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There is an increasing interest in quantifying the predécpower in nuclear structure calcula-
tions. We discuss how both experimental and systematicseatathe NN-level can be used to
estimate the theoretical uncertainties by rather simplanms@and without solving the full nuclear
many body problem. We emphasize the role of effective interas defined by coarse graining
the NN potential to length scales of the order of the minineBdoglie wavelength probed be-
tween nucleons in nuclei. We find anpriori error of AB/A ~ 0.1 — 0.4MeV for the binding
energy per particle throughout the periodic table fof A < 208, and a linear growth of the er-
ror with density for nuclear mattéxB/A ~ 3.750, m. and neutron mattekB/N ~ 3.5p,. This
suggests to limit the computational effort in solving thechdar Many Body Problem to such an
accuracy.
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1. Introduction

The present contribution is based on our recent work [1],revla@ old issue is adressed from
a modern perspective. The key question is, can we quantifysein binding energies based on our
incomplete knowledge of the NN interaction ?.

The nuclear many body problem consists of diagonalizingHamiltonianH with multinu-
cleon interactions,

H=3T+) Vaij + z Vajijk + zk Vaijk + - (1.1)
I <] <)<k i<j<k<l
where the indicesrun 2 i < AandT; = piz/(ZMN) is the kinetic energy of thie-th nucleon\a
the NN potentialVz;jx the NNN potential, etc. Roughly speaking one can/ifrom the deuteron
and NN-scattering datad/z from triton and nucleon-deuteron scattering,from the o —particle
and any scattering process involving four nucleons, etc.

First principles calculations in Nuclear Physics haveitiagally been dominated by the idea
thatoncethe fundamental NN-interaction is accurately known on@ifswith the intricacies and
complexities of the many body problem on the theoreticad.sidctually, ab initio calculations
in Nuclear Physics have been carried out as if there was @ieghowledge on the elementary
NN-dynamics. Therefore, a long-term effort has been cdroigt to substantiate this assumption
by continuously improving the NN-potentials, but littlaeaition has been paid to determine the
uncertainty in the potentials themselves. We have recéifidgl this gap by carefully analyzing
different error sources [2] and using the concept of a cogra@ed potential [3].

2. NN potentials

Along the years many studies have been oriented towardsouimgy the NN-potentials by
performing x2-fit of a Partial Wave Analysis to the abundant available pg ap experimental
data. From a purely statistical analysis point of view, wairel that in order to determine reliable
confidence levels on the fitting parameters, i.e. error egtis) one must havwe’/d.o.f < 1. Larger
values of the reduceg? (most Bonn,Paris, Esc or Nijm93 potentials produgédd.o.f ~ 2) would
actually diminish the uncertainties, as there is a largalbhgto change the most likely fit parameter
values, and would produce unreliable error estimates. ,Tdnugrror analysis of NN phase-shifts
for several partial waves became first possible when the @¢jgn group [4] carried out a Partial
Wave Analysis (PWA) fitting about 4000 experimental np andlata (after rejecting further 1000
of 3o-mutually inconsistent data) witg?/dof ~ 1.

In general, fits consider differential cross sections, fddion asymmetries, etc. for a given
set of energies and anglés;, 6). While the partial wave expansion allows to evaluaitsy scat-
tering angle, the fixed energies allow to determine phagts hily at those measured energies, so
that the phase-shifts themselves become independen fitirameters. On the other hand, the an-
alyticity of the S-matrix based on the meson-exchange gcguarantees that the phase-shifts are
smooth functions for real positive energy. A handy way to bora this energy-angle information
and implementing the expected smooth energy dependengénigdducing an auxiliary potential
with a set of adjustable parameters. The bench-marking édjgn fit fixed the form of the poten-
tial to incorporate charge dependence. It contains an grigendent square well operating at a
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distance below #fm, a One-Pion-Exchange (OPE) contribution starting.4fm, a One-Boson-
Exchange (OBE) piece below-22.5fm and an electromagnetic contribution. Energy deperelenc
reflects retardation in the interaction due to unobservedali excitations. However, it is incon-
venient to perform Nuclear structure calculations sineceduires solving a time-dependent many
body problem. At present there are a variety of NN (energgpeesdent) potentials fitting a large
body of scattering data witg?/dof ~ 1 [4, 5, 6, 7, 8] which allow the application of conventional
stationary dynamics. Surprisingly, error estimates orpthtential fitting parameters are never pro-
vided. In [2] we analyze different error sources, in pafacuhe short distance non-localities of
the interaction which may depend on energy, linear and angnbmentum. While in principle
these non-localities are on-shell equivalent (see e.g.[Bdbr a proof in a ¥My expansion) they
generate quantitative differences.
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Figure 1: np scattering observables for different energies in therktiory system as a function of the CM
angle. Left panel: Polarization & ag = 325MeV. Middle panel: Differential cross sectionBRtag =
324.1MeV. Right panel:D; depolarization aE| ag = 325MeV. The short-dashed line denotes our results
by the coarse grained interaction [2]. The band represkatsdmpilation of the PWA and five high quality
potentials [4, 6, 7, 8] which providedy?/d.o.f < 1. For references for the experimental datafseg: //nn-
online.org andhttp://gwdac.phys.gwu.edu/.

From our reanalysis of the discrepancies in the differertiglavaves we have found that the
PWA statistical errors quoted in the original Nijmegen wtk Adpwa, turn out to besmallerthan
the discrepancies among the fitted phases stemming fromiffeesdt potential fits, separately
claiming ax?/d.o.f. <1 to data. In other words,

1
Adpwa S \/m (5n - 5)27 oh = 5Nijm|l 75Reid937 5Nijm| s 5Av187 5Speo 5CDBonn (2-1)

Thus atE ag = 350MeV in thel'S, channel one has a s.d. of7® whereasAdpywa = 0.3%. This
counter-intuitive result relies not only on the specifionfigrof potentials which treat the mid— and
short-range behaviour of the interaction differently dgbaon the fact that the fits are mainly done
to scattering amplitudes rather than to the phase-shiésskelves. The systematic discrepancies
are vividly illustrated by looking at Fig. 1 where the spreddhe different potentials and the PWA
analysis increases in the region where no data constraires$iod.
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3. Direct error estimates

The most direct way of quantifying binding energy uncetiasmwould be to undertake large
scaleab initio calculations Esing the different two-body potentials, ‘dé&/with i=1...N,yield-
ing BU)(A) whence a meaB(A) and a standard deviatiakB(A) can be constructed,

B(A) = T BUMA)  AB(A) = \/ LTS (BU(A) - B (3.1)

For instance, the triton binding energy obtained by Fadda®ulations is 80,7.62,7.63,7.62,7.72
and 850 MeV for the CD Bonn [10], Nijm-Il, Reid93, Nijm-I, AV18 [1land the covariant spec-
tator model [8] respectively. This yields the combined he®3 = 7.8534)MeV (exp. Bz =
8.48201)MeV) i.e. AB3/3 = 0.11MeV. Note that a three-body interaction would account for
the missing 1MeV-binding.

This error estimate procedure stops beyondAke4 nucleus, due to computational and the-
oretical difficulties related to the form of the potentialtom anab initio viewpoint, only Monte
Carlo calculations may go up o= 10 when potentials are fixed to be dependent with a nonlo-
cality in terms of the relative angular momentum operatecdming the standard Hamiltonians for
ab initio calculations of light nuclei [12] and dense matter [13]. Aga lack of error estimate of
the potential parameters makes it impossible to deducehtdwdtical errors in such calculations.
On top of that, one should add the systematic errors due tdiffieeent forms of the potential.

Finite experimental accuracy provides alsatatistical error AV, on the n-body force. In
addition, unless thenost generapossible n-body forces are considered s@ys&tematierror is
introduced. On the other hand, the definition of the threet ligher-body interaction depends
on the two body potential, so any uncertainty in the two-bodgraction will carry overto the
three-body interaction. Thus, even if we fix it say in the= 3 system, there will always be a
residual uncertainty in th&+ 1 = 4 calculation. To fix ideas it is convenient to think of the n-
body potentials as random variables. They depend on somewnkparameterscs,...cy) and
will eventually be determined fromg?-fit to some data involving n-body interactions. This would
provide a probability distribution of parametdp$c,...cy), according to which the normalized
variablevy, = (Vo — (Vi) /v/{(Vh — (Vi) )2) which has zero meariy,) = 0, and unit variance)v, =
1, can be defined. Correlations between the two- and thrég{flooces can be ignoredlithin errors
if ((vav3))? < ({(vava — (v2v3))?). Although establishing the validity of this condition réms a

~

thourough analysis of multinucleon forces, we will assuhig to be the case, so that
AB(A)2 = AVZ +AVE +AVZ + ... (3.2)

in which case, estimating the two-body uncertainty prosidéower bound on the total uncertainty.
Note that non-vanishing statistical correlations may destiis.

4. Error estimates from Coar se grained interactions

In our recent work [2] we have shown how coarse grained intienas [3] can advantageously
be used for the purpose of error estimate. Besides makingratecfits to the combined NN-
scattering database obtained from the PWA and the 6 higliygpatentials this representation
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allows to side-step the short distance complicationsrayisi nuclear structure calculations. This
is very much in spirit of th&/qk-approach [14], the Unitary Correlation Method (UCOM) [15]
the Similarity Renormalization Group (SRG) (see e.g. [1&] eeferences therein), where smooth
soft-core potentials are produced after the original gakehas been evolved to the relevant scale.
However, these transformations are applied to the exisiigig-quality potentials and become com-
putationally cumbersome. We suggest instead to deterinineftective coarse grained interactions
directly from fits to the scattering data up to a given maximemergy. For light nucleA < 40
it turns out that a reasonable maximum CM momentum is alpept~ 200MeV [3] since the
highest wavelength resolutiory i ~ 1fm is much larger than the short range repulsion distance,
acore ~ 0.5fmM, present in central waves. Thus, we expect mean fieldiledilons to be applicable.

In this way the systematic uncertainties due to the diffieferms of the potential can be
propagated. We have found that for doubled-closed shelenBewaves dominate the uncertainty.
Using Harmonic Oscillator Shell model wave functions we[dét

ABsy ABapye ABieg ABuaocy
3 4 16 40

the errors depending on the fitting cut-off LAB energy. Whilee may reasonably doubt that
variations in the binding energies can be monitored by eograined interactions with harmonic
oscillator wave functions, we have found [1] that this is tist case by analyzing variations of
binding energies irab initio calculations induced by a relative 1% change in the AV18 maik
parameters [17].

For heavier nuclei a simple estimate of errors due to the taay bnteraction uncertainty
can be made by using Skyrme effective interactions (for &evegee [18]) where for symmetric
N =Z = A/2 nuclei one has

—0.08(1), =0.12(1), =0.28(2), =0.342)MeV  (4.1)

A—AB = 8EAAtO / d3xp(x)?, (4.2)
wherety = [ d®x(Vag, +\Vag, ) /2 andxoto = [ d3x(—Vig, +Vsg ) /2. Propagating errors we gigt=
—0.92(1)GeVim?, in agreement with the equation of state used by the Tremtopgf19] at low
densitiesty ~ —0.9(1)GeVfm® and with coarse graining of NN interactions in CM momentum
space down té\ ~ 0.3GeV gives a compatible valui,~ —4717/(MyA) [20]. We may implement
finite size effects by using a Fermi-type shape for the matésity p(r) = po/(1+ €~R/a)
with R = roA% andrg = 1.1fm anda = 0.7fm and normalized to the total number of particles
A= [d®p(x) we get a result compatible with Eq. (4.1) and depending onvéiee of A for

4 < A<208. In Fig. (2) we illustrate the situation by imposing ouroe band on the binding
energy of stable nuclei. For nuclear and neutron matterffeetegrows linearly with the density
(in fm~3)

ABym 3 AB, 1
A~ ghlop ~3.75p, N~ z2[o(1—x0)] on ~ 3.5pn (4.3)

In Fig. 2 we implement our error estimates on the EOS caliomaiof the Trento group [19], where
their uncertainties reflect the accuracy in solving the maogy problemonly. As we see, their
errors aremuch smallethan those estimated here. We remind that among other &ffechave
neglected possible statistical correlations betweéau3d 2\ forces, thus a more thorough analysis
incorporating n-body coarse grained interactions wouaivigie a more definite answer.
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Figure2: Superposition of estimated errors based on propagatinghitrdNucleon uncertainties via coarse
grained interactions. Left panel: Stable nuclei. MiddlaglaNuclear Matter Equation of State (EOS). Right
Panel: Neutron Matter Equation of State. EOS Data are frenGieen Function MonteCarlo Calculation
of the Trento group [19].
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