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We study the radial expansion of cylindrical tubes in a hot QGP described by the equation of

state of the MIT bag model. These tubes are treated as perturbations in the energy density of the

system which is formed in heavy ion collisions at RHIC and LHC. We start from the equations

of viscous relativistic hydrodynamics in two spatial dimensions with cylindrical symmetry and

perform an expansion of these equations in a small parameter, conserving the nonlinearity of the

hydrodynamical formalism. The relativistic viscous fluid is studied with a relativistic Navier-

Stokes equation and the perturbations are governed by the Burgers equation. We estimate the

typical expansion time of the tubes.
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Figure 1: Tubular perturbations on a QGP background. The inner cylinder of radiusl represents a tube
of energy density higher than the background, shown as a cylindrical fireball of radiusL. The perturbation
expands radially.

1. Introduction

Theoretical works and also the analysis of experimental data on relativistic heavy ion collisions
suggest that in the early times of these collisions color fluxtubes are formed. Hydrodynamical stu-
dies [1, 2] indicate that some experimental features observed at RHIC and LHC can be understood
if it is assumed that these tubes survive the thermalizationstage and form “tubular” structures
that persist for some time during the hydrodynamical expansion in the thermalized quark-gluon
plasma (QGP). In [1, 2] it has been argued that these structures may have a common hydrodynamic
origin: the combined effect of longitudinal high energy density tubes (leftover from initial particle
collisions) and transverse expansion. Such tubular structures, which are nearly uniform in the
longitudinal direction, may be considered as cylindrical perturbations in the energy density upon
a continuous background as depicted in Fig. 1. The propagation of perturbations on the top of a
QGP background has been investigated in several works [3, 4,5, 6]. In most of these works [3, 4] a
linearized version of hydrodynamics is employed. We have tried to keep the nonlinear terms in the
equations which describe the evolution of the perturbations [5, 6]. This extends the validity of our
formalism to perturbations which are not so small. In this work we study how fast the tubes expand
in the viscous QGP. We write the relativistic viscous hydrodynamical equations for the propagation
of cylindrical perturbations along the radial direction (see Fig. 1). We obtain a non-linear wave
and solve it numerically to estimate the time needed for a tube of initial radius of the order of 1 fm
to grow and reach the typical radius of the system formed in heavy ion collisions, which is of the
order of 7 fm. If the tube expansion time were much shorter than the lifetime of the fireball, then
the tube would be very rapidly incorporated in the fireball and it would produce no visible effect in
the final state particle correlation measurements. It is well known that the relativistic version of the
Navier-Stokes equation does not constitute a causal theory. We strongly recommend the reading of
[7] to understand the subject in details. Besides these conceptual issues of stability and causality
we perform a Navier-Stokes approach without worrying aboutmicroscopic time scales, due to the
nonlinear expansion as seen in [8]. A future and more complete version of this work in relativistic
viscous hydrodynamics is in progress with the use of Müller-Israel-Stewart theory, which is a causal
theory [7]. Due to dissipation, viscosity damps the perturbations, which are then more easily mixed
with the background fluid, loosing their influence on final state particle correlations.
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2. Relativistic viscous Fluid Dynamics

A review text on relativistic viscous hydrodynamics is [7].Approximation schemes which
conserve nonlinearities can be found in [9] and their application to the study of nonlinear waves in
cold and warm nuclear matter can be found in [8, 10] and references therein. Throughout this work
we usec= 1, h̄= 1 and the Boltzmann constantkB = 1. We start our discussion considering two
coaxial cylinders. The inner and narrower cylinder represents the flux tube which is a perturbation
in energy densityε . The outer and larger cylinder represents the fireball with auniform energy
densityε0 (ε0 ≤ ε). We will study the expansion of the flux tube in the center of mass system of
the fireball. It is natural to choose spatial cylindrical coordinates(z, r,φ). The velocity four-vector
uν is defined asu0 = γ ,~u= γ~v, whereγ is the Lorentz factorγ = (1−v2)−1/2 and thusuνuν = 1.
The velocity field of matter is given by~v=~v(t, r,z,φ). Because of the azimuthal symmetry we do
not have components along theφ direction and consequently no terms involving∂/∂φ will survive
in what follows. The details of viscous hydrodynamics are given in [7, 8]. We shall use the basic
equations for this work, which are the relativistic versionof the Navier-Stokes equation:
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and the relativistic version of the continuity equation forthe entropy densitys:
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(2.2)

whereη is the shear viscosity coefficient andζ is the bulk viscosity coefficient. The ideal fluid is
recovered whenη = ζ = 0 [7, 8].

3. Equation of state

From the thermodynamics of the MIT bag model we have (see details in [5, 8]) the speed of
soundcs, given bycs

2 = 1/3, the bag constantB, given byB = 37π2(TB)
4/30, which is chosen

to beB
1/4 = 170MeV (TB = 91 MeV) and the relations:

s= s(ε) = 4
37
90

π2

[

30
37π2 (ε −B)

]3/4

, ε + p=
148
90

π2T4 , ~∇p=
1
3
~∇ε and

∂ p
∂ t

=
1
3

∂ε
∂ t
(3.1)
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4. The non-linear wave equation

We follow the procedure described in [8] combining the equations (2.1) and (2.2) and using
(3.1) to obtain the non-linear wave equation:
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for the dimensionless small perturbation in the energy density ε̂1 ≡ σε1, which comes from the
expansion̂ε = ε/ε0 = 1+σε1+σ2ε2+σ3ε3+ . . . whereσ is a small parameter [9] andε0 is the
energy density of the background. We have also the dimensionless ratiosη/s andζ/s, which are
well studied in the literature [11, 12].

5. Numerical results and discussion

For simplicity, we assume that when they are formed and also throughout the expansion the
tubes are uniform along the longitudinal direction and therefore∂ 2ε̂1/∂z2 = 0 . Integrating (4.1)
with respect tor and setting the integration constant to zero we arrive at thefamous cylindrical
Burgers equation [13] for the viscous fluid:
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The initial condition is given by a gaussian pulse inε̂1:

ε̂1 = Ae−r2/r2
0 (5.2)

where the amplitudeA < 1 and the approximate widthr0 are parameters which depend on the
dynamics of flux tube formation. For simplicity we shall refer to r0 as the initial "radius" of the
tube. According to current estimates [12] the transverse size of the tubes is of the order of 1 fm
and thus in our calculationsr0 = 0.1 f m andr0 = 0.8 f m. We consider hot QGP at temperatures
T0 = 150MeV andT0 = 500MeV treated as a viscous fluid (η/s= 0.08 andζ/s= 0) [11, 12]. The
strong influence of viscosity can be seen most clearly in the comparison between Fig. 2a) and 2b).
Viscosity damps the amplitude of the pulse by a factor ten in 1fm! Increasing the temperature of
the medium reduces the effect of viscosity as it can be seen from the factor 1/T0 in (5.1). However
the comparison between Fig. 2b) and 2d) shows that this reduction is not very strong. The role
played by viscosity is also reduced when the initial radius parameter of the tube goes fromr0 = 0.1
to 0.8 fm. This is easy to understand looking at (5.2) and then at the right hand side of (5.1). A
broader initial distribution generates smaller spatial gradients appearing in the viscosity term of
(5.1), which becomes smaller. If we also increase the initial amplitude fromA = 0.5 (Fig. 2) to
A= 0.8 (Fig. 3), the relevance of viscosity remains the same.

The introduction of viscosity in our calculations is what more strongly changes them. Due
to dissipation, viscosity strongly damps and broadens the tubes during their expansion and they
are more easily mixed with the background fluid, loosing their influence on final state particle
correlations. This is a robust conclusion of our numerical analysis since it remains valid in all
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situations considered. Moreover viscosity prevents the perturbation wave from breaking, as can
be seen comparing, for example, Fig. 3a) with 3b). Looking atthe time evolution of the peaks
of the pulses, we can have an idea of the velocity with which they propagate. Comparing the
left with right side of all figures we can see the velocity of the pulses is only weakly changed by
viscosity. This velocity is defined by the sound velocity, which in our approach is the same both
for ideal and viscous fluids. An important conclusion of our work is that viscosity strongly affects
the propagation of perturbations in the quark gluon plasma.This conclusion was obtained with the
relativistic Navier-Stokes formalism and it would be interesting to check if it remains valid in other
relativistic theories of viscosity.

(a) (b)

(c) (d)

Figure 2: Numerical solutions of Burgers equation for an ideal fluid (left) and for a viscous fluid (right) with
initial amplitudeA= 0.5 .
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Figure 3: Numerical solutions of Burgers equation for an ideal fluid (left) and for a viscous fluid (right) with
initial amplitudeA= 0.8.

[4] P. Staig and E. Shuryak, Phys. Rev. C84, 044912 (2011); Phys. Rev. C84, 034908 (2011);
arXiv:1106.3243.

[5] D. A. Fogaça, L. G. Ferreira Filho and F. S. Navarra, Phys.Rev. C81, 055211 (2010).

[6] D. A. Fogaca, F. S. Navarra and L. G. Ferreira Filho, Phys.Rev. D84, 054011 (2011).

[7] P. Romatschke, Int. J. Mod. Phys. E19, 1 (2010).

[8] D. A. Fogaça, F.S. Navarra and L. G. Ferreira Filho, Nucl.Phys. A887, 22 (2012).

[9] R. C. Davidson, “Methods in Nonlinear Plasma Theory”, Academic Press, New York an London,
1972, pages 20 and 21.

[10] D.A. Fogaça and F.S. Navarra, Phys. Lett. B639, 629 (2006); D.A. Fogaça and F.S. Navarra, Phys.
Lett. B 645, 408 (2007); D.A. Fogaça and F.S. Navarra, Nucl. Phys. A790, 619c (2007); Int. J. Mod.
Phys. E16, 3019 (2007); D.A. Fogaça, L. G. Ferreira Filho and F.S. Navarra, Nucl. Phys. A819, 150
(2009).

[11] See, for example, A.K. Chaudhuri, arXiv:1111.5713 [nucl-th] and also Victor Roy and A.K.
Chaudhuri, arXiv:1201.4230v1 [nucl-th].

[12] B. Schenke, P. Tribedy and R. Venugopalan, arXiv:1202.6646 [nucl-th].

[13] A. A. Mamun and P. K. Shukla, Europhys. Lett.87, 25001 (2009); A. A. Mamun and P. K. Shukla,
Europhys. Lett.94, 65002 (2011); B. Sahu, Bulg. J. Phys.38, 175 (2011).

6


