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1. Introduction

On aiming to review the status of simulation andleiling in RPCs it became apparent that
it would be necessary to state some of the bagisighas well: most modelling involves some
degree of approximation that can only be propeplyraciated if the underlying physics is clear.
Furthermore, most problems can only be exactly egtdhd by a combination of numerical
calculations for quantities such as the electraldfiand Monte Carlo simulations for the
stochastic behaviour of the detector under irrémiat which need a correct physical
understanding. On the other hand, the results df purely numerical calculations tend to be
hardly generalizable and its features quite opagoejn here we will privilege analytical
treatments whenever available, even if necessapityoximate.

A minimum of RPC technology must as well be statedimodelling must cover the relevant
technical realities of RPC construction.

Although there was a pedagogical concern in thisogtdion of this review, in the sense that
it may provide an introduction about the fundamisntd RPC physical modelling to students
entering the field, it is assumed that the reades & basic knowledge on the principles of
gaseous particle detectors, for which several geews are available (e.g. [1]-[4]).

Considerable attention was paid to the unificatibresults scattered over many publications
in a common coherent framework with unified notatibor obvious need of abbreviation, often
only the most relevant results were presented addations streamlined.

On section 2 are exposed the main technologicalifes that influence the RPC behaviour
and require physical modelling.

Section 3 concerns the polarization of the gas ,gaphkiding voltage drops in the various
technical elements and stochastic variations caogédide counting process.

A large Section 4 is devoted to the developmeravailanches in the swarm approximation.
The classical theory of swarms is reviewed and rapd. Closed analytical expressions were
derived for almost all quantities of interest retyag diffusive avalanches in the Townsend
regime (space-charge free) arising from singletedaeion pairs deposited anywhere within the
gas gap, along with the case of uniform ionizatiBeme results concerning the analytical
calculation of the space-charge field are given taedspace-charge effect is addressed, both in
the form of a numerical example solution and of eimg models. Finally the subject of
avalanche growth fluctuations is addressed, botthénTownsend and space-charge regimes,
with the help of the models previously mentioned.

Section 5 deals with the signal fluctuations agsim practice owing to the composition of
avalanche fluctuations with ionization statistid$iese include timing characteristics in the
Townsend and (briefly) space-charge regimes andhthege spectrum in the Townsend regime.

Section 6 reviews the theory of signal inductiod addresses the problem of the influence
of conductive materials.
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Section 7 concerns the signal transmission in stufli readout electrodes, specially
important for timing RPCs. The frequency spectrumtlee signals is discussed and the
multiconductor transmission line theory as appltedRPCs is exposed. The fundamental
characteristics are treated in the framework of eakscoupling approximation that may be
particularly adapted to describe RPCs.

Only the state-of-the-art was reviewed and no gitewas made to give the historical
perspective. The interested reader may follow #ference chain departing from the quoted
articles. Little attention was given to comparisaith measurements, as these are given in the
original articles.

1.1. Time scales

In modelling RPC behaviour it is worth noting invadce that there are phenomena
occurring in three very different time scales, stizat when modelling the faster ones, those
occurring at the slower time scales may be consttes stationary for all practical purposes.
Such time scales are:

a) the electrical relaxation time of the resistalectrodes on the order of milliseconds to
seconds for common materials;

b) the electrical relaxation time of the mediumistdgty layers (HV layers) and the drift
time of the avalanche ions, on the scale of micoseds;

c) the development time of avalanches and streaometfse scale of nanoseconds.
Throughout the text time-average values will beaded by bar. In principle all quantities
are position dependent, except the obvious one$, as applied voltages or when otherwise

stated.

2. Some topics of RPC technology

The defining feature of RPC detectors is that abvidne volumes where gas amplification
takes place are flat-shaped (“gas gaps”) and delthtiy at least one resistive plate (resistive
electrode). This plate limits the amount of chatbat is instantaneously available to be
transferred across the gap in case a spark deyelsp® significative amount of charge can be
conducted across the plate in the short time spapask development. Such stunted sparks are,
somewhat incorrectly, named “streamers” in RPC it@oingy.

Common resistive plate materials are phenolic-péeiaté and glass. There is research
on ceramic materials ([5], [6]) and low-resistiviglass [7] for high counting rate applications.

2.1. Arrangement of the electrodes

RPCs allow for a wide range of strategies for $tmg; high-voltage (HV) application and
signal collection (pickup). The simplest schemgicted in Fig. 1, comprises just one metallic

1 Commonly known as “bakelite”.
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plate and one resistive electrode (RE) in eledtdoatact with a metallic foil or plate. HV can
be applied on both electrodes, requiring HV ressstnd coupling capacitors to the amplifier,
or one side may be grounded, in which case thetoesand capacitor on that side may be
omitted.

HV+ .
Upper pickup electrode

(at +HV potential)

Gas gap

resistive electrode

Lower pickup electrode
(at —HV potential)

HV-

Fig. 1 — lllustration of the simplest RPC constioiet featuring just a single gas gap defined
by a resistive and a metallic electrode. If onectetele is to be grounded, then the
corresponding resistor and capacitor may be omitted
On the opposite extreme of complexity, the symroetnultigap construction allows to
accumulate in a central pickup electrode the ctsrénduced from many gas gaps. The
multigap [10] construction introduces one or moleckically floating REs in between the
galvanicaly connected ones, creating extra gas\gapsut additional galvanic connections.
It is clear that many variations may be introduakmuhg these general lines.

resistive electrode

Gas gap

HV+—\/\/\_ ‘ floating resistive electrode ‘
Gas gap

HV- _\/\/\_ resistive electrode
resistive electrode

Gas gap

\ floating resistive electrode \
Gas gap

resistive electrode

Fig. 2 — lllustration of the structure of the symiritemultigap construction. The electrically
floating electrodes allow extra gas gaps to beteckaithout additional electrical connections.

The metallic signal-pickup electrodes may be segeteim pads or strips, as needed for their
effective readout.

2.2. Detector polarization

There are two basic methods for applying the Hth®RES, depicted in Fig. 3.
One possibility is to apply the HV to the same rietelectrode (ME) that collects the
signal. This electrode must be in galvanic contattt the RE.
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Another possibility is to apply HV to the RE viaredium-resistivity layer (RL) with much
lower resistivity than the RE but much higher reegity than the ME. The idea is that for the
DC current (the “counting current”) the voltage pl@ong the RL will be small compared with
the drop in the RE, so for this purpose the RL banconsidered as behaving as a good
conductor, applying uniformly the HV to the RE aligerating the ME from this function.
However, for the fast signals generated in the gms the RL will behave as an insulator,
allowing the induced signal to be collected atekiernal MEs, which can be at any convenient
DC potential. The non-ideal behaviour of the RL dither function must be taken into
consideration in the modelling of the detector.

Hv Metallic HV & signal pickup electrode
— gnal pickup

- Galvanic contact

resistive electrode

HV Metallic signal pickup electrode
— gnal pickup

.,
— edium resistivity layer
resistive electrode Galvanic contact

Fig. 3 — Depiction of the two principal methodsataply HV to the resistive electrodes. Top:
direct galvanic contact with a metallic electrotiattalso collects the signal. Bottom: HV is

applied to a layer of medium resistivity, which iis galvanic contact with the resistive
electrodes.

3. Determination of the electric field in the gas gap

3.1. DC polarization

The current paths and voltage drops from the HVegrosupply and through the detector are
approximately depicted in Fig. 4. In here we wohsider the case of a multigap detector with
HV applied via a RL as a representative case. Hbhalations can be easily adapted to other
situations.

As far as the resistance of the RL will be muchdowhan the RE’s the current lines will
proceed inside the RL almost parallel to the péate then cross the RE almost perpendicularly.
An example of an exact numerical calculation isngh@n Fig. 5.

In terms of DC polarization, that is, consideringyothe time-average values of the relevant
quantities, we can state the following identitiesdach point on the chamber plane

g :E_EVRE_VRL
i=¢ (1)
Vee =pd
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where (all time-average quantitieg) is the current density across the gas q_aphe inflow of
particles crossing the detectoq, the total charge generated per partidleis the applied

voltage.\7RE is the voltage drop across the R_IT;L is the voltage drop along the R‘ifg is the

gap voltaged is the thickness of the RE agds the thickness of the gas gap. The numerical
factors are specific of the situation considered.

In these identities most quantities are positiopetelent, but largely independent point-to-
point, as far as the voltage drops occur mostlyp@edicular to the gas gap. The exception is

Vg, Which depends on the details on how the RL isneoted to the HV power supply, the
current converging in such points.

In general a numerical calculation will be needed\f;, but for simple situations useful
analytical solutions can de derived. In the appration of an infinitely long chamber in one
direction, with the HV fed to the RL along the eslgad a uniform average counting currént
a simple calculation shows that

X2

V., =V-0j=— 2
RL 12 )

being X is the distance from the edge andthe surface resistarioef the RL. An example can
be see in Fig. 5 b). Likewise, for a circular chamfed along the rim

r2

Vo =V-07]— 3

RL 17 3)
where r is the distance from the rim. These two situatisnggest that in general, for a
chamber fed along the rim of the R, will drop parabolically towards the centre, diffey
only the numerical factors in denominator.

For a rectangular chamber there is a Fourier ssalesion ([8] v.1l pp.140)

7 =V-073 X y] [<ar

Vo=V -0 Jn;}C(nW)Co{ (2nt+ 1)Ta:| CO% (2 ﬁb} {|y|<b/2

C= 64 (- 1)1+m @
m*(2n+1)(2m+ 1{(2na: 1y , (ZFTL-: 1)2)

! The surface resistance of a thin layer of matésidefined as the resistance that is measuredebatapposite
sides of a square. This is independent of thedfilee square and it is given by= g/h, beingp the resistivity of the
material andh its thickness. Sometimes this quantity is namedi&tance per square”.
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wherex andy are the distances from the centre of the chaméspectively along the sides with
lengtha andb. It can be numerically verified that for a squahamber the voltage drop in the
centre approaches (3) while for an elongated oapgtoaches (2).

Naturally the assumption of uniform is not exact. Even if the incoming particle floﬁ/ is

uniform, § =q(V,) andV, that is itself a function off via (1). In reality one needs a theory

of q(V,) (section 4.3) and a numerical calculation\&f (](X, y)) to derive self-consistent

local values for all quantities.

+

Vfloat

symmetry plane

=V/2

a)
VRL
+
surface resistance [J
‘ Vee ( J permitivity €
V/2 — volume conductivity 0
9 ( CD Ve G) I y Eg R volume resistivity p=1/ 0
z
_ e Vee/2 ( _
symmetry plane b)

Fig. 4 — a) Approximate representation of the aurggath across the detector, from the HV
power supply poles. The current sources representurrent density created in the gas gap

by the avalanches or other discharges that take ptathere. An electric fieIcEg appears in

the gas gap. Note that if the currents are the santmth gaps, by symmetry the average
voltage in the centre of the floating RE must\l_bfﬁSat =V/2. Legend: current lines — blue;

electric field lines in the gas gap red; for otitems see Fig. 3. b) Voltage drops across the
several elements of an RPC, based on Fig. 4.
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Fig. 5 — a) Example of a numerical calculation lué turrent and potential distribution on a
cross-section of the RL-RE ensemble assuming &dosbl symmetry perpendicular to the
plane of the image. The HV contact is on the uppér face of the RL. Note that the
isopotencial lines are not exactly parallel to thee of the RE. Parameters: RL surface
resistance/7=10 G2, RE resistivity .=10" @-cm injected current densitj=100 pA/cni.
Legend: current lines — blue; isopotential linesteps of 50 V — red. b) The electric potential
along the top and bottom faces of the RE, showipgrabolic voltage drop of 50V between
the edge and the center of the chamipar X and 200V across the RRAY, ).

3.2. Fluctuations of the polarization

On top of the steady (time-average) aspects dest@ove there will be fluctuations in
time of the gap electric field

RV
E,=—(-2 (5)
g

owing to the field generated by the charges thatatalanches will deposit over the REs. A
representation of this situation is shown in Fido6a simple RPC. As the perturbating electric

field AEQ also exists inside the RE there will be a coliextinotion of the conduction charges

in there that will eventually cancel the depositbdrge.
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Fig. 6 — Representation of the electric field gatedt by a charge placed on the interface
between the RE and the gas gap in a simple RPC.

The situation shown in Fig. 6 has been treatedytioally [11], with the result for the
perpendicular component of the perturbation field:

infinitely thick layers contribution from the metallic electrodes
- Ze—t/l'l © _yr i
AEQQ:ZN(;L&) I dk 3 kb( f(k3e™- & k)Zél)
(o + 22)2 2Ty (6)
E+E, de | &, .
= T, =—+—; (k) 0|7,
1 o 2 g ( ) [ 1 2]

Most of the expression deals with the spatial vima(including the omittedf, and f,) but
the most interesting aspect is the time dependdriee perturbation field decays exponentially
with a range of relaxation time constants boundrpynd 7,, as given in (6). For reasonable

values of the physical parameters, taking glagb@fRE material, these time constants will be
of the order of seconds. In some circumstancesaiy not be unreasonable to take identical
values for these parameters

T—E+§:r =T, (7)
go o

in which case the time behaviour becomes analtigatoof an RC circuit. (For equivalence with
RC models7, should be used.) In such RC models ([12], [13p #pace dependence is

introduced as a box-like “effective perturbatioeait avalanches falling onto this box charge
an RC circuit that represents this area and hawation outside the box.

It is clear that in RPC structures more complexntihown in Fig. 6 the calculation of the
perturbation will be more involved, eventually reéiqug a numerical approach. However the
phenomenon will be physically similar and the prtsmise can serve as a qualitative guide.

Having calculated the characteristics of each ehtamg perturbation one should address the

problem of the collective perturbation arising frat avalanches depositing charge in the
electrodes at random positions and times.
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Naturally, a possibility is to proceed by Monte IBaimulation, as shown in [11], Figure 2.
Fluctuations of magnitude abati% of the applied field are visible superposed oragerage
field drop close to 8% fop = 600Hz /cnf.

A nimbler, however less accurate, way to proceed mote that this is a “shot noise” process
for which there is a simple theoretical result: @aei’'s theorem. For thems value of the
instantaneous drop voltage across the RE thistsasyll3]

2 ®)

which turns out to be proportional to the squaret f the particle inflow. In herd is the

“effective perturbation area” anbll is the average number of avalanches that congritouthe
perturbation. An estimate for the aréa(A) can be determined from (6) [11] yielding
A=5.7mnf for the casg=0.3 mmandd=3 mm

At large values ofg the dependence aims( g/ onV, (to be discussed in section 5.3)

must be included in (8) for good agreement with ¢cheresponding MC simulation [13]. This
actually reduces the fluctuations with respechunperturbed case.

It should be noted that in this section we wereoigrg Vr.. The Vg, fluctuations haven't
been treated in the literature, but, owing to theprinciple, much lower resistivity of the RL
material, the time constants associated with theRRLcertainly much smaller than the RE’s.

3.3. Change of regime

When the RPC will go through a change of regime,ifistance a sudden change of the
particle inflow, there will be a transient imbalancf the DC polarization that will evolve in
time with the time constant (7). For short burstsradiation (compared withr) this may
simulate an effective lower resistivity of the RE].

4. Avalanches

Free “primary” electrons will appear in the gas gapher by direct ionization of the gas by
high-energy charged particles, creating electranpairs, or by emission from the cathodes.
The later can arise by photoelectric effect upoadiation by ultraviolet photons, or presumably
spontaneously, generating dark counts. No detailedy was made on the physical origin of
dark counts in RPCs.

Each of the primary electrons will drift under tivdfluence of the gap ﬁeldEg and

eventually will gain enough energy to collisionim® the gas molecules generating new
electron positive-ion pairs. The new electrons tineed will themselves undergo the same
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process, generating a cascade process known agresdind avalanche. As the drift speed of the
electrons is about a thousand times higher thanothie ions, these are left behind in a cloud
that is essentially static in the time frame of #walanche growth. These ions will eventually

drift in the opposite direction but at the pradticalues ong never ionize themselves.

Many secondary processes can take place in avasr(ske e.g. [14]-[16] and references
therein), the most relevant for RPCs being the &tiom of negative ions by electron capture if
the gas mixture has any electronegative comporiedeed RPCs and PPCare the only
gaseous detectors that can work in electroneggtigemixtures, which have a beneficial effect
in their stable operation, even if not well undeost

As the electrons and ions drift, they go throughdmam collisions that lead them astray of a
straight path. If one considers a cloud of paricleuch effect, called diffusion, causes the
widening of the cloud.

4.1. Average avalanche growth (swarm model)

If one considers a large number of particles (aatsw), described by a particle density
distribution, their collective behaviour can be désed in detail by an hydrodynamic model

(e.g.: [17]):

a) [1Av, =P = -, n'*_ZJ &boundary conditions
0 0

b) E=-0V, +E,

c) aate +00, = S+(a-n) j.0W, &initialconditions

> ) ©)
d) S+ 00, =S+a} O

on_ = - -
e) — +UL_=n] W
) 5 k- =17 J WV,

a{ et B}

f)j, =W,n,- D,0 na‘

where all quantities (to be described below) aretand position dependent.

In principle Eg (7,t) is the instantaneous applied field calculated fregs. (1), (5),
including eventual fluctuations. But it should beted that the time scales involved in these are
much longer than the phenomena here describedhanefdre Eg may well be considered as

constant within the electron and ion transit tiroals.

! parallel-Plate Chamber: the fully metallic versafriRPC.
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Equation (9) a) is just Poisson’s equation appliedhe net space charge densig,()
created respectively by the electron, positive mmd negative ion numerical densities,
n,(7,t), n, (F,t),n_(7t). The elementary charge qsp =1.60x 10" C. Such equation must

be accompanied by the relevant electrical boundangitions, which must include the resistive

materials. In most practical cases it is very fk#lat the relaxation times of those materials will

be much longer than the very short time scale @flaanche development (few ns) and the
resistive materials can be treated as pure digectn this case the avalanche calculations in
RPCs are essentially similar to any other detestor’

Eq. (9) b) states that the total electric fiekd felt by the avalanche is the sum of the space-
charge field and the applied field. If the formercomparable to the later the avalanche is said
to be under the influence of the “space-chargec&ffevhile if the former is much weaker than

the later therE = Eg (9) a) can be ignored and equations c) to edrhedndependent of each

other. This is the “small avalanche”, “proportiomaialanche” or “Townsend avalanche” limit,
so called because in average the total charge afedewill be proportional to the amount of
primary charge:

E=E,

on, = = _ S

m +00. =S+(a-7) . W,

aa% +00, =S+a W, small avalanche lim (10)

6I’li_ = = - ~
—=+00_=n].W
3t 0. =nj, W,

e

j,=W,n,- DO na‘

a={e i+ i-}

Equations (9) c) to e) are all similar and descifitne each point in space what are the
possible causes for a change in time of the densitf the different species (electron, positive
ion, negative ion). These must be complemented thétrelevant initial conditions.

The left hand side (Ihs) of these egs. is just stemdard matter conservation equation,

involving the total particle flow density for easpecies, given in (9) f). The parame\ﬁ'g is

the respective swarm drift velocity, following tlukrection of E (or against for negative
particles). The first term in the right hand sidesj of (9) f) is the drift particle flow densityd
the second term the diffusion particle flow densélso known as Fick’s law. The parameter

D, is the diffusion coefficient.
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The rhs of egs. (9) c) to e) expresses patrticlatione or destruction. The factdor —/7)’\/?e

in (9) c) is the swarm net ionization rate (ioniaas minus attachments per unit timend,
multiplied by the electron flow density, accounts the creation of new free electrons by
ionization and for their destruction by attachmientlectronegative mixtures, creating negative
ions. The spatial rate of ionization is the “fildwnsend coefficientti (ionizations per unit
electron swarm path) and the spatial rate of am@ch is the attachment coefficiemt
(attachments per unit electron swarm path). Foivanggas mixture, the magnitude of the

parametersa,n,VVa, D, is a function ot‘é‘ only. The correspondence of these quantities en th

remaining equations is straightforward, taking iatention the respective subscript labels.

The termSaccounts for “other” sources of ionization, todpecified later.

Rigorously, the diffusion process is slightly dri#at along the drift direction or along the
direction perpendicular to it, originating slightiyfferent diffusion coefficients in each of these
directions. This fine point is generally disregatde this type of calculations. Likewise, there is
some dissent in the literature as whether the sldfu flow density should be included in the
particle creation term. In here we have includechgerm, following [18], [19].

Owing to the very different electron and ion dvi#iiocities a considerable simplification can
be achieved with little error if one decouples #dfmost instantaneous creation of the ion cloud

by the electron avalanche from its posterior slaift dnd diffusion. Defining'I:e as the total

progression time of the electron avalanche (mwugt at the anode), (9) can then be simplified
to

progressionof the electronavalanche for t <~J

a) AV, =P = -q. R0 7N-0" 1 ¢ houndary condition:
€O EO

b) E=-0V, +E,

6I’le + El D# _ S+ _ - l]/’v
a) ot Je - (a ,7) Je e (11)

0 -
b) 2 = S+ I

ot

on_ N

02 = ], W,

1 In here the term “swarm” applied to a certain ditpimplies that this is the local average of thisantity over
the ensemble of all relevant particles that arsgnkin this location. For instance, the swarmtsdecvelocity at a
point in space and time is the spatial averagbe#tlocity of all electrons in the immediate vigjrof this point.
DISCUSS the connection between swarm approximatidir@al electrons.
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ions'driftfort> T ,

a) OV, = —Pee = -q, M, ~ N~ (T &boundary condition:s
80 EO

b) E=-0V, +E,

L - 12
)% +01, =0, withn. (0=, € 7,) (2

)%=+ 010 =0, withn_(,00=n_, ¢ T.)

€) . =W,n,- D[n,

a={i+i3

where ne(fe) denotes the electron density after the progressfothe electron avalanche,

typically lying on the surface of the cathode.hétanode is metallic this is totally annulled by
the image charge, but if the anode is resistivglitperturb the gap field, as discussed in section
3.2.

En rigueur, only in the diffusionless limit, whemetavalanche is point-like, it is possible to

define sharply the avalanche’s progression timeouthe anode. The progression tiﬁﬁg in

(11) should be understood as a time at which taetrein current becomes negligible, as it is
never mathematically null (next section).
Is it worth noting that in this approximation arfdS can be neglected, which is often the

case,n,, and n_, are identically distributed in space and the rwt charge density
qp+(r1+ - n_), which governs the space-charge effect, depenlysoon(a —1) , likewise the

electrons. Therefore only the combinatidiar —77) matters for the development of the
avalanche.

4.2. Small avalanches

The small avalanche approximation was defined @) @s the limit at which the electric
field caused by the avalanches’ own space-chargegfigible when compared to the applied
field. In this limit considerable progress can e analytically.

Very good expositions can be found in the literatuor instance Raether [26] gives all
details on the case when diffusion is neglectedctMmnore complicated situations, involving
detachment and metastable atoms are treated in huT]this work focuses on a somewhat
different point of view. As diffusion is a deternaim process in RPCs, actually ruling the very
important space-charge effect via the avalanchethwith here we will treat both the
diffusionless and diffusive cases for an arbitqaoynt of release of a single primary electron-ion
pair and the case of an uniform ionization lingha absence of diffusion. Other situations can
be treated by superposition.
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In this section we will use the geometry and quistidefined in Fig. 7. The avalanche starts
at the origin of the (cylindrical) coordinates gmbgresses towards the anode at a distayce

V4
g |% ’
P

Fig. 7 — Definition of geometry, coordinate systand some quantities used in this section.

The gap width isg .

m
|

o
-

4_
<!
i

In the small avalanche limit the coefficients aomstant and the equations (10) are linear.
Taking additionally S=0, reasonably simple and useful solutions can beimdd. These
conditions can be somewhat relaxed at the expdmeerm@ opaque expressions [27].

From the linearity of the equations it follows thte evolution of an arbitrary initial

distribution n, (,0) can be calculated by convolution:

n(ft)= [ n(F.0n,G-Ft)}dr : (13)
all space a={e it}
wheren,(T,t) is the impulse response for each relevant spaciédor each initial electron-ion

pair positiont . Owing to the presence of the electrodes, the isgpresponse is dependent on
the position the initial electron.
Combining (10) and (11) one gets:

a) aUe + |_j D]e - a* j.e me
ot = 2
on - o rogression of the electronavalanch
b) 0|+,0 - aje wve prog >
ot N fort<T,
on_,_ - =~
C)——= w
or 1M
d)agtz +0 DL =0, fort >'|=e, with n, (F,0)=n,, ¢ -|~; ) ions'drift (14)
€ L, =Wn,-D0n|

where, for compactness, we will ugég —-77) = a . The main equation to be solved is (14) a).

Oncen, is known it is simple to calculate the ion dersiti
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ANesonn o (1
o) —( ”j [L0d, o +(0j5( 2 (15)

where forn, , we added an extra ion at the origin, the paithefinitial electron. Taking into
account the presence of the anode, the positivenagdtive ions distribution generated by the
electron avalanche and that will flow later to thespectively, cathode and anode are

N.(F,0)=n.,(t=T,) (16)

The flow of ions to the electrodes is calculatedthg convolution (13) of (16) with the
impulse solution of (14) d)iy, , which is a particular case of the solution of)(a}

n.(ft)= [ n.(F.0h.¢-ri)dr (17)

all space

The total number of generated ions is

N, = [ .(R0)dv= | [ 1, (10)2p do d: (18)

gap 0-g0

which should agree with the total flow of partictesough the electrode planes

N, = [ Ju(Zar) d‘{

a={e i} (19)

l>|i+ =

J2(zo— g 9 dt

O 38

where |, , is the total particle flow in the direction:

o= [ 7.0, 27pdp
0

a={e it}

The currents and total charges induced in the extalectrodes by the different particles
will be

~ ZO .
La(ind) = yJ. ia mVadv = y J. Ja zdZ
gap %59

(20)

Qa(ind) = J.la(ind) dt
0 a={e it}
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where ) is an electrical induction factor with units ofatbe per length defined in section 6.1,
(96), (97}.

4.2.1.Diffusionless limit

Very simple and useful expressions can be deriwedttfe case when diffusion can be
neglected D, =0 in (14) e)). In this case the diffusionless salntof (14) a) is

n, =e""*'5(z- W1 (21)

where d(X) is Dirac’s delta function. This represents a ptike avalanche that progresses in
the gap with velocity\\, along z, containing at =0 a single electron az = 0. Therefore, the
radial coordinate is not necessary and it was erhitThe vanishing of the avalanche when it
encounters the anode at= z, is not part of this solution and must be takem iatcount

externally.
Of course, in the diffusionless limit the partilew density is only in thez direction and
given by

j.=].,=W.n 22

JaT laz a"a‘a={eii} (22)
The number of electrons in the avalanche is (19):

N, =€"% (23)

which, in the diffusionless limit, is equal to thetal avalanche charge when it touches the
anode:j n(t=z/W) dv=e’®.
gap
Following (20), the current and charge inducedheyelectrons is

a' Wit )

le(ind) = V(/Ve e( 0(20 _Vvet) (24)
e”%-1
Qe(ind) =y p =¥ Nging (25)

where 8(x) = J._X d(X) dX is the Heaviside function and we have definedqthantity Ne(ing)

(number of created electroms/) for later use.
The ion distributions created in the gap by theypeesing electron avalanche are, following
(15)

! For metallic anode and cathoge= qp+ /g
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.00 :(;’je"*Z[H(Z)-H(Wt— 3]{35( 2 (26)
which results (16) in the ion distribution st T, = z,/ W,
gi(F,O):[ZJ &*[6(2)-6( 2~ %)]{;jd(z) @)

and the corresponding total number of generatesl i®(iL8)

a 1
N, = n Negingy + 0 (28)

The number of generated particles (including thengary pair) of each species respect the
properties (the first being an obvious necessity)

Ni. =N, = N_=0

(29)
Nit = N + N+ N =2(ar Ny +1)

Note that in the absence of attachmept=(0) the second line reduces M, , =2N,, which is

a necessary property as well.
The impulse solutions of (14) d) are, respectively

hi =0(z- Wib (30)

which upon convolution (13) with (27) yield theftirng ion charge densities

which is are just clipped drifting exponentials.ofsl thatW, <0, W_>0.) The presence of

I
the electrodes is not contained in this solution.
Defining the ionic particle flow densities as irRjdt can be verified that (18) agrees with
(29).
Applying (20), the induced current densities are

Lisnay = WV [1"'%(90*20 - ])

a

{Hg*(ea*(zo—mm —1)}9(70— g+ W )}9( g WY (32)

Liznay = WV ,7* (ea*(zo_w_t) - 1)‘9( z-W. ')

a

© Copyright owned by the author(s) under the ternmthieiCreative Commons Attribution-NonCommercial-®i#dike Licence. http://pos.sissa.it



PROCEEDINGS

OF SCIENCE

A representation of these currents can be seeigir8F

2&-09'\\

%000
1.5e-09
1e-09]
He-10

Kind) (A)

0 4607 aeint“tzém 16206 Ze06
=

Fig. 8 — Representation of the positive ions currand the total ionic current in the
diffusionless case for parametersr =40mm*, 7=10mm?, W, =130 mm/u ¢,
W, =03mm/us Z,=0.35mm, g=0.5mm, y= qp+ / g. All subsequent figures of this
section will be represented with these parameters.

Substitutingz, = g= d in (32) one recovers egs. 2.25 and 2.26 of [26].

The ionic induced charges are (20)

Qina) = V[%((a*g_l) Neing) + %)"’ g 3}

(33)
Qi—(ind) = V%( Negingy = %)
The total induced charge can be written as
_ .\
Qiinty = Quting) + Quv(ingy * Qiingg =¥ 5 (34)

=Yg +099e(ind)

The first line expresses the necessary propertytkieatotal induced charge is proportional to
half of the total number of generated particlesqéwhe number of electrons), just reflecting the
fact that particles are produced in pairs and thatfull drift of each pair induces the charge
equivalent to a single elementary charge. The gskclime is specific of Townsend

multiplication: for large gas gains the electroffizst) induced charge is a fixed fraction of the

total induced charg€;,q,/ Qyinsy =g . Note that for a chamber delimited by metallic

electrodes (a PPQ)g = q -

The expressions presented so far are for a singteapy electron-ion pair: the impulse
solution. Other situations can be calculated byegupsition, on account of the linearity of the
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base equations. As an example we will calculataifoum ionization across the gap, totalling
one electron-ion pair. In this case any impulsentjtya X (z,) will correspond to

19
X(%)==] X(3z) dz (35)
9%
The result for the induced currents is
Ie(ind) = W, J _Vvetea*wete( g- Wet)
_yVVi+|:a a'g Wt :|
[y =2 — (e 9 — ") - -W,t) |16(g—-W, 36
i+(ind) ag a( ) ’7(9 ) (g W') (36)

a’(9-W-9)
| inet) :y\NiJ7|:e . _(g _Vvi-t)_l:|‘9(g_W—')

a'g a

reproducing eqgs. 2.31 and 2.35 of [26], while thé&rea slight discrepancy on 2.34. A
representation of the currents’ development caseea in Fig. 9, along with a comparison with
(24) and (32).

2 5e 061

le(nd) (A) 4 5e 06 {ind) {(A)

1e-06-

se.07 ] J

0 {e09 309 5009 2e-07 6e-07 1e-061.4e-06
Ks) is)

- 883%%

Fig. 9 — Representation of the induced electroteft)(and total ionic (right) currents for
uniform ionization across the gap and for a singlkectron avalanche starting at

z,= In((e"*g -1)/@ g)) /&’ which results in the same total amount of eleétramduced

charge. While the electronic currents are quitdedéit in shape, the ionic currents are
undistinguishable.

The corresponding induced charges are
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_ €9 -ag-1_
Qe(ind) =y a*zg - yNe(ind)
1 a  \g
Qi +ina) y{ (g a jNe( d) (a j2:| (37)

Q. . =yl 1
i=(i - * Ne ind) ~ ~
i—(ind) y a ( (ind) 2 gj

It is clear that relations that don’t depend explicon z,, such as (29) and (34), are not

changed by the distribution of the primary chargied remain true.

Comparison between (37) and (24), (33) shows thatgh gas gain the ratio between the
induced charge (electronic or ionic) generated feosingle electron released from the cathode
and the induced charge generated from the samerdrabprimary charge distributed evenly

across the gap approach@sy .

4.2.2. Drift and diffusion

1.1.1.1 Electrons
We start by noticing that the function

2
exp(— ik ]GXP(—(Z_Vt) ]
_ , 4D t 4Dt 38
n,(7.t) = exp(a'W,t) 4rD t JAnmD t <

v=W,+a’ D,
is a solution of the electron’s equation (14) &][and thatltirrg n,=o(r), o(r) being the

tridimensional Dirac delta function. That ig, describes the electronic particle density of an
elementary avalanche issuing from a single electahe origin. The total number of particles

contained in the avalanche grows exponentiallyinre tas exp(a'*Wet), moves with velocity

v=W,+a D, and spreads gaussianly with varian@Dt (so FWHM =2.36/2D.t).
Essentially this is what is shown in Fig. 15 a) flee proportional regiob<3 ns as the initial
width was made extremely small. Note that the swelentron velocityv is slightly larger than
the average electrons physical velodty. This is possible becausedenotes the movement of

a mathematical point (the point of highest swarmsitg), which is not bound by physical
constraints.

Similar impulse responses apply to egs. (14) di wie obvious exchange of labelling and
settinga’ =0.

Often we will need (38) integrated over the planeafiel to the electrodes:
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exp{—( _ t)z]
n(z9=[n(p, z92p d=exfa’ W} WD: (39)

The electrons’ flow density is in this case given(b4) e),

I =n RSB g e o

where€&,, & are the unit vectors in the direction of each dumate axis and/,(T,t) is the local
velocity of the electron swarm. (Not to be confuseith the constantv defined above —
V,(F,t) results from the usual definition of flow densify=nv.) The total flow in thez
direction (integrated radially) is

z+(W-a D)t
2t

je,z = De(zv t) = IL( Z Dv\é( 4 ) (41)

wherev,(z t) = Y, (T, t) CE, is the swarm velocity in the direction.

Note that for negativez, particularly in the first instants of the avalae¢cwhen the density
gradients are stronger, there can be a flow oftreles towards the cathodg,(, <0) in some
regions of the avalanche. Under the formulatiothef hydrodynamic model (9) these negative

flows will generate “negative particles” that arévimusly unphysical. In here these are
integrated in, so there is an implicit, althoughtd, approximation.

The total number of electronldl, generated by the elementary avalanche (38) iewilg
(29):

N, =¢'? (42)

In this aspect there is no difference betweendhes and the diffusionless case discussed in the
previous section.

Following (20) and making the slight approximatioh disregarding the presence of the
cathode @ = =), the electronic induced current and charge isrgivy

— — Vt 2
e ontonsfol e of 358 (2 o 5o

e

N -1
Qe(ind) =y ? =¥ Nging (44)
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It is quite remarkable that the calculation yieddtotal electronic induced charge that is the
same as in the diffusionless case (24). A repratentof both (24) and (43) is shown in
Fig. 10.

5e-07
ey 0

Ze-07 -
1e-07

u -1-|----|-t¥-]-|----|----|
5

Fig. 10 — Electronic induced current with and withdiffusion (D, — O) calculated for the

same parameters as in Fig. 15 abd=7.08x 10 mnf /us. The corresponding induced
charge is the same for both cases..

Concerning the treatment of other initial distribas, for instance, if the initial electron
distribution is Gaussian with variane® , centred in the origin and containig, electrons, it
results from (13) and (38):

2 2
exD(_ﬂz;z j
n(7,0)= Ng—>—5—~

(2m2 )3/2

exp(—'o2 *(z- ‘ét)z]

2(2Dt+0?)
(272(2Dt +0%))™

(45)

n, (F.t) = N, exp(a W,1)

which is gaussian with variance equal to the sumaoifance of the initial distribution with the
variance resulting from diffusion.

1.1.1.2 lons
The ion distribution generated during the avalarfoews (15), which explicitly becomes
a\ z+(W-a' D)t 1
Lol )= rF,t') e _dt'+| |d(z 46
.o(71) Ml&( 0 0|2 (46)

Apart from the initial electron-ion pair, both dibutions follow the same spatial-temporal
development and differ only by the relative factr /7. This integral cannot be evaluated
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analytically. A numerical example is presented ig. E1, illustrating the fact that the correct
superimposition of the electron and ion distribnsipfundamental for the space-charge effect,
depends on the correct modelling of diffusion

17

5 x 10 |
—n, __10°
oo Ar n ¢ 10" ]
13 i+,0 E 10
o
23 + 10° '
= < 10"
S ol 1.6 1.8 2
§ z (mm)
81t ]
0 Il | L Il J
1.4 1.5 1.6 1.7 1.8 1.9 2
z (mm)

Fig. 11 — Electron and net (positive-negative) demsity calculated according to (38) and (46)
(numerically) along the central line of the avalamdp=0) for the parameters of Fig. 15,

t=3 ns As in this picture the avalanche proceeds fraghtrto left it can be directly compared

with Fig. 15. The inset shows that the ion densitgr the central line has a relatively limited
range, as diffusion spreads the charge as thermfagroceeds.

In the diffusive case the electron avalanche psxjoa time 'fe must be taken

mathematically as infinite (in practice only a fekectron transit times) because (38) is never
mathematically null for finite time. The ion didittions remaining in the gas gap after the
avalanche is over are

gi(T,O):(ZJ 1[6(2)-6(z- %)]{clJa(r)

1

f =%{(1—u)a* (v + zEj_Z} ex;{%%*(r(u— VoA ¥ Lp)} )

rr
u=a D, /W, r={p°+7

whose z profile after radial integration is just
a) ., 1
0.(20) =(”je 0(9-6( = ;)]{Oja( y “8)

and the corresponding total number of generateslison

a 1
N, = n Ne(ing) + 0 (49)
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exactly the same as in the diffusionless case. Natealthough the electron swarm (38) has a
Gaussian radial profile the ions’ (47) hasn't.

The impulse solutions of (14) d) are the travelldmgl expanding Gaussians:

o’ _(Z_Wt t)2
PPN
()=

47D, .t \/47TDi 5t °0)
exp(_(z_ tt)]
t)=Th (f.t)27pdp = .t (51)
h.(z (T 2Dt

To calculate the distribution of drifting ions osbould convolve (47) with (50) over all
space, which can be done only numerically. In Agipen it is justified that, owing to the
Gaussian radial profile of both (40) and (50), rif the end we are interested only in the
longitudinal distributions (integrated radially) @may instead convolve only the longitudinal
distributions (48) and (51), yielding

S

D

C
(0 Jme
a=da, b=a*(a*D,t—Wi)t c=2( B9
d=(22'D,-W,)t e=d- g

(52)

The corresponding ion flow density is given by
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129=4 .- 0.9 229 -en( 29

p(( df]_ {( 2 ﬂ_
c? c? (53)
2D, T explaz+b)

. (W.e+20,(z-w)) exr{—(z';t)z]
{0 —

of which a representation is shown in Fig. 12. Nbtg the presence of the electrodes is not part

of this solution.

0 —
Bz ) (limas)  5et10]

-le+114

-1.5e+11

00002 O 0.00010.00020.00030.00040.00050.0006
z{m)

Fig. 12 — Representation of the positive (red lreasd negative (blue lines) ion densities for
t=0 ns (solid lines) and t=300 ns (dashed linese Positive ions count as negative flow, as
the positive z direction lies towards the anodeteNbat the electrodes are not incorporated in

these solutions, so the swarms flow indefinitely.

The induced ion currents are
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Lisgin) =V\Ni¢[( f.(z,abcd- f(g-gabe (»
-(f.(%.ab,ce- {(g- gabce)

Aol ()

-D.[Nn.(z,9-n.(3- 9]

(a)1 x+d
ft(x,a,b,c,d)-{”)z[e(p(ax+b) eri( . j+

+exp(b+1 ac- ad) erf(—1 ac- Xt d)
4 2 c

(54)

of which a representation is shown in Fig. 13

25e-09
2e 09
1.5 09
1e-09
he-10

Bnd) (A)

5e 07 1606 1_“&5416 2606 2506 3e06
=

Fig. 13 — Representation of the total ionic cursewith and without diffusion. The same
charge is induced in both casd®, =5.0x 10° mnf /us.

Remarkably, the ionic induced charges calculatest §20) and (54) are exactly the same as
for the diffusionless case (33), equally holding noperties (34).

4.2.3. Space-charge field

Neglecting the presence of the electrodes (close dpatially small avalanche distant from
the electrodes) the space-charge field can be =ippaitely calculated for the small avalanche
approximation. However, when the field becomesifigative relatively to the applied field the
small avalanche approximation ceases to be valid.

It is clear that the point-like avalanche approxiora presented in section 4.2.1 doesn'’t
produce any realistic field, so only the diffusbase can be considered.

Owing to its spherical symmetry, the field creatgdhe electronic part of a small avalanche
(38) can be straightforwardly calculated by appia@aof Gauss’ law of electrostatics, yielding
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a'W, t
g™

r
P f -
=yt | (2\/0_,;} r JmD¢t
r=4p0°+(z-wt)’

pointing towards the centre of the electron clotugoa= O, z = vt. Naturally, superimposition

(55)

will apply. This is however limited to the electrawarm under the small avalanche limit. As
soon as there will be some space-charge effecielibetron distribution loses its spherical
symmetry and (55) will become inaccurate. The iodistribution (46) is not spherically

symmetric in any case.

r{m)
5¢-05 00001 000015 0 0002 0.000250 0003

E{V/m), ne fau) -200007

Fig. 14 — Representation of the radial electritdfi®5) generated by the electron swarm (red
line). For comparison, the electron charge der(8®y is represented in blue.

It is more general to consider only rotational syetmy, which is preserved in any case of the
swarm approximation. A ring of radiua centred at the origin and containing the constant
linear charge densityl creates the potential and field ([8] v.I pp. 176)

Aa K(k
e
0 1
~ Aa| 1 (az‘,Oz"’Zz) E(K . zE(K) .
E(p,z 8=22| 2| K(K)- 2E9
(p.2.8) TE,| 21,0 (k) rlz(l—kz) e"+r13(1—k2)§ (568)

k:2\/r£’ [ = ’(a+p)2+22
1
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where K(k) and E(k) are the complete elliptic integrals of the firsdasecond kinds. Over
the axis (56) simplifies to a well known result

A 1

V023" 26y \J(z1 a)* +1

(57)

= _ A az .
E(O’Z’ a)_ 280 (22 + a2)3/2

For a rotationally symmetric volume charge distii h(p0, z) the superposition formula
will be just the convolution

Y(o9)= | Ho, p BEEE) g gy ©8)

All space

with a similar formula for the field.
In  particular, for a radially Gaussian volume  clearg distribution

h=A(z1) e’ (eo) /(2770'2(t)) , such as the integrand of (46), the radial contitin to the

axial field can be integrated analytically

E,.(0,z,t)= TA(Z’,t) u(z- 2 ) dz

erf EM -1]ex 1'272 Z (59)
t 1 2 ot) 20°(t) 2
= +
0= 2o () o ()]

The remainder of the calculation must be performaderically.

4.3. Space-charge effect

The space-charge field causes two effects: reductiche avalanche gain because for the
bulk of the swarm the electric field is reducedhaigéspect to the applied field and promotion of
the appearance of runaway self-sustained dischaajiesd “streamers”. The former effect is
observable in a number of ways (see, for instg2€3 section 3.7, [28], [29]):

- for fixed irradiation and geometry the growth ottinduced charge with the
applied voltage deviates from the exponential behav(25) and becomes
almost linear;

- the ratio of electronic to total induced chargedmee larger than the ratio given
in (34) for Townsend avalanches;
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-the charge spectrum changes its shape, with sugpnesof the larger
avalanches.

4.3.1.Numerical calculations

An example of a calculation of the electron avatenperformed by finite elements for an
axially symmetric avalanche is shown in Fig. 15eTdas (pure tetrafluorethane) parameters

were taken from [20] and the applied fieldi§ = 60kV / cm. Attachment is small in this gas

and it was ignored. Th&term was also taken to be zero.

A tiny electron swarm containing the charge of @bhectron is started very close to the
cathode with a Gaussian spatial density distrimutend then drifts downwards while
multiplying and growing in size by diffusion. An riocloud trails behind, with partial
superimposition. For development times up to Zhesvelocity is constant and the shape of the
electron’s isodensity lines is circular, while afteis time there is an apparent acceleration and
distortion of the electron swarm owing to the spelcarge effect. This can be verified in Fig. 15
b) top left panel, which shows that up to 3 nseleetric field is essentially equal to the applied
field, while for 5 ns there is a quite strong distm. At this time most of the ion swarm is
under the influence of a reduced electric fielde (8hectrons are “pushed back” by the positive
ions) and it can be seen (same figure, rhs pahat)the initial exponential current growth is
thwarted. This self-control of the avalanche chafigethe space-charge effect is a fundamental
feature of the avalanche-mode RPC operation (214-[R5]).

It is clear that the full 3D solution of (11) rames extremely heavy numerical machinery.

Naturally, avalanches can as well be modelled k¢ muicroscopic Monte-Carlo methods,
following all details of the movement of every peld. However, for large avalanches
containing up to 10charged particles this is hardly a practical psitan.

An interesting combination of both methods is thethod of “clouds”, where small parts of
the avalanche are propagated over a short timef@teping the analytical solutions for small
avalanches subject to the local electric field. Tibll is then recalculated after each step and
the process re-iterated. One advantage of thisadeththat the avalanche gain fluctuations can
be incorporated in the propagation of the sub-amvdles. It was successfully applied to the
calculation of axially symmetric avalanches [24].
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b)
Fig. 15 - Representation of the development ofxaallg symmetric avalanche following the
hydrodynamic approach, (11). a) Cross-section h&f tharge distributions around the
symmetry axis. The gray contour lines representpilieentiles of the electron distribution
(isodensity lines) while the colour map represéhes percentiles of the density of ions. The
yellow line represents the electron’s drift velgcifThe avalanche was started from the
cathode (z=2 mm). Note that for times up to 3nswvtlecity is constant and the shape of the
electron’s isodensity lines is invariable, whiléeafthis time there is an apparent acceleration
and distortion of the swarm. b) — Top left pandectic field along the centre of the
avalanche after 3ns (blue line) and 5 ns (gree).liBottom left panel: corresponding electron
(solid line) and ion (dashed line) numerical deesitRight panel: induced current, showing
the initial exponential growth and the onset ofcgpaharge effect after 3 ns.
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4.3.2.Analytical models

Besides numerical calculations, there were attegpparameterize the space-charge effect
in some compact formula that might reproduce thmedrmental data, typically modifying (14)
a) by the introduction of a charge-dependent &ffec first Townsend coefficient

aeff = aeff(Ne)'

Before going into details we need to formulate @@)in simplified way. Neglecting
diffusion the avalanche is point-like (21). Insegtialreadya,, , volume integration (18) of
both members of (14) a) yields

dN (1) _

dt aeffWeNe( t) t< %/ V\é (60)

Of course, att =7,/ W, the avalanche reaches the anode and stops. Tiagieg may be
restated in terms of the avalanche progressiortHeas)
dN,(2
dz
Neglecting attachment, the total induced chargel Wwé, after (29) and (34), just
Qiinay = Qeingy + Qie(ingy =V IN,, while Q) and Q,,4y depend on the specific space-

charge models.

= a,,N(2) 2< 3 (61)

In the following, N denotes the indicative charge scale at which rdnesition from the

e, sat

Townsend to the space-charge regime occurs.

Raether’s formulation ([26] section 3.7) is

a,=a N,< N

€ sal

ay =a(1-BIn(N,/ N, ,)) N> N, (62)

It is apparent that the multiplication cease8ifh ( N,/ N, sat) =1, so the solution converges to

the asymptotic valud, ...,= N, .£"®. The solution is
N, = N, €* <7, =IN(N, ./ N,)/ a
_ o Ba(zzy,) (63)
Ne = Ne,satexp|:18T:| z> %at

The two segments match to the first derivative.

Aielli’s formulation [28] amounts to
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ay =a(1-N./N, ) (64)

and the solution of (61) is then integrated todyiel

_ 1+ (=%
Ne - NO + Ne’ Satln (WJ (65)
where z, is a free parameter. The asymptotic behaviounésaf: N, L N, @ Z+ Cte.
The formulation of [22], which is here slightly esquded, is
a, a (66)

! :1+(Ne/Nesat)m

with the solution

N, = N oo w( Ke"™), K= (N, / No,.)" (67)

wherew(X) is Lambert’s function [30] defined bg"”w( X = x. The asymptotic behaviour is

= N, M z+ ct, linear form=1 as approximately observed experimentally.

e
Ne>> Na sat

A comparison between the more exact numerical @mpr@and the analytical ones is still
missing.

4.4, Avalanche fluctuations

The avalanche growth is not fully deterministicrtailarly on the initial stages of the
avalanche when the number of electrons is lower #imut one hundred (see for instance [31]
Figure 6). After this stage the avalanche growtbcpeds deterministically, essentially as
described in sections 4.2 and 4.3. As a resultfitta avalanche charge and the other related
guantities will fluctuate around the average valgieen in these sections. As we will need later
to consider other sources of fluctuations, willdathis as the stochastic process

As the stochastic behaviour is concentrated irvéng first stages of the avalanche, when the
avalanche charge is small, it is useful to desdfilgestochastic variations as a fictious random

initial charge v, with probability distribution function (PDFP, (%v,) and unit average value
that will then multiply deterministically accordingp a deterministic functionV, (%),

reaching a final average valyé,. In these conditions the PDF of, is given by [25]
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o,
o,

(68)

P (e) = P (o)

No=No(Ne)

where &V, (#V,) is the inverse function afv,,(9V,) . Naturally, all these functions and PDFs are

also function of other problem variables, suchuasl, 7, etc. These concepts are illustrated in
Fig. 16.

A

log (ﬁ\f )
e
Space-charge regime

Charge saturation |
level (Necx) /A%
Timing threshold [

I N e Exponential growth
(Townsend avalanche)

(7)

Deterministic behaviour N, (Wo)
Wﬂoo(a- Stochastic behavi
P(Wo) ochastic behaviour

Progression distance or time

v

Fig. 16 — lllustration of the concepts subjacen{@8). The avalanche charg&fe(z) (blue

line) has initially an erratic (stochastic) behawiountil it reaches a level of about
100 electrons. Then the behaviour is largely detastic, starting by an exponential growth

region (small avalanche). At some char(dklelsat) the space-charge regime sets in and there

is a departure from exponential growth. The stoihasrt can be taken into consideration by
exponential back-extrapolation from the exponergraiwth region (red lines), generating the

fictious distribution P(WO) , which is deterministically propagated in time e function
WE(WO). If charge is measured after a certain developriemgth it will be visible the
charge distribution P(ﬂ\fe). If the development time is measured at a certdiarge

threshold level, it will be produced the time distition P(T).

It seems to be a reasonable approximation [25k&far V() average relations of the
kind (63). However, the need to calculate the deive in (68) restricts its use to models on
which the large-charge behaviour dependsign Of the models described in section 4.3 only

(67) satisfies this property. However in [25] thesedels were modified in order to allow their
use in this context [32] and it was found thao@llhem described similarly the available data.
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4.4.1.Small avalanches
For the calculation ofP,(#,) one may consider the stochastic evolution of allsma

avalanche, progressing by a distarmewhich is generally accepted as being given byldrégy
avalanche theory. For sufficiently larg®, (approx. &%, 2100) the Laplace transform of

P, (W) , M, (We), also called the moment-generating function (MGd=jiven by [33]
N (1-r)s+r n :
M,(s)=——"——,r=1-+- N =¢€° 69
+(9) N, S+ a (69)

where s is the complex frequency. Laplace-transform inergields

P, (v.)=(@- r)(;(we)HNLe-me (70)

e

This is actually a mixture of two distributions. & distribution at zero charge with weight
1-r, corresponding to the probability that the avatenavill be extinguished owing to the
electronegativity of the gas representedspbyand, with weightr , an exponential distribution

with average valué\, / r . Therefore the average value B/I(We) is N,.

If the avalanche is started byn electrons the corresponding PDF is the m-fold
self-convolution of (70), with MGF(MWe)m. The explicit PDF is given in [33], [34]. In [3]
is also discussed the exact case.

Considering that for a small avalanche the swarmarg#h is proportional toN,

N (N,) = Woe"’*z =N, N,, it can be easily seen from (68) and (70) that
P, (%) = (L= 1)) +r° € (71)

4.4.2.Large avalanches (space-charge regime)

In here we will touch the case of fixed-length avahes, which is theoretically interesting
but seldom realized in RPCs, as the ionizing pagievill leave an ionization trail. The only
circumstances where this may be realized is thdifivagion of the dark noise, presumably (but
hasn’t been investigated) generated by single relestemitted by the cathode, or a dedicated
experiment [25].

As stated above, the avalanche gain distribuﬁgrﬁﬁ\fe) under influence of space-charge

effect may be calculated from (68) and (71) by &pyion of av,(V,) function, for which it
can be used the space-charge model (67) (or ary fithwhich the derivativel v, / dv, is
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meaningful, that is, Vv, actually depends oV, in a non-trivial way). The necessary model
functions are

No (Ne) = Nooaff W( Ke“™?), K= (NI N,

|0N0| _1+K' W( K'eK’—maz) (72)
ON.| UK 1+w(K &™)

An example of theP, () thus obtained is shown in Fig. 17, to be compavig the data
in [25] Figure 1.
P(Ne)
6.><10‘7;
5.><10-7§
4x10TF
3.><10r7§—

2.x10°7 |

1.x10° 7

L L L | L L | L L n | n n n n | Ne
5.0x 109 1.0x107 1.5x107 2.0x107

Fig. 17 — Representation d?, (ﬂ\fe) calculated from (68), (71) and (72) for = 70mm*,

N, o =2%10, z=0.3mm, m:{1,1.5,2 . The parameterd\, .. and m control the
large charge behaviour.

e, sat

5. Signal fluctuations

Even if the detector is irradiated with perfectiiemtical particles, the signal generated will
not be equal for each particle. Apart from the amehe gain fluctuations described in
section 4.4 (procesd ), there are other sources of fluctuations contiiguto the final

generated charge: the cluster statistics (pro@gsshe positionz, of each cluster (process)

and the variable number of clusters generated bly particle (proces® ).

Secondary, technological, factors are the polddmdtuctuations treated in section 3, either
stochastic or position-dependent, and geometridatians, most importantly gap-width
variations, which can be treated in the framewdr& small-perturbations approach.
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The coherent combination of all these fluctuatidmssn't been treated theoretically.
However, solutions for some particular cases ofartgnce are known. Naturally, numerical
calculations by Monte Carlo are possible [31]][22

5.1. Primary ionization

As high-energy charged particles cross the RP@agpsionization clusters will be produced
in the gas. Such clusters originate from collisiaviih the atomic electrons, ionizing the atom.
The ejected electron may produce further localzatidn producing an ionization cluster. The
ensemble of the electrons produced by a passingjngrparticle is called “primary charge”. An
illustration is shown in Fig. 18.

The numbern of clusters (proces® ) is Poisson-distributed with PDF and generating
function, respectively,

_ e—/ld (Ag)n
R =—o (73)
C,(¢) =€

where A is the average cluster density and therefdgp is the average number of clusters
produced in the gas gap.

Fig. 18 — Representation of the ionization prodesRPCs. The crossing charged particles
deposit a random number of charge clusters at ranideations. Each cluster contains a
variable number of electron-ion pairs.

The details of the primary charge production artebesimulated by tools such as HEED
[35]. For minimum-ionizing particles the amount péirs in a cluster (proces®) obeys
approximately the empirical statistic

P(ny) O ny? (74)

© Copyright owned by the author(s) under the ternmthieiCreative Commons Attribution-NonCommercial-®i#dike Licence. http://pos.sissa.it



PROCEEDINGS

OF SCIENCE

In here this contribution will be not taken intccaant, but a comprehensive treatment of its
influence on the time resolution, along with matstistical techniques useful in this context, is
given in [33].

5.2. Time distribution

The time distribution P(7) obtained by measuring the avalanche developmem¢ ti
corresponding to a certain threshold induced ctraed avalanche charde . = WV N

(in the spirit of (24)), as illustrated in Fig. Itas been calculated by several authors ([34]) [36]
culminating in a very comprehensive treatment bggRir [33]. In here it will be presented only
a streamlined and slightly simplified calculatioveglecting proces®) and the main results.

In the spirit of (68), the change of variable ralet/for the determination of time will be

AN,
oT

P(T)=P(w,) (75)

No=No(T)

for which we need to know the functiori(v,) and its inverse. Note that we are calculating

the intrinsic time jitter of the detector, neglegtiany external factor, such as electronics.
Experience seems to indicate that these factord gtay a dominant role in well-designed
systems.

All calculations so far assume that the detectadres place while the avalanches are still
progressing in the gas gap and that avalanchdggtéwo close to the anode don't contribute:

only those within a distancg™ of the cathode will be visible. For 0.3 mm gasgytips distance

seems to be about half of the gap and the assumptis confirmed by corresponding Monte-
Carlo simulations [36].

In this region it will be deposited an average nembf clustersAg’, Poisson-distributed
(73), and the stochastic part of the avalanche travill be described by (71). The equivalent
P(v,) will be the compounding ([37] v.1, pp.286, v.2,4%7) of (73) with (71), with MGF

r —

M., (s)=C,(M,(s) = exp{r)l g (— 1)} (76)

r+s

Laplace-inversion yields

* 2 *
P}(+(D (_f]\[o) =g |:e-rWo %h( 2 [rZAg*WO)+5(f]\[O)i| (77)

0
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where |, is the modified Bessel function of first order. €Tisingular terme‘”g*d(ﬂ\fe)

represents the fundamental Poissonian inefficieadging from the average number of
avalanches Ag" developing in the regiony .

If the timing threshold lies below the space-charggime (see Fig. 16), the function

T(N,) can be obtained fromN,, = Noé’*wet (see (21)). Expressind\.,, as a time,

N, = € " one gets

N = &4t = gnr (78)

where, for compactness, it was used the reducedztimt/(a’*We) . Keeping only the regular

part of (77), renormalized to unity, finally it ssible to apply (75):

o \/Mg*ll(z\/r)lg*u)
P,.,(T)=ue (e”g* _1)\/6

u= a@nO+7n=-7 (79)

A remarkable feature of this distribution is thatshape depends only sdg” =In(1- &),
that is, depends only on the fundamental inefficjenf the detector. Keeping this constant,
variations ofz,, or of r generate only translational movements, so all nmtenabout the mean

E[(T—E(T))n] depend only onrAg”. This is also true (on a different variable) if

exponentially-distributed cluster statistics is sidered [33].

The termue™ in (79) is a Landau-like distribution corresporglito a single-electron
avalanche in the limitAg” - 0.

The variance off’ can be calculated as a series [34]

Vi = B (T = E@))"]

:iWnZ(Z’”)”ZV\M/z(r)-(i W ( r)j (80)

g™ (Mg*)n

where Z(Z,n) is the generalized Riemann Zeta function ahds Euler's Psi function. The

Wn(r)lg*):

first variance ternV, is related to the avalanche statistics (procgégswhile the second term
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V, is related to the ionization statistics (procésy The asymptotic behaviour of both terms is

V, =V, =1/,/rAg as shown in Fig. 19.

PF(r) SqriV)
Ldr
08 12f
1.CH
/'\\ 0.6
A\ ol
JARR
/\T 041 0.€
e 0.4
[ \ \
"s/" ,/ ! \\\\ 0.z
‘ /L ~ = ‘ 0. ‘ : : : ‘ . A
4 ) 2 4 6 Ta)‘o 2 4 6 8 10 12 rgkb)
Fig. 19 — a) Representation of the time resolutiatistribution (79) for

r/lg* :{0.01,1,2,5,1pand T, =0,r =1 (these produce only translational shifts). b)

Standard deviation of the two variance componexge®ed in (80), along with their quadratic
sum and asymptotic behaviour .

Note that the experimental results are normallaioleid by a gaussian fit to the experimental
distributions and after a number of instrumentakrections such as time-charge correlation,
generally producing values that are smaller thasdhshown in Fig. 19. For a more detailed
study see [33].

The inclusion of cluster statistics (proces¥) increases somewhat the variance and

symmetrises P(‘Z‘ ) except for exponentially-distributed cluster istats, which has no
effect [33].

In case the discriminating threshold is situatethanspace-charge regime (see Fig. 16), (75)
and (77) can be used in conjunction with some sphaege model. Using again model (67), the
necessary model functions are

NO(T) = Ne,sa \N( K, eKI_mT) ’ K' :( Ne,th / Nesat)m
W( K'eKI_mr) ot (81)

e"“’at1+w(}<' eK""")’ 7 aWw,

‘% _
0z

Substitution into (75) is straightforward but preda cumbersome expressions. An example of
P

A
Ne,th < N

space-charge model. The remainder curves lie insgae-charge region and their spacing
increases owing to the “saturation” of the chargemgh curve as exemplified in Fig. 16, more

+@+spaeecharge(‘f ) is presented in Fig.20. The three leftmost cungesrespond to

are regularly spaced and not affected by theevaluthe parametem of the

g sal’
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so for largerm. Remarkably the variance of the distributions rem&ssentially unaffected, in
agreement with the numerical results (with a déferspace-charge model) of Lippmann [24].
For the case of single-electron avalanches a simi@atment allowed to calculate

analytically the mean and variance B;+®+spacecha,ge(f ) [25], confirming the weak dependence

of the variance o\, .

P() P(T)

NN ‘ Lo,
20 30 40

20 éO 40
Fig. 20 — Examples of the time distributions ob¢ainwith a space-charge model

Pﬂ+®+space charge(T) . The conditions are Ne,sat =2 X104 ) r/‘g*k =4 ) r= 1:

Ne’th:{loz,ld’ 10 ,16 ,2 1%} and m:{l,l.E} respectively for the Ihs and rhs

panels.

5.3. Charge distribution

The charge spectrum generated in RPCs in Townsealdreche regime have been studied
by Monte-Carlo simulation ([23], [39]), but an ayt&dal solution including processeg to ©
was not yet derived. This is possible if clustettistics is neglected, assuming that all clusters
contain a single primary electron [38]. Under tapproximation the distribution of the amount
of charge created from a single primary electran-jpair anywhere in the gap is the

randomizatioh ([37], v.lI, pp.53) of (70) on the uniformly digtuted parameteg, :

e—ﬁver IG _ e—WJ

J; We’% dz, = (1- )5(7\%)‘”W (82)

where G = € ¢ is the maximum (cathode-to-anode) average gas daie average value is
E .) =(G~-1)/In(G).The corresponding MGF is

(1 r r+s
M (9= (1) + i 2o 3)

A+C (

1 Also called mixture or weighting.
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The distribution of the total generated charge bédlithe compounding ([37] v.1, pp.286, v.2,
pp.437) of (73) with (83),

Mﬂ+c+@(s)=c@(MM(s>):( ”Sj o omA (8

r+Gs a

Analytic Laplace-inversion of (84) is only possilfler integer m, yielding cumbersome

expressions folP (We). However, ifG is large we may consider the approximation [38]

A+C+D

r+s " (1 G-1 r " _ __ _ ro\" -
==t =G M+(1-G™" =M s) (85
(I’ +GS) (G G r+ st G>1 ( )( I’+GS) /’4+C+(D( ) (85)

which changes the momenta @f, by amounts proportional t&™™ (which is small for large

G and m not too close to zero) but allows analytical irsien, yielding
Ne -
e (G /)"

IS/I+C+® (We) = G_mé_(we) + (1_ G_m) r (m)

(86)

The term G "d(wv,) = € "95(aV,) represents the fundamental inefficiency arisirgir

either all avalanches being extinguished by thetelaegativity of the gas or the probability
that no cluster is produced.

The function in square brakets is the statistiGahipa distribution. FoiG™™ <« 1 (small
intrinsic inefficiency) the mean and variance arisestly from this function:
G

G
E(W,)=m==Ag——
(Ne) = me= In(G)

()~ Er = &

One recognizes that the average generated chatbe &verage gain from (82) for large,

(87)

times the average number of clusters from (73). fEfegtive standard deviation is jub{ Jm.
A multigap RPC, wheréN identical gaps contribute simultaneously to thymal, is equivalent
to an increasingl to AN in a single gap, therefore reducing the relatte@dard deviation by

a factor1/~/N . An illustration of P

T (We) is shown in Fig. 21 and comparison with data

is available in [38].
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(av,) for G=10", r=0.5, m={0.5,1,2,3}. Note
the very different qualitative behaviour fon<1 and m>1.

Fig. 21 - Representation d'f:’ﬁww

Note that for small &%, (N,<G/r), P

e (V) follows a power law:

P

crD (W e) ~N em'l. Therefore the parameten=rA/a , essentially the ratio between the

cluster density and the effective first Townsendfficient controls qualitatively the behaviour
of P

A+C+D

decreasing, while fom>1 it is null at the origin. This has been alreadtedan [39].

(We) for small ,: if m<1 the function diverges at origin and it is monotatiy

6. Signal Induction

If the detector comprises only conductors and pligkectrics, the appearance of currents on
the readout electrodes is determined by electiostansiderations only. However, in RPCs, the
presence of materials of non-negligible condugtisirongly complicates the induction process.
We will address first the former, simpler, case treh the later one.

6.1. Conductors and dielectrics

The electric field E,(7,7,) = -0V (,F,) created by each point chargp present in the
gas on the position (relative to the electrodgswill induce a corresponding surface charge

density ¢ over the surrounding metallic electrotlega the well known relation between the
electric field at the surface of a conductor areluhderlying surface charge density

! Technically the Green’s function for the probleas,the field of any charge distribution can bewaked from
this by superposition.

2 Eventually the system of electrodes may not cotajyl@nclose the point-charge and some charge may b
induced on the gas box or whatever conducting stresurrounds the detector. In the limit the changay be
induced on “the infinite”. The case of resistiveatodes will be treated below.
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¢ = €E,(surfacey) % (88)

being § the unit vector outwardly normal to the conductseeface. Therefore, there will be a
current density

d¢

j(ind) = a (89)

induced into the surface of the electrodes. Thed tohount of surface charge induced over each
electrode is

Qi) = [[ ¢(r)ds=aq,() (90)

surface of the
m" electrode

where we have denoted I6Y, the total surface charge per unit of inducing ghay.
Alternatively, an electrostatic property generdhown as Ramo’s theorem [40] givé€,

as

Vin(To)

Qn(fy) =—9 v,

(91)

where the potentiaV/, is applied to then" electrode while keeping the other electrodes &t nu
voltage ande(?q) is the corresponding potential at the positionthed charge, called the

“weighting potential”. Note thaV,_ (F) has no relation to the DC polarization potential i

may be proportional to it in some situations.
Comparing (90) and (91) one can establish the atpnce

V(T
Qr,n(?q)z_ n\lfrq)

2’ 92
— 1 (= _Em(rq) ( )
0 =

between the two views, where we have introducedvitsighting field Em(?q), correspondent to
theV, (T) potential, calculated at the charge positiprand the gradient oR;, calculated with

respect to the charge positiaj. In view of this, we may from now on use only oofethe

views, the equivalence with the other one beingemivy simple substitution from (92).
However it may be noted that the induced currenisiig details revealed by the charge field
approach (89) are absent from the weighting field’s
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If the electrodes are connected to a low impeddwae (otherwise see [41]) the electrode
potential may be considered as constant duringnthection process. Then, if the charge moves

in space between two poinfs, — T ,, across a difference in the weighting potenfidl, , the

charge that will flow on the external circuit cootesl to then™ electrode is

AV,

= — 93
Qm(md) q VO ( )
The rate of variation of the induced charge isiticieiced current
E_(F
1= 9% - g nllo) (94)
dt \A

whereV, is the velocity of the point charge.

Ol e

+ + + +

+ + +

+
A

Induced surface
charge density

//\
(\‘

to other
surfaces

Fig. 22 — lllustration of the two equivalent vieas the charge induction process addressed in
(90), (91).

To apply (94) to a swarm described by the pariigasity n and particle flow densityf :

one considers a small region of volund®/ around the positionr, containing a charge
dg=q ndV (g, being the positive or negative elementary changechever applicable) that

moves on average with velocity = T/n (see (40)), yielding the current induced per el@me
of volume of the swarm

di =q,jE=dv (95)
&

© Copyright owned by the author(s) under the ternmthieiCreative Commons Attribution-NonCommercial-®i#dike Licence. http://pos.sissa.it



PROCEEDINGS

OF SCIENCE

which must be integrated to yield the total inducadent and charge

= [ JE,dv
VO All space

. (96)
Qm( ind) = J. I mdt
0

If the weighting field is constant over each gap,ghe induced current calculation may be
simplified to

/8|
VO

in= > y[IE.dv, y=

Allgaps gap

(97)

where the induction factoy (already mentioned in section 4) is defined eh:qg is the unit

vector in the direction of the weighting field. Shexpression may be applied also as an
approximation.

If the detector comprises only conductors and pdiedectrics, the weighting field is
determined by an electrostatic calculation. Tha® many commercial and academic (for
instance [42]) programs capable of performing stadbulations.

Analytic solutions are known for some situationssifple but useful case is the regular
multigap RPC withN gas gaps and equally thick resistive plates shawirig. 23. The
induction factor in this case can be trivially ecdited as

y= i
Ng + (N+1)d

(S
"electrical thickness'
of the plates

(98)

Total "electrical distance”

which is essentially the elementary charge dividgdhe “electrostatic thickness” of the RPC,
showing that thicker detectors have in inductiondieap. For a single gap without dielecttics

(N =1,d=0) the induction factor is maximaly=qp+ / g. The expression can be easily

generalized for a non-regular chamber with differgap and electrode widths and different
permitivities.

1 A chamber with metallic electrodes commonly calRRIC (Parallel-Plate Chamber).
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Vl
Td £,
c :
| & |
b 1 e
i :
V,=0V

Fig. 23 — Depiction of the weighting field for thap electrode IN=1) of a regular multigap
RPC withN=2 gas gaps and uniform external electrodes, correlipg to (98).

In Table 1 there is a list of known analytical ems-numerical field solutions of interest for
RPCs, including charge fieIdEq and weighting fieIdsEm for strip electrodes. For most cases

the solutions are expressed in the form of a seastesn integral that must be evaluated
numerically.

Table 1 — List of some analytic or semi-numeriedliBons of situations of interest for RPCs.

Situation Quantity Type of solution Ref

Single charge betwegnPotential | Series [8] v.2, cap I,
conducting plates filed with an eq.184
homogeneous permittivity Potential | Fourier series [43] (2)

Potential | Integral [43] (3)
Voltage strip on a plangPotential | Closed form [43] (6,7,8)
condenser filled with and field [44]
homogeneous permittivity
Gap on a plane condenser fille@Potential | Closed +| [44]
with homogeneous permittivity | and field | transcend-dental

equations

Single charge betweenPotential | Integral [45] (9)
conducting plates filed with Band field
permittivity layers
Voltage strip on a plangPotential | Integral [45] (12,13,14)
condenser  filed with 3 and field
permittivity layers

6.2. Resistive materials

As the constitutive materials of RPCs (REs and Rirs)not pure dielectrics but have some
conductivity, currents will flow on them as the @hic fields in their interior change owing to
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the movement of the swarm charges. This will, a#i,viltroduce polarization losses in the
transmission of the signals towards the amplifiseg section 7.5).

Although this is a classical subject in detectarg.([46]) it has been recently presented by
Riegler [47] a very general theory of signal indoict comprising resistive internal elements
and external impedances connected to the electrdtieshasic insight is that one may start with
the electrostatic solutions and make the subsiitu(i — £€+0/ s, whereo is the materials’
conductivity ands a complex frequency. Inverse Laplace transformasio- t yields the time
response for ad(t) impulse corresponding to the electrostatic casee @en proceeds by
superposition (time-convolution). This procedurevadid both for the induction process itself
and for the coupling (now RC-like) between the etmtes.

For instance [48]: a charge distribution(r") is created at time zero in a conductive
homogeneous medium. A single unit charge in a h@mogs dielectric (electrostatic solution)

will produce the potentiaV,

static

—1/(477E|?|). Upon substitution and Laplace-inversion the

impulse response is

V(P t) = e |( (t)—e_ J rzg (99)

The parameterr is the material’s relaxation time that already egued in section 3.2. The
solution for the persistent charge distributigr{(i’) can be constructed by time and space
superposition:

t
V,(F.t)= j IV(F—F’,I—t')p(F’)H(t')dt'dV
All space0
:e—t/r 1 (r) V
ATE y 5pacd7 7|

All spacel

(100)

This is just the classical electrostatic solutionltiplied by an exponential decay factor, arising
because the charges in the material flow untiinternal electric field is cancelled.
As another example, (94) becomes

. qr.
i \7{ ST, t-t)dt (101)

The current at the present time will depend ondharge position and velocity at times past,
weighted by the time-dependent weighting field oted by applying an impuls€,d(t) to the
m" electrode and using the Laplace transform proeethentioned above.

Several interesting cases are treated in [47],. [#8f behaviour-defining quantity is the
materials’ relaxation timg = £/ 0. For phenomena of typical duratidn<< 7 (such aso(t)
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impulses...) the materials behave as pure dielearicsfor the opposite cade>>r1 as good
conductors. In the intermediate cases there caelaration and diffusion-like phenomena. To
give orders of magnitude, permittivities are tyflicaaround 10pF /m and bakelite

conductivity aroundl0”’S/ m' resulting in 7 =1ms, to be compared with typical electron
transit times of tens of nanoseconds and ion tréinges of tens of microseconds. It is clear that
for the most common materials likely the condutyidf the REs plays no relevant role.
However, the RLs, or special electrodes for highntimg rates, may have much higher
conductivity, which introduce additional phenomeifa. illustrate this behaviour we will use
the result in [45] eq. 71 to calculate a repredamaase: the influence of a bidimensional RL
on the charge density (88) induced by a point ahaygpositive ion for instance) that moves

from a metallic anode up to the RL in the time &aps, as depicted in Fig. 24. For simplicity,
all materials were considered as having the samaipeity &, as this doesn’t vary much
among most common materials, and the RL was cathpisa bidimensional layer with surface

resistivity [] .
z, p
ﬁ‘f z=Db
£ z=0(RL)

C(,O,t) £ ﬁq

Z=-—a

Fig. 24 — Representation of the situation treatedraexample of the phenomena arising from
the introduction of a RL of non-negligible condwdty in RPCs.

A sketch of the calculation is given in Appendix The solution can be expressed in terms
of the dimensionless variables

a=al(ath,p=pl(at B ¢ =¢(a B/ q

(102)
t'=t/r,T'=T/r,r=¢0(a+ b),

which highlight the fundamental physical dependesciin Fig. 25 it is shown a graphical
representation of the reduced induced charge dgengit as a function oft’ for

a=0.8T ={ 0,1}. and several radial distances from the axis. Forpaison, thd] =0 case

is also plotted. The induced current density i9 (B8 time-derivative of this curve. The induced
charge eventually visible in the acquisition elecics is the induced charge densiy,
integrated over whatever electrode shapes thetdevih the surface (90) and time-weighted by
the shaping of the front-end electronics (not ideldi in this calculation), which typically limits
the “observation time” over which the charge idextied, essentially defining where in the time
axis in Fig. 25 the value of the induced chargaukhbe taken.

! Glass conductivity is much lower, arouh®@™'S/ m
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The fundamental behaviour is that for<<1 the RL has little influence on the induction
process, corresponding to the charge transparenetisn. Otherwise, there is over time a
transfer of induced charge from the axis towards pieriphery (which will be visible if the
electronics shaping time is long enough) in a wkeegbattern. In the limit of very long time
(~t">10) the induced charge will be almost uniformly spreaver the whole surface. If
T'~1 or larger the full induced charge cannot be ctdlécclose to the axis, as it will be
transferred away before the induction process ends.

The charge transfer process resembles the diffdiierprocess that would take place in a
bidimensional RC network fed by the induction catrdensity (e.g [46], [49]), but the formal
equivalence hasn’t been investigated.

—1t=0.00

——t=0.30
A ——t=1.00 {
\ —t=3.00
\ —t=10.00
1 L 4
2 \\\ S~ —
3 \“\ N
N
) c) )
10 L L L L L L IR
0 2 4 6 8 10 0 1 2 3 4
t o

Fig.25 — a) to c) Reduced induced charge dengjly as a function oft' for

a=0.8,T ={ O,f} and several radial distances from the axis (sgeZdi and (102)). For
comparison, thed ] =0 case is also plotted (dashed lines). The inducecdkit density into
the surface is the time-derivative of these curvesembling [48], figure 9. dX' as a

function of ©' for different times. (In this case thd =0 andt’ =0 cases coincide.) There

is over time a transfer of induced charge from #bds towards the periphery in a
diffusion-like pattern.
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The shape of the electrodes plays a role as weliha charge-spreading effect is stronger
close to the induction axis. A similar calculatifum strip electrodes is given in [48] (see also
Appendix II).

7. Signal transmission

The charge induction process injects a currenttimoreadout electrodes, which must then
be transmitted towards the amplifiers. This isipatarly important for timing RPCs, which use
a narrow gas gap that generates a very fast sigmai which a precise time is eventually
measured.

Naturally, there is an infinity of possible eledearrangements. The most common cases
are arrays of rectangular pads or a set of paraifgds. The first question is whether such
conductor structures should be treated as multisctod transmission lines (MTL) or just as
circuit nodes. The general rule is that when thecsires are “electrically large”, larger than the
smallest significant wavelength of the signal, dtidae treated as transmission lines. Estimates
[50] point to lengths of 80 cm for 2 mm gap RPCd &rcm for 0.3 mm gap RPCs.

While for the case of strips (translationally ineat structures in one dimension) there is a
well developed theory (e.g. [51], [52]) no workkisown for the case of large pads. However,
we will discuss below that also the standard MTeatty is likely inaccurate for widespread
structures such as RPCs as it misses the facththatrips are quite separated in space and that
there must be some propagation velocity acrossttips as well, which will limit the formation
of fully organized propagation modes.

7.1. Frequency spectrum

As stated above, to decide how to treat the probiteim important to know the signals’
frequency spectrum.

Even if this is not exact owing to the space-chaffiect, as a coarse guide we may calculate
the Fourier transform of (43). Neglecting the setterm within the square brackets, which,
being negative, must not be dominant, taking adfiwédth in theerf term, equal to the width

of the avalanche when the swarm centre encourttersnode, and allowing negatitethe
following approximation is produced

~ _1 . z,— vt
Letingy = Ling ) = EWVeexp(a' Wet)[l"‘ eﬁ(m]} ) (103)
A Fourier transform calculation yields
I — 1 _ DeZO
Tegney (@) =K Wexp( W =5 j (104)

© Copyright owned by the author(s) under the ternmthieiCreative Commons Attribution-NonCommercial-®i#dike Licence. http://pos.sissa.it



PROCEEDINGS

OF SCIENCE

where w=27rf is the angular frequency. Apart from scale factegresented byK , one
recognizes a pole atw=W, a’, clearly related to the gas amplification proceBhis is

multiplied by a Gaussian, related to the diffusiomefficient. In Fig. 26 bothl:e(ind) and

I:e(ind) (a))‘ are represented for two values Df, a realistic one and, for comparison, a very

short one corresponding to an almost diffusionigiisation. There two cutoff frequencles

f, =W, a /(2m) is associated with the amplification process digd= ’lg(DZ): /277 is

associated with the diffusion process. For the amlused in this figuref , =580MHz and
f.,, =860MHz.

Ie(in d)(t) (a.u.)

P N W s a0 o N

| K

OO

2 4 6 10° 10
t(s) X 10‘9 f(Hz)

Fig. 26 — a) Representation djg(ind) for the same parameters used in Fig. 10 (solid mel
with D, reduced by a factor 100 (dashed line). b) The bheecorresponds t#;(ind) (w)‘
normalized to unity at low frequencies, for the tWd, cases studied. The red curve

corresponds to the pole at=W, a.

7.2. Signal transmission in stripline electrodes

The general theory of MTLs has been particularipedhe case of RPCs in [53] and further
developed in [50]. The signal is injected in a &ngtrip (or more if we proceed by
superposition) by a current source. The problenatiser complex and there are many possible
situations of interest. In here we will follow tivéew represented in Fig. 27, as it captures the
essence of the problem.

! Defined, as usual, as the frequency at which tiemaation associated with the corresponding teri/2.
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7.3. General theory

In here we will outline only the most fundamentainiulas and results. The interested reader
may consult the vast bibliography on the subjegt. (®0]-[54]) for details.

The system consists di +1 translationally invariant electrodes, includingeoreference
(“ground”) electrode. The currents in the strips danthe strip-to-ground and
termination-to-ground (ak =0) voltages are denoted by thé x1 vectors|(x,t), V(Xt)

and V; (1) . A current pulsd ,(X,,t) is injected from the ground into a single (“dritestrip at
position X,, propagating in both directions alorg and coupling to the neighbouring strips

(crosstalk). The strips have lengih and are terminated by resistor networks (or jostinput
impedance of the amplifiers) aa=0 and X = D. These terminations don’'t need to be equal
and can be extended to handle general linear nktwand interconnections with other
MTLs [54].

/,«"Electrical
“symmetry plane

Fig. 27 — Representation of the geometry and thst maevant quantities for the problem of
propagation in a microstrip array, along with thaimsimplifications.

The electrical properties are summarized in tNex N per unit length capacitance,
inductance, resistance and conductance matricgsectivelyC,L ,R .G . In general these are

symmetric matrices and all conductors will cougleetich other via the diagonal elements, but
later we will particularize for “weak-coupling” apgpximations.
If all materials involved have magnetic permeapiliiose to vacuum'’s, the inductance

matrix can be calculated from the capacitance mély obtained with all dielectrics removed
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L=C;'/c?, (105)

Cc being the speed of light in the vacuum. Therefaié,parameters can be obtained by
electrostatit calculations only. In case the medium is homogesemot an RPC...) with
relative permittivity €, then

ct ct
= == 106
ctle WV (106)

r

where Vv is the speed of light in the medium. This has ingrd consequences, as in this case
there are no “propagation modes”.
The fundamental equations to be satisfied are

2 2
o \Z/—LC 9 \2/ =RGV +(RC +LG )ﬂ
0z ot ot
0°l 04 a (on
— -CL— =GRI +(CR +GL )—
0z ot ot

The most remarkable feature of the signal transarisge MTLs (except in the case (106)) is
the existence of propagation modes. Each modeaterisicertain fixed ratios of currents in the
electrodes that propagate ensemble at the samatyeleor N electrodes there ald modes,
each propagating with its characteristic modal jov,,, leading to the phenomenon of modal
dispersion. The ensemble of the modes forms a ldstee space of all possible current

patterns, so any desired initial current patterhexicite a certain number of modes with certain

amplitudes and will disperse in accordance with ¢teresponding combination of modal
velocities.

In the time domain, modal analysis is possible anlthe lossless case, vanishing the RHS
of (107). The solution of the problem is [50]

14T, & |
Vi(t) = > OZ(FDFO)j X

j=0

M]}‘llo t_XO+2JD W M]}‘llo t_2(J+1D_XO

Vi v (108)
ZM : +I,ZM :
M;lilo(t_xo-FZJDj Mr:lﬁlo(t_Z(J-'-lD_on
i W] i y ]

! The steady current calculations needed to cakia@mnd G are essentially the same as for electrostatics.
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In here, j denotes the order of the successive reflectionis, the driven stripI’, and ', are
the voltage reflection matrices at each end ottiember given by

Fop = (ZO,D —ZC)(Z oD +Z c)_l1 (109)

where Z . is the characteristic impedance matrix that reldabe currents and voltages in the
strips, V(x,t) =Z | (x,t), and Z, , the termination matrix in each end of the chambierte

that if Z,, =Z the reflection matrices vanish and there are fleations. This requires all

strips to be interconnected to each other by msistvith adequate values. In practice,
second-neighbour connections may suffice [53].
In case there is just a simple, uniform, terminatio ground in each strip in both ends, then

Z,, =1R; (1 is the unitary matrix)I'y =I', =I'=1-T, the solution can be written in a

more compact way [50]

‘Ml_nllo(t_(—lwxwzn/zlo ]
Vl
Vi Ty
I (t)= R 2;;(1 T)M , | (110
Mm{t_(—l) X +2[j/2]D
i Vi |

T=2Z (R +Z.)"

where[ j / 2] represents the next higher integerjaf2.

The columns of the modal current matr® (M) represent the current ratios that

correspond to each mode and are lhesolutions of the eigenvalue problem

CLMm=i2M .
V

m

(111)

which is obtained by replacing the usaabatzl =1 (t £ x/ v, ) in the (lossless)eq. (107).

The valuesM ' are the elements oM ™ and correspond to the amount of excitation

needed in each modam) to reproduce the current injection at stiip boundary condition
1(z,,t) =[O,--- o @), ,qT (see [53]). The modal excitation is such that trades interfere

destructively over all strips except th&. After some propagation length the modes will &os
coherence owing to their different propagation gities (modal dispersion) and the destructive
interference is mitigated, leading to increasedhalig in the neighbouring strips. Potentially,
after a sufficient long propagation length, eactdengtypically spanning most of the strips) may
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be observed at the terminations separated in thom@ the other modes. This causes modal
crosstalk, to be discussed later in more detail.
The characteristic impedance matrix is given by

Z . =LMvM ™ (112)
with
vy 0 O
V= (113)
0 0 v,

This theory has been compared in some detail withsurements in RPC-like situations and
a good agreement has been generally found [50], [53

The same theory can be formulated in the frequeloeyain (see [52] for instance). In this
case theansatzis | =I (a))ei"’ €™ . The input and output quantities are the Fourier
time-transforms of the signals and the equatiof3)become

V2V (w) =ZYV (w)
Vol(w) =YZI (z,w) (114)
Z=R+ialL\Y =G +idC
proceeding the solution more or less along the dams. In general, the modal propagation
factors y, (w) are complex numbers, expressing losses in thepeg(exponential attenuation

along x) and the modal propagation velocity in the imaginzart:

Vo = 0 () +i (115)

Vm(a))

Although less intuitive, this approach has the atlwge that it is possible to include losses
and the frequency dependency of the materials laatdall reflections are automatically taken
into consideration in the output without need ftarations. Indeed, replacing the harmonic
ansatzin (108), one sees that the sum over the reflestiorms a power series that can be
summed for each mode:

+ N -
V; (w) = IO(a))1 ZFOZ Mr;,n[l—FDFOe‘VmZD] "x

m=1 (116)
[(ZCM )m CR (FDZCM )m e-ym(ZD‘Xo)}
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A very important practical characteristic is thecamt of interstrip coupling (crosstalk),
given by V; . /V; . This can be readily calculated numerically andegal guidelines [53]
seem to be that simple termination (no intercoriaes}, lower amplifier input impedances and
longer shaping times help reduce crosstalk.

There are two contributing factors to this behawxidtor short counters, those for which the
difference in propagation time between modes iglisfimaluding relevant reflections), that is,
the modes remain coherent, crosstalk is deternmjirgtcdby the structure of th& matrix. This

can be seen from (110): neglecting reﬂectio(njs: 0) and disregarding the differences

between the modal propagation velocities it becoumed - (t) = %[O, cenol (t =X, /v) ,...0] .

As the counters become long, extra phenomena effémence/decoherence between modes
becomes important, as shown, for instance, in 8018, [53] fig. 7. This will be discussed in
the next section.

For optimization purposes, an analytical solutionthese problems would be very useful,
but this seems to be prohibitive in the genera¢ dsecause of the eigenvalue calculation (111).
However, progress can be made in weak-couplingoxppations.

7.4. Weak-coupling approximations

In a planar structure such as depicted in Figt &/dlear that the direct coupling from a strip
to its second neighbour, representeddyy, will be much smaller than to its nearest neighbou
and may be neglected. For instance, the valuesngive [50] table 2 indicate that
C,/C=1/10, C,/C,,<1/10. Furthermore, realistic numerical examples [5®3]]

suggest that the nearest-neighbour coupling stneisgtelatively weak, on the order of 10%.
This suggests a number of simplifications thatdyeshalytical solutions.

7.4.1.Feed-forward

The most radical approximation to weak-couplingasmodify the fundamental equations
to neglect the back-interaction between the neighibg and the driven strips [55] along with
all direct coupling between the driven and all othigips except the first neighbours. This leads
to constitutive matrices with the structure (giviag an example a 5-strip system, driven on
strip 3)
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C -C, 0 0 O LL 0O 0 O
o C -C, 0 O OL L 00
c=([0 0 C 0 O0/,L={0 O L 0 O
o 0 -C, C 0 O 0L L O (117)
o o0 0o -c,c|] |00 O L
C=C,+C,

In this approximation the driven strip behaves agle conductor transmission line which
induces signals in the neighbouring strips withbeing affected by them. The solution
proceeds in cascade from the driven strip, so thereno modes and only strip pairs need to be
considered. The solution for an externally drivaipbne, corresponding to an avalanche close
to one end of an RPC, is given in [58] particular it is shown that the signal induéedhe
neighbouring line is proportional to the time dative of the driven line’s.

7.4.2.Nearest neighbour
A step further from the feedforward approximatioould be to consider only interactions

between nearest neighbours, neglecting. In this approximation the capacity matrix becomes
(a symmetric tridiagonal Toeplitz — STT — matrix)

c G, 0 o0 ]
c, C -C, O
Cc -C, 1 -u
€=l 0 G C G F1c oY 1 118
o 0 -C, C m (118)
. |

C=C,+C, u=G,/C

As most of this section will deal with such typenoétrices these will be represented in curly
braces. The results will not depend on the sizéhefmatrix and indeed the matrices between
curly braces correspond to a 2-strip system uridesame approximations.

Requiring additionallyu = C_, / C< 1 (weak coupling), all expressions will be developed

series ofu and truncated to the first order. This rendersnadtrices STT, as the elements
further removed from the main diagonal are quadiatu .
BesidesC we need the capacitance matrix with all dielestreamoved

.

and from these all relevant quantities can be tatied.

1

(119)
Uy

C, =C0{

© Copyright owned by the author(s) under the ternmthieiCreative Commons Attribution-NonCommercial-®i#dike Licence. http://pos.sissa.it



PROCEEDINGS

OF SCIENCE

1 W
L=u) 0 blal {1 “0} (120)
Ly 1 cG U 1
L
1 —
CL:cECO{uO—u Uol u}_ (121)

The inverse squared modal velocities and the modaknts are the eigenvalues and the
b a
eigenvectors ofCL (111). For an STT matrixA={a b} of size N there are simple

analytical expressions for these [56]:

mr 2 ([ knT
A =b+2aco§ —— |, M, = / Si mk=1,2,... 122
m {N_'_lj k,m N+1 ’(N"':J k N ( )

FurthermoreM is unitary: M ™ =M . For instance, &% 5 system yields

V3 1 V3 1 V3

6 2 3 2 6

[ aV3 ] 11, 1 _1

a 2 2 2 2

A=b+| 0 |, M= @ 0 _ﬁ 0 ﬁ’ (123)

_a 3 3 3

1 1 1 1

-aV3, > 2 Y % 3

V3 1 V3 _1 43

| 6 2 3 2 6

Because of the unitarity d¥1 , the columns represent the current ratios for eacte and
simultaneously the amount of excitation of each entien the strip corresponding to a column
is driven. If this is the central strip it can bees that all odd modes are excitedth equal
amplitudes and the central mode inverted.

Taking into consideration (121) and (122), the niegéocity spectrum is contained within

T e e e aEka Ll

(124)

L All even modes are zero for the center strip,a@Btaontribute. The modes are clearly relatecheRourier
series.
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If u, =u, indicating a dielectrically homogeneous or congagad ([57], [58]) system, the

spectrum collapses to a single velocity and thexena modes.
In a 2-strip system there are the modal velocities

Av U, —u

1+oo | |1
V=V zv = EO 2 , (125)
1-2Y ) VBt
2V 2

spanning half of the maximum spectral width andadpcing eq. (5) of [58].
Curiously, within the weak-coupling approximatiorthe structure of the characteristic

impedance matrixZ . doesn’t depend on the details of the modal stracimd the calculation
proceeds as

1 Zn 1 uty
Z.=7 Lol 1 2 (126)
Zn 1| WGC Uty 1
Z, 2
+
LY 1 LT
1-T,=T=T Tl._2 wtl o2 | R (127)
Tu 1 w+l| w u+y 1 Z,
T w+l 2

which reproduces as well the 2-strip results of] [8uations (6), (7), (11). Actually, within
these approximations, the only information gainedgbing beyond a 2-strip model is the
knowledge of the modal structure (122). It is clehat there will be crosstalk also to
second-neighbours, etc, but in the present appatiom this is quadratically (cubically, etc),
smaller and it is excluded from the expressionsalt be readily appreciated that the coupling
crosstalk [,/ T) decreases witlR. (if R, < Z.), u andu,. Takingu=u, =0.1, R = 2Z

this should be around 7%, as it is actually founfbD] Fig.15 (exact, compensated curves).

A complementary form of crosstalk arises from modadpersion. This is owed to the
decoherence of the modes that initially interfeestdictively at the injection pointx{) of the

current |,. Taking the example of a 5-strip system (123)it be seen that with, for instance,

signal injection at strip 3, substantial excitataises in all odd modes (values in column 3) and
that these modes span all strips (values in collyn8s 5). Therefore, if there is full decoherence,
replicas of the injected signal (eventually invdrtand/or scaled), corresponding to the
individual modes, will be seen separated in timee (53] figure 7 for instance) and will span
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the full width of the counter regardless of how &vitlis. The modes have no locality property!
This is likely unphysical because there must beterdl propagation velocity as well, which was
not at all taken in consideration in the preseebtis. Given this, and in absence of a fuller
theory, a 2-strip model is likely more realistic fowide RPC than the N-strips’.

Neglecting reflections (which actually decohere enas they travel longer before reaching
the terminations) the 2-strip solution is, aftet@),

gl
I(t):l{T Tm} A v, |
= pighie

The relative time delay between both modes perafriite propagation length, is, taking in
consideration (125),

(128)

u_
E:é_\;:ﬂ_ (129)
Y G
c.[—
C

Replacing data from [50] table 2 (uncomp), thisois the order of 0.15 to 0.25 ns/m.
Considering a signall,(t) with duration of ~2ns (e.g. from Fig. 10), the dee will

completely decohere after about a 10 m propagatmgth. However, significant modal
crosstalk when compared with coupling crosstalenfrT matrix) is already visible for 2 m

lengths ([50], fig 15), underlining the importanmemodal compensation (making= y,). It is

also clear that a slow shaping in the electronidkimcrease the effective signal width and
improve the situation, as suggested in [53].

In the frequency domain, for some frequencies tiellebe a phase inversion of one mode
with respect to the other, destructive interferemdé turn into constructive and constructive
into destructive, yielding the crosstalk peak aadgmission dip shown in [50] Fig. 8 c).

7.5. Losses

Resistive losses arise from the series resistafidbeoelectrodes. As the current is not
supposed to flow sideways, th matrix must be diagonal.

Conductivity losses, to be expressed @, arise from conductivity in the dielectrics,
interconnecting the electrodes or these to groand, from polarization losses that arise from
the rearrangement of charges within dielectriceegponse to electric field changes. In uniform
dielectrics both conductivities are proportionalthe capacity matrix [50], but it is unlikely to
be so in non-homogeneous structures. Indeed, |dsses been measured in a glass RPC and
were found to have a more complex behaviour, withotf frequency about 1 GHz [50].
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The treatment of losses must be performed in tleguiEncy domain following the
formulation (114). In the general case the solutiorst be performed numerically [54], but we
may argue that for the case of RPCs some appraginsatnay be workable.

For a single strip the constitutive matrices becagadars and from (114) it is obvious that

r=JWz=J(R+ wl)(G+ w0 (130)
which, to the first order iR, G (low-loss approximation) yields
RC+ LG .
[=———+iw/LC 131
2JLC (1)

emphasizing the attenuation coefficient and th@ggation velocity (compare with (115)).

The solution of (114) under the same low-loss phues weak-coupling approximations
described above reaches similar conclusions: thmesamode-independent, attenuation
coefficient (131) and unchanged modal velocitied modes (122).
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Appendix |

n(zo=[[|{ [ [f je“qzo dt[ 10 'Gz’z)}/d dlp

radial | longi- radial| 0

plane| tudinal plane aji W

1. (7.0)

n.(T.t)

(o)
(1)

ST e

longi— [ O radial| radial

do'|do| d 2 dt § z 'z)t 6 (132)

tudinal plane\ plane
2 () F(1)
=17 j jf(t’)g(z,f)dt f'(t)g'(z— 2, § dz
ol 2 h, (2.0
n.(z,0)

Appendix Il

Making the substitutionss, - £+0/s=¢+1/(0Q9, §=&=€, q=a p= Db, and
then taking the limitg — O in [45] eq. 71, yields (88) the surface chargeugetl by a point
chargeQ in the position—a < 7, <0 over the surface of the top electrode= b)

(ekzo _ e—k(2a+70)) —kka (kp)
‘2"b+e2ka)k+(2£|s k) 2ka+b (2D8+k)

¢(%,9=-= st{d ( (133)

where J, is the Bessel function of first kind and zerotllen Upon Laplace inversion, the
response to 9(t) impulse is
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o (a+Db)’
¢'(z,t)=¢——
Q
f k't
-2f,0(t")+ f k'exg ——2
YL 2o ’{ 2fle
cath el f? (134)

sinh((a'+2)k') €*/kJ,(Kp')
f, =260 + 2% - 2% —2; f = 28* -2
zZ=zl(ath); &= d(a ppo=p/(ap
t'=t/(ed(a+b)); K=K a+ B

Dimensionless variables, indicated by a prime, whietroduced to highlight the basic
physical dependencies.

The transportation of the charg@ in the gap—a’' < z, <0 with uniform velocity during
the time IapseT'=T/(£D(a+ b)) and then standing still az, =0 can be calculated by
superposition

¢(th=&l(a+ b)]c'(—(l— u/T)a,t-ueé(T- Y du
S (135)
fl(a+ b)jc'(o,t' ~wd(u- T)du
0

where the factorll(a+ b) appears because the integral is being calculatéd iThis yields

I ' 2 fl E I '

¢(t'<T)=|dK X
l (2f,a) (1)
e*Kd (ko)
T
fT 136
) 4f0T'[cosI”(k'a')— exé—szf H— &d sinfika) (136)
1

X

=T =[dK
w=m=| 2ha) (LT

exp{—k'((t'_-r')f(’ +1D KdJ,(Kp')

21,
Vs
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This should be compared with the behaviour when- O,

(k’a’l’j

- Sinh e

C_(t'<T)=[dK K ( ko'

o l A (ko) (137)
T . sinh(ka)e*

' (' 2T)=|dK—————K ko'

Choo(t'2T) 2[ 7, ‘:!)( 10)

Note: the calculation of the total charge induaedtrip electrodes from expressions such as
(136) is not difficult because the required intégnzer the surface of the electrode can be done
analytically

T j 3, (kX + ) dydse ZS'E(kX) (1.138)

remaining the integral ik to be performed numerically.
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