case discussed above we can apply the same idea of the splitting
into the infinite and finite volume contributions to the three-particle Green’s function. Due to the
presence of a third particle and an additional momentum which is also summed over the derivation
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of the splitting is somewhat more complicated. We start with the definition of the momentum space
three-particle Green’s function in a channel α = 1,2,3 (in order to ease the notations, we suppress
the channel index α in all momenta)

GL
0α(k, l;z) =

1
L6 ∑

pq

(2π)3δ 3(p−k)(2π)3δ 3(q− l)

M+
p2

2Mα
+

q2

2µα
− z

,

q = p̃+
mβ

mβ +mγ
p , (p, p̃) =

2π
L

(n, ñ) , n, ñ ∈ Z3 , (3.1)

where µα = mβ mγ/(mβ +mγ) is the reduced mass and the summation is carried out over the in-
tegers n, ñ. The first step consists in rewriting of the above equation in such a form that it partly
resembles an effective two-body Green’s function

GL
0α(k, l;z) =

1
L3 ∑

p
(2π)3δ 3(p−k)

2µα

L3 ∑
p1

(2π)3δ 3(q− l)
q2 −q2

0α

(3.2)

with

q2
0α = 2µα

(
z−M− p2

2Mα

)
, να =

q0αL
(2π)

, a =
mβ

(mβ +mγ)

pL
(2π)

. (3.3)

Afterwards one may proceed in a similar manner outlined in the previous section and make use of
the regular summation theorem. Then the three-particle Green’s function can be decomposed [1]
into the infinite-volume contribution GKα = G0α +GUα and the finite volume corrections GFα

GL
0α(k, l;z) =

1

M+
k2

2Mα
+

l2

2µα
− z− i0

− iπ∆
(
l2,q2

0α
)

+
1
L3 ∑

p
(2π)3δ 3(p−k)∆

(
l2,q2

0α
)
∑
lm

Y ∗
lm(l̂)

2
ν l

α
Za

lm(1;ν2
α)

.
= G0α(k, l;z)+GUα(k, l;z)+GFα(k, l;z)

.
= GKα(k, l;z)+

1
L3 ∑

p
(2π)3δ 3(p−k)G̃Fα(p, l;z) , (3.4)

where due to the additional momentum we have to deal with the Lüscher zeta-function in the
moving frame

Za
lm(1;ν2

α) = lim
λ→∞

{
∑

n∈Z3

θ(λ 2 − (n+a)2)
Ylm(n+a)

(n+a)2 −ν2
α
−δl0δm0

√
4πλ

}
. (3.5)

Again the splitting in Eq. (3.4) is understood as a distribution which is integrated with a regular
function of the momentum variables k and l and ∆

(
l2,q2

0α
)

projects the quantities GUα and GFα on
the energy shell. Further, since the variables k and p are not restricted from above, the argument
of the distribution ∆ can become positive and arbitrarily large, independent of the choice of the
variables l2 and z. This means that one has to necessarily deal with the analytic continuation of

4



P
o
S
(
Q
N
P
2
0
1
2
)
1
0
5

Three particles in a finite volume Kathryn Polejaeva

the pertinent amplitudes below threshold. This problem occurs merely in the three-particle case
and serves us as justification to introduce the regulator function f which cuts the sub-threshold
contribution for the momenta −q2

0α > µ2. Thus, assuming the range of the potentials much smaller
than the inverse of the lightest mass in the system, one does not expect to encounter any singularities
in the analytic continuation for −q2

0α < µ2.
Using the representation of the three-particle Green’s function, given in Eq. (3.4), one may

try to apply the splitting, as it was done in the two-particle case directly to the three-particle
T -matrix. However, in the three-particle case, due to the presence of the disconnected contri-
butions - the diagrams where a spectator particle propagates freely, when the other two particles
interact - one accounts new complications. Namely, these diagrams generate the factor L3δpα qα

((2π)3δ 3(pα −qα)) in a finite (infinite) volume which is not a regular function and is L-dependent
(in a finite volume). Consequently, the splitting in the T - matrix, can be applied here first after
these disconnected contributions are removed. Below we briefly discuss the way it can be done.

4. The three-particle counterpart of the Lüscher formula

In order to derive the three-particle analog of the Lüscher formula, we have to deal with the
three-body equations in the presence of the three-particle force1. To this end, one may use, e.g., the
formalism described in the papers [7]. However, in the presence of the Kronecker-δ , contained in
the disconnected parts, the use of the splitting procedure for the three-particle propagator according
to Eq. (3.4) can not be justified mathematically. In order to circumvent this problem, we act by
using a trial and error method. Namely, we first apply the splitting in the three-body Lippmann-
Schwinger equations, as if there were no disconnected parts, and further use the Faddeev trick.
In the resulting equations, the disconnected terms, containing the δ -functions, emerge in a finite
volume. At the next stage, we discard these singular terms by hand, thus making a conjecture
about the correct form of the equations. At the final step, we check this conjecture explicitly, by
considering the multiple-scattering series that emerge from the resulting equations, and showing
that this series coincides with the original multiple-scattering series in a finite volume.

Symbolically, the result for the effective two-body K-matrix can be written as follows

KL = K2→2 +K2→3(GF+GFRFGF)K3→2 , (4.1)

where Ki→ j denote the pertinent K-matrix elements in the infinite volume2, GF stands for the finite-
volume part of the three-particle Green’s function (see Eq. (3.4)), and the quantity RF is given by

RF =
4

∑
µ,ν=1

Rµν +
3

∑
α=1

θ α , R4β = θ 4GF

(
θ β +

3

∑
γ=1

Rγβ

)
, R44 = θ 4 +θ 4GF

3

∑
γ=1

Rγ4 ,

Rαβ = θ αGF

( 3

∑
γ=1

(1−δαγ)Rγβ +R4β

)
, Rα4 = θ αGF

3

∑
γ=1

(1−δαγ)Rγ4 +θ αGFR44 . (4.2)

1Although our model in Eq. (1.1) does not implicitly include the three particle force it can be added without much
effort. In fact in our calculations [1] we show that an induced three -body force arises naturally.

2Above threshold, the three-body K-matrix coincides with the one defined, e.g., in Refs. [8, 9].
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Here, µ,ν = 1, · · · ,4, whereas α,β ,γ = 1, · · · ,3 and

θ µ = Kµ +KµGFθ µ , Kµ = (−Vµ)+(−Vµ)(G0+GU)Kµ , K3→3 =
4

∑
µ=1

Kµ . (4.3)

Note that in definition of Rαβ , the terms of the type θ αGFθ β with α 6= β have been omitted.
Physically, such terms correspond to the finite-volume corrections in the disconnected diagrams
and emerge, if one faithfully applies the splitting procedure even to the disconnected piece. This
omission can be justified by showing that Eq. (4.2) produces – diagram by diagram – the correct
splitting of the infinite- and finite-volume parts in the multiple-scattering series. The physical
meaning of this prescription is very transparent. The finite-volume corrections emerge only in the
loop diagrams. However, due to the presence of the Kronecker-delta in the disconnected diagrams,
a first iteration of the disconnected diagrams in the Faddeev equations gives a connected diagram
without a loop. Its explicit expression is identical in a finite and the infinite volumes. The loops
(and, consequently, the finite-volume corrections) emerge first in the second iteration.

5. Concluding Remarks

In this letter we have sketched the steps of the derivation of the three-body counterpart of
the Lüscher formula. We find that the fundamental property of the finite-volume spectrum, which
follows from this formula, is that the spectrum is completely determined by the S-matrix elements
for the transitions 2 → 2, 2 → 3 and 3 → 3 in the infinite volume. Consequently, two different
potential models with the same S-matrix elements lead to the same spectra up to the exponentially
suppressed corrections.
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