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We review on a chiral power counting scheme for in-medium chiral perturbation theory with

nucleons and pions as degrees of freedom [1]. It allows for a systematic expansion taking into

account local as well as pion-mediated inter-nucleon interactions. Based on this power count-

ing, one can identify classes of non-perturbative diagramsthat require a resummation. We then

calculate the nuclear matter energy density for the symmetric and purely neutron matter cases up-

to-and-including next-to-leading order (NLO), in good agreement with sophisticated many-body

calculations. Next, the neutron matter equation of state isapplied to calculate the upper limit for

neutron stars, with an upper bound around 2.3 solar masses, large enough to accommodate the

most massive neutron star observed until now. We also apply our equation of state to constraint

GN in exceptionally large gravitational fields.

Sixth International Conference on Quarks and Nuclear Physics,
April 16-20, 2012
Ecole Polytechnique, Palaiseau, Paris

∗Speaker.
†I would like to thank my collaborators A. Dobado, A. Lacour, F. Llanes and U.-G. Meißner for their collaboration

in several parts of the results presented.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
Q
N
P
2
0
1
2
)
1
3
4

Chiral EFT for nuclear matter J. A. Oller

1. Introduction

An interesting achievement in nuclear physics would be the calculation of atomic nuclei and
nuclear matter properties from microscopic inter-nucleonforces in a systematic and controlled way.
This is a non-perturbative problem involving the strong interactions. In the last decades, Effective
Field Theory (EFT) has proven to be an indispensable tool to accomplish such aim. In this work
we employ Chiral Perturbation Theory (CHPT) to nuclear systems [2, 3, 4], with nucleons and
pions as the pertinent degrees of freedom. For the lightest nuclear systems with two, three and four
nucleons, it has been successfully applied [5]. For heaviernuclei one common procedure is to em-
ploy the chiral nucleon-nucleon potential with standard many-body methods, sometimes supplied
with renormalization group techniques [6], or in lattice calculations [7]. We have recently derived
[1] a chiral power counting in nuclear matter that takes intoaccount local multi-nucleon interac-
tions simultaneously to pion-nucleon interactions. Many present applications of CHPT to nuclei
and nuclear matter only consider meson-baryon chiral Lagrangians (see e.g. [5] for a summary),
without constraints from free nucleon-nucleon scattering. Our novel power counting was applied
in ref.[8], among other problems, to determine the nuclear matter energy per baryon. We elaborate
on these results here. Next, we apply them to pure neutron matter case and study the upper limit of
a neutron star mass. We see that our results can accommodate the recently observed neutron star
with a mass(1.97±0.04) M⊙ [9], the largest one confirmed until now. We also use our equation of
state to constraint the running of the gravitational constant GN with the gravitational field intensity,
exceptionally large (around 2×1012 m/s2) inside a neutron star of 2 solar masses. In this case we
show thatGN cannot exceed its value on Earth by more than a 12% [10].

2. Chiral Power Counting

Ref.[11] establishes the concept of an “in-medium generalized vertex” (IGV). Such type of
vertices result because one can connect several bilinear vacuum vertices through the exchange
of baryon propagators with the flow through the loop of one unit of baryon number, contributed
by the nucleon Fermi seas. At least one is needed because otherwise we would have a vacuum
closed nucleon loop that in a low energy EFT is buried in the chiral higher order counterterms. It
was also stressed in ref.[12] that within a nuclear environment a nucleon propagator could have a
“standard” or “non-standard” chiral counting. To see this note that a soft momentumQ∼ p, related
to pions or external sources can be associated to any of the vertices. Denoting byk the on-shell
four-momenta associated with one Fermi sea insertion in theIGV, the four-momentum running
through thejth nucleon propagator can be written asp j = k+Q j . If Q0

j = O(mπ) = O(p) one
has the standard counting so that the baryon propagator scales asO(p−1). However, ifQ0

j is of
the order of a kinetic nucleon energy in the nuclear medium then the nucleon propagator should
be counted asO(p−2). This is referred as the “non-standard” case [12]. In order to treat chiral
Lagrangians with an arbitrary number of baryon fields (bilinear, quartic, etc) ref.[1] considered
firstly bilinear vertices like in refs.[11, 12], but now the additional exchanges of heavy meson fields
of any type are allowed. The latter should be considered as merely auxiliary fields that allow one to
find a tractable representation of the multi-nucleon interactions that result when the masses of the
heavy mesons tend to infinity. These heavy meson fields are denoted in the following byH, and a
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heavy meson propagator is counted asO(p0) due to their large masses. On the other hand, ref.[1]
takes the non-standard counting case from the start and any nucleon propagator is considered as
O(p−2). In this way, no diagram whose chiral order is actually lowerthan expected if the nucleon
propagators were counted assuming the standard rules is lost. In the followingmπ ∼ kF ∼ O(p)
are taken of the same chiral order, and are considered much smaller than a hadronic scaleΛχ of
several hundreds of MeV that results by integrating out all other particle types, including nucleons
with larger three-momentum, heavy mesons and nucleon isobars [4]. The final formula obtained in
ref.[1] for the chiral orderν of a given diagram is

ν = 4−E+
Vπ

∑
i=1

(ni + ℓi −4)+
V

∑
i=1

(di +vi +ωi −2)+Vρ . (2.1)

whereE is the number of external pion lines,ni is the number of pion lines attached to a vertex
without baryons,ℓi is the chiral order of the latter withVπ its total number. In addition,di is
the chiral order of theith vertex bilinear in the baryonic fields,νi is the number of mesonic lines
attached to it,ωi that of only the heavy lines,V is the total number of bilinear vertices andVρ

is the number of IGVs. It is important to stress thatν given in eq.(2.1) is bounded from below
[1]. Because of the last term in eq.(2.1) adding a new IGV to a connected diagram increases the
counting at least by one unit. The numberν given in eq.(2.1) represents a lower bound for the
actual chiral power of a diagram,µ , so thatµ ≥ ν . The real chiral order of a diagram might be
different fromν because the nucleon propagators are counted always asO(p−2) in eq.(2.1), while
for some diagrams there could be propagators that follow thestandard counting. Eq.(2.1) implies
the following conditions for augmenting the number of linesin a diagram without increasing the
chiral power by adding i) pionic lines attached to mesonic vertices, ℓi = ni = 2, ii) pionic lines
attached to meson-baryon vertices,di = vi = 1 and iii) heavy mesonic lines attached to bilinear
vertices,di = 0, ωi = 1.

3. Nuclear matter energy density

The energy per baryon in nuclear matter at NLO in the countingof Eq. (2.1) requires to evalu-
ate the set of diagrams shown in Fig. 1. Diagram 1 represents the kinetic energy from the Fermi sea
of nucleons. Diagram 2 arises from the nucleon self-energy summed for all the nucleons. Finally,
diagrams 3 correspond to theNN interactions in the nuclear medium, 3.1 is for the direct part and
3.2 for the crossed one.

A detailed derivation of the final result is given in Ref. [8].We reproduce here the final
expression for the diagrams 3,E3, given by

E3 = 4 ∑
I ,J,ℓ,S

∑
α1,α2

(2J+1)χ(SℓI)2
∫

d3a
(2π)3

d3q
(2π)3 θ(ξα1 −|~α +q|)θ(ξα2 −|a−q|)

×
[
−T i3

JI (ℓ,ℓ,S;q2,~α2,q2)+ g̃0Σ∞ℓ−m
∫

d3p
(2π)3

{1−θ(ξα1 −|~α +p|)−θ(ξα2 −|~α −p|)
p2−q2− iε

Σpℓ−
Σ∞ℓ

p2

}]
.

(3.1)

where an expansion inNN partial waves in the nuclear medium is used. For further details in the
notation we refer to Ref. [8]. The only quantity not determined from theNN scattering in vacuum
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O(p6)

O(p6)O(p5)

Leading Order

Next-to-Leading Order

Next-to-Leading Order

Figure 1: Contributions to the nuclear matter energy up to NLO orO(p6). The wiggly lines correspond to
the one-pion exchange plus theNN contact interactions from theO(p0) quartic nucleon Lagrangian [3, 4].
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Figure 2: Energy per baryon for symmetric nuclear matter (left) and pure neutron matter (right).

is the constant̃g0. However, one can determine its natural size from the way it is introduced [8],
around−mmπ/4π ∼ 0.510m2

π . The resulting curves for the energy per baryon are shown in Fig. 2,
left panel for symmetric nuclear matter and right one for purely neutron matter. The preferred final
values of̃g0 are around−1 m2

π for the former and−0.5 m2
π for the latter. We see a good comparison

with sophisticated many body calculations [13] shown by thedotted lines. The experimental point
for the symmetric nuclear matter panel is indicated by the crossed. In this case we also are able
to reproduce perfectly the nuclear matter incompressibility K = 259 MeV, to be compared with
experimentK = 250±25 MeV [14].

4. Application to neutron stars. Constraining GN.

We want to address two question by employing the energy per baryon (neutron matter equation
of state atT = 0) obtained in the previous section. The first question is to know whether this equa-
tion of state, calculated from first principles, is able to account for the large mass of 1.97(4)M⊙ of
the recently observed pulsar J1614-2230 [9]. The second question is to know whether the Newto-
nian constantGN has the same value as in the Earth for extremely large gravitational fields like those
found in the previous pulsar, with its estimated acceleration on the surface around 2× 1012 m/s2

[10]. These questions were addressed in Ref. [10] and it was found that our equation of state
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for neutron matter is able to accommodate such massive neutron stars, with an upper bound for a
neutron star mass of around 2.3M⊙. This is shown in the left panel of Fig. 3.

RegardingGN the procedure was to use the equation of state of Ref. [8] up toFermi momenta
of 450−600 MeV (leaving this interval as a source of error) and then employ the hardest possible
equation of state (with a sound velocity equal to the speed oflight). The idea is that if the equation
of state is harder this makesGN to increase in order to provide enough gravitational attraction. Of
course,GN cannot grow indefinitely because otherwise the upper limit value for the mass of the
neutron star would decrease too much, being in disagreementwith the experimental determination
for the pulsar J1614-2230 [9]. Taking into account all theseconsiderations for the intense gravi-
tational field in such neutron star,GN cannot exceed 12% of its value on Earth at 95% confidence
level. In the right panel of Fig. 3 we show this determinationand others from other sources.
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Figure 3: (Color online) Left panel: The neutron star mass as a function of the radius. Right panel: Newto-
nian constant normalized by its accepted value 6.6738(8)N(m/kg)2. From left to right: laboratory on Earth;
orbital determinations of binary pulsars; white dwarf structure; neutron stars with 1.4 solar masses; neutron
star with 1.97(4) solar masses.
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