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We study the radial expansion of cylindrical tubes in a hotFQd&scribed by the equation of
state of the MIT bag model. These tubes are treated as patitamb in the energy density of the
system which is formed in heavy ion collisions at RHIC and LN@& start from the equations
of viscous relativistic hydrodynamics in two spatial dirsems with cylindrical symmetry and

perform an expansion of these equations in a small parajpeetgserving the nonlinearity of the
hydrodynamical formalism. The relativistic viscous fluglstudied with a relativistic Navier-

Stokes equation and the perturbations are governed by thgeBuequation. We estimate the
typical expansion time of the tubes.
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Figure 1: Tubular perturbations on a QGP background. The inner cgfird radiusl represents a tube
of energy density higher than the background, shown as adijdial fireball of radiud.. The perturbation
expands radially.

1. Introduction

Theoretical works and also the analysis of experimental datelativistic heavy ion collisions
suggest that in the early times of these collisions colortiilbes are formed. Hydrodynamical stu-
dies [1, 2] indicate that some experimental features oleseat RHIC and LHC can be understood
if it is assumed that these tubes survive the thermalizattage and form “tubular” structures
that persist for some time during the hydrodynamical exipanm the thermalized quark-gluon
plasma (QGP). In [1, 2] it has been argued that these stegctuny have a common hydrodynamic
origin: the combined effect of longitudinal high energy siéntubes (leftover from initial particle
collisions) and transverse expansion. Such tubular strest which are nearly uniform in the
longitudinal direction, may be considered as cylindricattprbations in the energy density upon
a continuous background as depicted in Fig. 1. The propayafi perturbations on the top of a
QGP background has been investigated in several works 5364, In most of these works [3, 4] a
linearized version of hydrodynamics is employed. We haieel tto keep the nonlinear terms in the
equations which describe the evolution of the perturbati®n 6]. This extends the validity of our
formalism to perturbations which are not so small. In thiskwee study how fast the tubes expand
in the viscous QGP. We write the relativistic viscous hygrmmical equations for the propagation
of cylindrical perturbations along the radial directiomdsFig. 1). We obtain a non-linear wave
and solve it numerically to estimate the time needed for a tftinitial radius of the order of 1 fm
to grow and reach the typical radius of the system formed avyén collisions, which is of the
order of 7 fm. If the tube expansion time were much shorten tha lifetime of the fireball, then
the tube would be very rapidly incorporated in the firebatl @&would produce no visible effect in
the final state particle correlation measurements. It i$ kmeiwn that the relativistic version of the
Navier-Stokes equation does not constitute a causal thédgtrongly recommend the reading of
[7] to understand the subject in details. Besides theseepinal issues of stability and causality
we perform a Navier-Stokes approach without worrying almigroscopic time scales, due to the
nonlinear expansion as seen in [8]. A future and more compietsion of this work in relativistic
viscous hydrodynamics is in progress with the use of Mileael-Stewart theory, which is a causal
theory [7]. Due to dissipation, viscosity damps the pemwtidns, which are then more easily mixed
with the background fluid, loosing their influence on finaletaarticle correlations.
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2. Réativistic viscous Fluid Dynamics

A review text on relativistic viscous hydrodynamics is [Approximation schemes which
conserve nonlinearities can be found in [9] and their apgibn to the study of nonlinear waves in
cold and warm nuclear matter can be found in [8, 10] and re@a® therein. Throughout this work
we usec = 1, h=1 and the Boltzmann constakg = 1. We start our discussion considering two
coaxial cylinders. The inner and narrower cylinder repmeséhe flux tube which is a perturbation
in energy densitye. The outer and larger cylinder represents the fireball witniform energy
density & (& < €). We will study the expansion of the flux tube in the center alssisystem of
the fireball. It is natural to choose spatial cylindrical atinates(z r, ¢). The velocity four-vector
u’ is defined as® = y, U= w, wherey is the Lorentz factoy = (1—v?)~%/2 and thusu’u, = 1.
The velocity field of matter is given by= V(t,r,z ¢). Because of the azimuthal symmetry we do
not have components along tipalirection and consequently no terms involvigigd @ will survive
in what follows. The details of viscous hydrodynamics areegiin [7, 8]. We shall use the basic
equations for this work, which are the relativistic versadrihe Navier-Stokes equation:

9 = Ip T gu- 9 y.B H
(s+p)y2(at+v >v+va +Op— nv{aua V+ O d“[y(at” D)(yu )H

—v<Z - én) % [g:ﬁ 0. (W)} +V(Z = §n>au{vu“ [g—r+ 0. (W)} }

+n{dud“(W)—d“ﬁu“—du{y<§t+v D)(WU“)}} (Z—gf7> [gr +0- (W)]

2 ady -
(=30 )aufyr | S+ B2 0m] b =0 2.1)
and the relativistic version of the continuity equation o entropy densitg:
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wheren is the shear viscosity coefficient agds the bulk viscosity coefficient. The ideal fluid is
recovered whem = =07[7, 8].

3. Equation of state

From the thermodynamics of the MIT bag model we have (sedlslétd5, 8]) the speed of
soundcs, given bycs? = 1/3, the bag constan#, given by % = 37%(Tg)*/30, which is chosen
to be /4 = 170MeV (Tg = 91 MeV) and the relations:

3/4
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(3.1)
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4. The non-linear wave equation

We follow the procedure described in [8] combining the emumst (2.1) and (2.2) and using
(3.1) to obtain the non-linear wave equation:

4
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for the dimensionless small perturbation in the energy itleids = o¢;, which comes from the
expansiore = €/gp =1+ o0& + 0%e,+ 03e3+ ... whereo is a small parameter [9] ang is the

energy density of the background. We have also the dimeles®matios] /sand{/s, which are
well studied in the literature [11, 12].
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5. Numerical results and discussion

For simplicity, we assume that when they are formed and alsughout the expansion the
tubes are uniform along the longitudinal direction and ¢fane 92¢;/9z> = 0 . Integrating (4.1)
with respect tar and setting the integration constant to zero we arrive afahmus cylindrical
Burgers equation [13] for the viscous fluid:

4
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The initial condition is given by a gaussian pulsejn
g =Ae "/ (5.2)

where the amplitudé\ < 1 and the approximate widtly are parameters which depend on the
dynamics of flux tube formation. For simplicity we shall nefe rq as the initial "radius" of the
tube. According to current estimates [12] the transverse sf the tubes is of the order of 1 fm
and thus in our calculationg = 0.1 fm andrg = 0.8 fm. We consider hot QGP at temperatures
To = 150MeV andTy = 500MeV treated as a viscous fluig (s= 0.08 and{ /s=0) [11, 12]. The
strong influence of viscosity can be seen most clearly in tmeparison between Fig. 2a) and 2b).
Viscosity damps the amplitude of the pulse by a factor tenfim!/Lincreasing the temperature of
the medium reduces the effect of viscosity as it can be seemthe factor 1T in (5.1). However
the comparison between Fig. 2b) and 2d) shows that this tieduis not very strong. The role
played by viscosity is also reduced when the initial radiaiameter of the tube goes fragm= 0.1

to 0.8 fm. This is easy to understand looking at (5.2) and thenatitiht hand side of (5.1). A
broader initial distribution generates smaller spati@dignts appearing in the viscosity term of
(5.1), which becomes smaller. If we also increase the Iratiaplitude fromA = 0.5 (Fig. 2) to
A= 0.8 (Fig. 3), the relevance of viscosity remains the same.

The introduction of viscosity in our calculations is what mtrongly changes them. Due
to dissipation, viscosity strongly damps and broadens ubeg during their expansion and they
are more easily mixed with the background fluid, loosing rtivgluence on final state particle
correlations. This is a robust conclusion of our numerigalgsis since it remains valid in all
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situations considered. Moreover viscosity prevents threugeation wave from breaking, as can
be seen comparing, for example, Fig. 3a) with 3b). Lookinthattime evolution of the peaks

of the pulses, we can have an idea of the velocity with whiay thropagate. Comparing the
left with right side of all figures we can see the velocity of thulses is only weakly changed by
viscosity. This velocity is defined by the sound velocity,igthin our approach is the same both
for ideal and viscous fluids. An important conclusion of owrkvis that viscosity strongly affects

the propagation of perturbations in the quark gluon plashhés conclusion was obtained with the
relativistic Navier-Stokes formalism and it would be imtsting to check if it remains valid in other
relativistic theories of viscosity.
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Figure2: Numerical solutions of Burgers equation for an ideal fluftjland for a viscous fluid (right) with
initial amplitudeA=0.5 .
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Figure3: Numerical solutions of Burgers equation for an ideal flugftjland for a viscous fluid (right) with
initial amplitudeA = 0.8.
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