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We review on a chiral power counting scheme for in-mediunratiperturbation theory with
nucleons and pions as degrees of freedom [1]. It allows forséematic expansion taking into
account local as well as pion-mediated inter-nucleon &ugons. Based on this power count-
ing, one can identify classes of non-perturbative diagrdrasrequire a resummation. We then
calculate the nuclear matter energy density for the symaoeatd purely neutron matter cases up-
to-and-including next-to-leading order (NLO), in good egment with sophisticated many-body
calculations. Next, the neutron matter equation of staé@fdied to calculate the upper limit for
neutron stars, with an upper bound around 2.3 solar massgs, énough to accommodate the
most massive neutron star observed until now. We also applgguation of state to constraint
Gy in exceptionally large gravitational fields.

Sixth International Conference on Quarks and Nuclear Rtgysi
April 16-20, 2012
Ecole Polytechnique, Palaiseau, Paris

*Speaker.

I would like to thank my collaborators A. Dobado, A. LacourLFnes and U.-G. MeiRRner for their collaboration
in several parts of the results presented.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Chiral EFT for nuclear matter J. A. Oller

1. Introduction

An interesting achievement in nuclear physics would be #iewtation of atomic nuclei and
nuclear matter properties from microscopic inter-nuclEwoes in a systematic and controlled way.
This is a non-perturbative problem involving the strongiattions. In the last decades, Effective
Field Theory (EFT) has proven to be an indispensable toottoraplish such aim. In this work
we employ Chiral Perturbation Theory (CHPT) to nuclear esyst [2, 3, 4], with nucleons and
pions as the pertinent degrees of freedom. For the lightetéar systems with two, three and four
nucleons, it has been successfully applied [5]. For heanielei one common procedure is to em-
ploy the chiral nucleon-nucleon potential with standarchyabody methods, sometimes supplied
with renormalization group techniques [6], or in latticéccéations [7]. We have recently derived
[1] a chiral power counting in nuclear matter that takes imtcount local multi-nucleon interac-
tions simultaneously to pion-nucleon interactions. Mangspnt applications of CHPT to nuclei
and nuclear matter only consider meson-baryon chiral lragieas (see e.g. [5] for a summary),
without constraints from free nucleon-nucleon scatteri®gr novel power counting was applied
in ref.[8], among other problems, to determine the nucleatten energy per baryon. We elaborate
on these results here. Next, we apply them to pure neutrotentaise and study the upper limit of
a neutron star mass. We see that our results can accommbdatecently observed neutron star
with a masg1.97+0.04) M, [9], the largest one confirmed until now. We also use our eopaif
state to constraint the running of the gravitational cams& with the gravitational field intensity,
exceptionally large (around:210'? m/sz) inside a neutron star of 2 solar masses. In this case we
show thatGy cannot exceed its value on Earth by more than a 12% [10].

2. Chiral Power Counting

Ref.[11] establishes the concept of an “in-medium germgdlivertex” (IGV). Such type of
vertices result because one can connect several bilineaiura vertices through the exchange
of baryon propagators with the flow through the loop of oné ohbaryon number, contributed
by the nucleon Fermi seas. At least one is needed becaussvisiheve would have a vacuum
closed nucleon loop that in a low energy EFT is buried in theathigher order counterterms. It
was also stressed in ref.[12] that within a nuclear envirenima nucleon propagator could have a
“standard” or “non-standard” chiral counting. To see thogathat a soft momentu@ ~ p, related
to pions or external sources can be associated to any of ttieege Denoting by the on-shell
four-momenta associated with one Fermi sea insertion in@& the four-momentum running
through thej™™ nucleon propagator can be written ps=k+Qj. If Q? = 0(my) = O(p) one
has the standard counting so that the baryon propagatassast’(p~'). However, ifQCj’ is of
the order of a kinetic nucleon energy in the nuclear mediuen the nucleon propagator should
be counted ag/(p~2). This is referred as the “non-standard” case [12]. In orderréat chiral
Lagrangians with an arbitrary number of baryon fields (b#in quartic, etc) ref.[1] considered
firstly bilinear vertices like in refs.[11, 12], but now thdditional exchanges of heavy meson fields
of any type are allowed. The latter should be considered aslynguxiliary fields that allow one to
find a tractable representation of the multi-nucleon irtgoas that result when the masses of the
heavy mesons tend to infinity. These heavy meson fields ameatkim the following byH, and a
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heavy meson propagator is counteda$°) due to their large masses. On the other hand, ref.[1]
takes the non-standard counting case from the start andwbyam propagator is considered as
0(p~2). In this way, no diagram whose chiral order is actually lo#han expected if the nucleon
propagators were counted assuming the standard ruleg.idrothe followingm; ~ kg ~ &'(p)

are taken of the same chiral order, and are considered mualesrian a hadronic scaley of
several hundreds of MeV that results by integrating outthiépparticle types, including nucleons
with larger three-momentum, heavy mesons and nucleonris@dla The final formula obtained in
ref.[1] for the chiral ordew of a given diagram is

Vi Vv
V:4_E+.Zl(ni+£i_4)+zl(di+Vi+m_2)+vp' (2.1)

whereE is the number of external pion lines, is the number of pion lines attached to a vertex
without baryons; is the chiral order of the latter with(; its total number. In additiond; is
the chiral order of thé" vertex bilinear in the baryonic fields; is the number of mesonic lines
attached to it that of only the heavy linesy is the total number of bilinear vertices akg

is the number of IGVs. It is important to stress thagiven in eq.(2.1) is bounded from below
[1]. Because of the last term in eq.(2.1) adding a new IGV tornected diagram increases the
counting at least by one unit. The numbhegiven in eq.(2.1) represents a lower bound for the
actual chiral power of a diagramu, so thatu > v. The real chiral order of a diagram might be
different fromv because the nucleon propagators are counted alwagé@s) in eq.(2.1), while
for some diagrams there could be propagators that follovstiiedard counting. Eq.(2.1) implies
the following conditions for augmenting the number of lines diagram without increasing the
chiral power by adding i) pionic lines attached to mesonidiees, ¢; = n; = 2, ii) pionic lines
attached to meson-baryon verticels= v = 1 and iii) heavy mesonic lines attached to bilinear
vertices,d, =0, w = 1.

3. Nuclear matter energy density

The energy per baryon in nuclear matter at NLO in the courdirigq. (2.1) requires to evalu-
ate the set of diagrams shown in Fig. 1. Diagram 1 represeatsitietic energy from the Fermi sea
of nucleons. Diagram 2 arises from the nucleon self-enengynsed for all the nucleons. Finally,
diagrams 3 correspond to théN interactions in the nuclear medium, 3.1 is for the direct pad
3.2 for the crossed one.

A detailed derivation of the final result is given in Ref. [8\We reproduce here the final
expression for the diagrams &, given by

d%a d3q
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where an expansion iINN partial waves in the nuclear medium is used. For furtherildatathe
notation we refer to Ref. [8]. The only quantity not deteradrfrom theNN scattering in vacuum
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Figure 1: Contributions to the nuclear matter energy up to NLQXp®). The wiggly lines correspond to
the one-pion exchange plus tNe\ contact interactions from th&(p°) quartic nucleon Lagrangian [3, 4].
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Figure 2: Energy per baryon for symmetric nuclear matter (left) ancepreutron matter (right).

is the constanflp. However, one can determine its natural size from the wayiiitroduced [8],
around—mmy/41 ~ 0.510m2. The resulting curves for the energy per baryon are showigir2k:
left panel for symmetric nuclear matter and right one forgbuneutron matter. The preferred final
values ofgp are around-1 m? for the former and-0.5 m? for the latter. We see a good comparison
with sophisticated many body calculations [13] shown bydbged lines. The experimental point
for the symmetric nuclear matter panel is indicated by tlessed. In this case we also are able
to reproduce perfectly the nuclear matter incompressibili = 259 MeV, to be compared with
experimenkK = 250+ 25 MeV [14].

4. Application to neutron stars. Constraining Gy.

We want to address two question by employing the energy pgobdneutron matter equation
of state aflf = 0) obtained in the previous section. The first question is toxkwhiether this equa-
tion of state, calculated from first principles, is able to@mt for the large mass of 1.97(M))., of
the recently observed pulsar J1614-2230 [9]. The seconstiques to know whether the Newto-
nian constanGy has the same value as in the Earth for extremely large gtiavigd fields like those
found in the previous pulsar, with its estimated acceleratin the surface around>210'? m/s?
[10]. These questions were addressed in Ref. [10] and it wasdf that our equation of state
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for neutron matter is able to accommodate such massiveamestars, with an upper bound for a
neutron star mass of around ARB,. This is shown in the left panel of Fig. 3.

RegardingGy the procedure was to use the equation of state of Ref. [8] &etmi momenta
of 450— 600 MeV (leaving this interval as a source of error) and thapley the hardest possible
equation of state (with a sound velocity equal to the spedidiat). The idea is that if the equation
of state is harder this mak&, to increase in order to provide enough gravitational atftvac Of
course,Gy cannot grow indefinitely because otherwise the upper limitie for the mass of the
neutron star would decrease too much, being in disagreenitimthe experimental determination
for the pulsar J1614-2230 [9]. Taking into account all thesesiderations for the intense gravi-
tational field in such neutron stdgy cannot exceed 12% of its value on Earth at 95% confidence
level. In the right panel of Fig. 3 we show this determinatzm others from other sources.
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Figure 3: (Color online) Left panel: The neutron star mass as a funaifdhe radius. Right panel: Newto-
nian constant normalized by its accepted vall&y888)N(m/kg)?. From left to right: laboratory on Earth;
orbital determinations of binary pulsars; white dwarf stue; neutron stars with 1.4 solar masses; neutron
star with 1.97(4) solar masses.
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