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In spite of their apparent simplicity, RPCs feature a range of physical situations somewhat more 
complex than those found in most other gaseous detectors. These include the interplay between 
materials with different electrical characteristics, space-charge dominated avalanches evolving 
in very high electric fields and the propagation of fast signals on heterogeneous multiconductor 
transmission lines. In this article the state-of-the-art of the modelling of many of these aspects is 
reviewed and some aspects still requiring further work highlighted. 
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1.  Introduction 

On aiming to review the status of simulation and modelling in RPCs it became apparent that 
it would be necessary to state some of the basic physics as well: most modelling involves some 
degree of approximation that can only be properly appreciated if the underlying physics is clear. 
Furthermore, most problems can only be exactly addressed by a combination of numerical 
calculations for quantities such as the electric field and Monte Carlo simulations for the 
stochastic behaviour of the detector under irradiation, which need a correct physical 
understanding. On the other hand, the results of such purely numerical calculations tend to be 
hardly generalizable and its features quite opaque, so in here we will privilege analytical 
treatments whenever available, even if necessarily approximate. 

A minimum of RPC technology must as well be stated, as modelling must cover the relevant 
technical realities of RPC construction. 

Although there was a pedagogical concern in the elaboration of this review, in the sense that 
it may provide an introduction about the fundamentals of RPC physical modelling to students 
entering the field, it is assumed that the reader has a basic knowledge on the principles of 
gaseous particle detectors, for which several good reviews are available (e.g. [1]-[4]). 

Considerable attention was paid to the unification of results scattered over many publications 
in a common coherent framework with unified notation. For obvious need of abbreviation, often 
only the most relevant results were presented and deductions streamlined.  

On section 2 are exposed the main technological features that influence the RPC behaviour 
and require physical modelling. 

Section 3 concerns the polarization of the gas gaps, including voltage drops in the various 
technical elements and stochastic variations caused by the counting process.  

A large Section 4 is devoted to the development of avalanches in the swarm approximation. 
The classical theory of swarms is reviewed and expanded. Closed analytical expressions were 
derived for almost all quantities of interest regarding diffusive avalanches in the Townsend 
regime (space-charge free) arising from single electron-ion pairs deposited anywhere within the 
gas gap, along with the case of uniform ionization. Some results concerning the analytical 
calculation of the space-charge field are given and the space-charge effect is addressed, both in 
the form of a numerical example solution and of empirical models. Finally the subject of 
avalanche growth fluctuations is addressed, both in the Townsend and space-charge regimes, 
with the help of the models previously mentioned.  

Section 5 deals with the signal fluctuations arising in practice owing to the composition of 
avalanche fluctuations with ionization statistics. These include timing characteristics in the 
Townsend and (briefly) space-charge regimes and the charge spectrum in the Townsend regime. 

Section 6 reviews the theory of signal induction and addresses the problem of the influence 
of conductive materials. 
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Section 7 concerns the signal transmission in multistrip readout electrodes, specially 
important for timing RPCs. The frequency spectrum of the signals is discussed and the 
multiconductor transmission line theory as applied to RPCs is exposed. The fundamental 
characteristics are treated in the framework of a weak-coupling approximation that may be 
particularly adapted to describe RPCs. 

Only the state-of-the-art was reviewed and no attempt was made to give the historical 
perspective. The interested reader may follow the reference chain departing from the quoted 
articles. Little attention was given to comparisons with measurements, as these are given in the 
original articles. 

1.1.  Time scales 

In modelling RPC behaviour it is worth noting in advance that there are phenomena 
occurring in three very different time scales, such that when modelling the faster ones, those 
occurring at the slower time scales may be considered as stationary for all practical purposes. 
Such time scales are:  

a) the electrical relaxation time of the resistive electrodes on the order of milliseconds to 
seconds for common materials;  

b) the electrical relaxation time of the medium resistivity layers (HV layers) and the drift 
time of the avalanche ions, on the scale of microseconds;  

c) the development time of avalanches and streamers on the scale of nanoseconds. 
Throughout the text time-average values will be denoted by bar. In principle all quantities 

are position dependent, except the obvious ones, such as applied voltages or when otherwise 
stated. 

2.  Some topics of RPC technology 

The defining feature of RPC detectors is that always the volumes where gas amplification 
takes place are flat-shaped (“gas gaps”) and delimited by at least one resistive plate (resistive 
electrode). This plate limits the amount of charge that is instantaneously available to be 
transferred across the gap in case a spark develops, as no significative amount of charge can be 
conducted across the plate in the short time span of spark development. Such stunted sparks are, 
somewhat incorrectly, named “streamers” in RPC terminology. 

Common resistive plate materials are phenolic-paper laminate1 and glass. There is research 
on ceramic materials ([5], [6]) and low-resistivity glass [7] for high counting rate applications. 

2.1.  Arrangement of the electrodes 

RPCs allow for a wide range of strategies for structure, high-voltage (HV) application and 
signal collection (pickup). The simplest scheme, depicted in Fig. 1, comprises just one metallic 

                                                 
1 Commonly known as “bakelite”. 
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plate and one resistive electrode (RE) in electrical contact with a metallic foil or plate. HV can 
be applied on both electrodes, requiring HV resistors and coupling capacitors to the amplifier, 
or one side may be grounded, in which case the resistor and capacitor on that side may be 
omitted. 

Lower pickup electrode
(at –HV potential)

HV+

HV-

resistive electrode

Gas gap

Upper pickup electrode
(at +HV potential)

metallic electrode

 
Fig. 1 – Illustration of the simplest RPC construction, featuring just a single gas gap defined 
by a resistive and a metallic electrode. If one electrode is to be grounded, then the 
corresponding resistor and capacitor may be omitted. 

On the opposite extreme of complexity, the symmetric multigap construction allows to 
accumulate in a central pickup electrode the currents induced from many gas gaps. The 
multigap [10] construction introduces one or more electrically floating REs in between the 
galvanicaly connected ones, creating extra gas gaps without additional galvanic connections. 

It is clear that many variations may be introduced along these general lines. 

resistive electrode
HV-HV-

HV+HV+
Gas gap

floating resistive electrode

Gas gap

resistive electrode

resistive electrode
Gas gap

floating resistive electrode

Gas gap

resistive electrode

 
Fig. 2 – Illustration of the structure of the symmetric multigap construction. The electrically 
floating electrodes allow extra gas gaps to be created without additional electrical connections. 

The metallic signal-pickup electrodes may be segmented in pads or strips, as needed for their 
effective readout. 

2.2.  Detector polarization 

There are two basic methods for applying the HV to the REs, depicted in Fig. 3.  
One possibility is to apply the HV to the same metallic electrode (ME) that collects the 

signal. This electrode must be in galvanic contact with the RE.  
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Another possibility is to apply HV to the RE via a medium-resistivity layer (RL) with much 
lower resistivity than the RE but much higher resistivity than the ME. The idea is that for the 
DC current (the “counting current”) the voltage drop along the RL will be small compared with 
the drop in the RE, so for this purpose the RL can be considered as behaving as a good 
conductor, applying uniformly the HV to the RE and liberating the ME from this function. 
However, for the fast signals generated in the gas gap the RL will behave as an insulator, 
allowing the induced signal to be collected at the external MEs, which can be at any convenient 
DC potential. The non-ideal behaviour of the RL in either function must be taken into 
consideration in the modelling of the detector. 

HVHV

resistive electrode
Galvanic contact

HV

resistive electrode

Insulating layer
Medium resistivity layer
Galvanic contact

Metallic HV & signal pickup electrode

Metallic signal pickup electrode

 
Fig. 3 – Depiction of the two principal methods to apply HV to the resistive electrodes. Top: 
direct galvanic contact with a metallic electrode that also collects the signal. Bottom: HV is 
applied to a layer of medium resistivity, which is in galvanic contact with the resistive 
electrodes. 

3.  Determination of the electric field in the gas gap 

3.1.  DC polarization 

The current paths and voltage drops from the HV power supply and through the detector are 
approximately depicted in Fig. 4. In here we will consider the case of a multigap detector with 
HV applied via a RL as a representative case. The calculations can be easily adapted to other 
situations. 

As far as the resistance of the RL will be much lower than the RE’s the current lines will 
proceed inside the RL almost parallel to the plate and then cross the RE almost perpendicularly. 
An example of an exact numerical calculation is shown in Fig. 5. 

In terms of DC polarization, that is, considering only the time-average values of the relevant 
quantities, we can state the following identities for each point on the chamber plane 

 

3

2 2g RE RL

RE

V
V V V

j q

V d j

φ
ρ

= − −

=
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 (1) 
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where (all time-average quantities) j  is the current density across the gas gap, φ  the inflow of 

particles crossing the detector, q  the total charge generated per particle, V is the applied 

voltage. REV  is the voltage drop across the RE, RLV  is the voltage drop along the RL, gV  is the 

gap voltage, d is the thickness of the RE and g is the thickness of the gas gap. The numerical 
factors are specific of the situation considered. 

In these identities most quantities are position dependent, but largely independent point-to-
point, as far as the voltage drops occur mostly perpendicular to the gas gap. The exception is 

RLV , which depends on the details on how the RL is connected to the HV power supply, the 

current converging in such points.  

In general a numerical calculation will be needed for RLV  but for simple situations useful 

analytical solutions can de derived. In the approximation of an infinitely long chamber in one 

direction, with the HV fed to the RL along the edges and a uniform average counting current j , 

a simple calculation shows that  

 
2

2RL

x
V V j= − ℜ  (2) 

being x  is the distance from the edge and ℜ  the surface resistance1 of the RL. An example can 
be see in Fig. 5 b). Likewise, for a circular chamber fed along the rim 

 
2

4RL

r
V V j= − ℜ  (3) 

where r  is the distance from the rim. These two situations suggest that in general, for a 

chamber fed along the rim of the RL, RLV  will drop parabolically towards the centre, differing 

only the numerical factors in denominator. 
For a rectangular chamber there is a Fourier series solution ([8] v.II pp.140) 
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1 The surface resistance of a thin layer of material is defined as the resistance that is measured between opposite 

sides of a square. This is independent of the size of the square and it is given by ℜ=ρ/h, being ρ the resistivity of the 
material and h its thickness. Sometimes this quantity is named “resistance per square”. 
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where x and y are the distances from the centre of the chamber, respectively along the sides with 
length a and b. It can be numerically verified that for a square chamber the voltage drop in the 
centre approaches (3) while for an elongated one it approaches (2). 

Naturally the assumption of uniform j  is not exact. Even if the incoming particle flow φ  is 

uniform, ( )gq q V=  and gV  that is itself a function of j  via (1). In reality one needs a theory 

of ( )gq V  (section 4.3) and a numerical calculation of ( ( , ))RLV j x y  to derive self-consistent 

local values for all quantities. 
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ẑ

b) 
Fig. 4 – a) Approximate representation of the current path across the detector, from the HV 
power supply poles. The current sources represent the current density created in the gas gap 

by the avalanches or other discharges that take place in there. An electric field gE
�

 appears in 

the gas gap. Note that if the currents are the same in both gaps, by symmetry the average 
voltage in the centre of the floating RE must be / 2floatV V= . Legend: current lines – blue; 

electric field lines in the gas gap red; for other items see Fig. 3. b) Voltage drops across the 
several elements of an RPC, based on Fig. 4. 
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x (m)

z 
(m

)
HV application point

Resistive electrode

Medium resistivity layer

j
�

a) 

 b) 
Fig. 5 – a) Example of a numerical calculation of the current and potential distribution on a 
cross-section of the RL-RE ensemble assuming translational symmetry perpendicular to the 
plane of the image. The HV contact is on the upper left face of the RL. Note that the 
isopotencial lines are not exactly parallel to the face of the RE. Parameters: RL surface 
resistance ℜ=10 GΩ; RE resistivity ρ=1013 Ω·cm; injected current density j=100 pA/cm2. 
Legend: current lines – blue; isopotential lines in steps of 50 V – red. b) The electric potential 
along the top and bottom faces of the RE, showing a parabolic voltage drop of 50V between 
the edge and the center of the chamber (

1V∆ ) and 200V across the RE (
2V∆ ). 

3.2.  Fluctuations of the polarization 

On top of the steady (time-average) aspects described above there will be fluctuations in 
time of the gap electric field  

 ˆ( )g
g

V
E z

g
= −

�
 (5) 

owing to the field generated by the charges that the avalanches will deposit over the REs. A 
representation of this situation is shown in Fig. 6 for a simple RPC. As the perturbating electric 

field gE∆
�

 also exists inside the RE there will be a collective motion of the conduction charges 

in there that will eventually cancel the deposited charge. 
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Fig. 6 – Representation of the electric field generated by a charge placed on the interface 
between the RE and the gas gap in a simple RPC. 

The situation shown in Fig. 6 has been treated analytically [11], with the result for the 
perpendicular component of the perturbation field: 
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 (6) 

Most of the expression deals with the spatial variation (including the omitted 1f  and 2f ) but 

the most interesting aspect is the time dependence. The perturbation field decays exponentially 

with a range of relaxation time constants bound by 1τ  and 2τ , as given in (6). For reasonable 

values of the physical parameters, taking glass as the RE material, these time constants will be 
of the order of seconds. In some circumstances it may not be unreasonable to take identical 
values for these parameters 

 0
2 1

d

g

ε ετ τ τ
σ σ

= + = ≈  (7) 

in which case the time behaviour becomes analog to that of an RC circuit. (For equivalence with 

RC models 2τ  should be used.) In such RC models ([12], [13]) the space dependence is 

introduced as a box-like “effective perturbation area”: avalanches falling onto this box charge 
an RC circuit that represents this area and have no action outside the box. 

It is clear that in RPC structures more complex than shown in Fig. 6 the calculation of the 
perturbation will be more involved, eventually requiring a numerical approach. However the 
phenomenon will be physically similar and the present case can serve as a qualitative guide. 

 
Having calculated the characteristics of each elementary perturbation one should address the 

problem of the collective perturbation arising from all avalanches depositing charge in the 
electrodes at random positions and times.  
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Naturally, a possibility is to proceed by Monte Carlo simulation, as shown in [11], Figure 2.  

Fluctuations of magnitude about ±1% of the applied field are visible superposed on an average 

field drop close to 8% for 2600 /Hz cmφ = . 

A nimbler, however less accurate, way to proceed is to note that this is a “shot noise” process 
for which there is a simple theoretical result: Campbel’s theorem. For the rms value of the 
instantaneous drop voltage across the RE this results in [13] 

 

2
( )

1

( )
2RE RE

rms q
q

rms V V
N

N A

φ

φτ

 +  
 = ∝

=

 (8) 

which turns out to be proportional to the square root of the particle inflow. In here A is the 

“effective perturbation area” and N  is the average number of avalanches that contribute to the 
perturbation. An estimate for the area A (Ã) can be determined from  (6) [11] yielding 
Ã=5.7mm2 for the case g=0.3 mm and d=3 mm.  

At large values of φ  the dependence of ( ) /rms q q on Vg (to be discussed in section 5.3) 

must be included in (8) for good agreement with the corresponding MC simulation [13]. This 
actually reduces the fluctuations with respect to the unperturbed case. 

It should be noted that in this section we were ignoring VRL. The VRL fluctuations haven’t 
been treated in the literature, but, owing to the, in principle, much lower resistivity of the RL 
material, the time constants associated with the RL are certainly much smaller than the RE’s. 

3.3.  Change of regime 

When the RPC will go through a change of regime, for instance a sudden change of the 
particle inflow, there will be a transient imbalance of the DC polarization that will evolve in 

time with the time constant (7). For short bursts of radiation (compared with τ ) this may 

simulate an effective lower resistivity of the RE [13]. 

4.  Avalanches 

Free “primary” electrons will appear in the gas gaps either by direct ionization of the gas by 
high-energy charged particles, creating electron-ion pairs, or by emission from the cathodes. 
The later can arise by photoelectric effect upon irradiation by ultraviolet photons, or presumably 
spontaneously, generating dark counts. No detailed study was made on the physical origin of 
dark counts in RPCs. 

Each of the primary electrons will drift under the influence of the gap field gE
�

 and 

eventually will gain enough energy to collision-ionize the gas molecules generating new 
electron positive-ion pairs. The new electrons thus freed will themselves undergo the same 
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process, generating a cascade process known as a Townsend avalanche. As the drift speed of the 
electrons is about a thousand times higher than that of the ions, these are left behind in a cloud 
that is essentially static in the time frame of the avalanche growth. These ions will eventually 

drift in the opposite direction but at the practical values of gE
�

 never ionize themselves.  

Many secondary processes can take place in avalanches (see e.g. [14]-[16] and references 
therein), the most relevant for RPCs being the formation of negative ions by electron capture if 
the gas mixture has any electronegative component. Indeed RPCs and PPCs1 are the only 
gaseous detectors that can work in electronegative gas mixtures, which have a beneficial effect 
in their stable operation, even if not well understood.  

As the electrons and ions drift, they go through random collisions that lead them astray of a 
straight path. If one considers a cloud of particles, such effect, called diffusion, causes the 
widening of the cloud. 

4.1. Average avalanche growth (swarm model) 

If one considers a large number of particles (a “swarm”), described by a particle density 
distribution, their collective behaviour can be described in detail by an hydrodynamic model 
(e.g.: [17]): 
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 (9) 

where all quantities (to be described below) are time and position dependent. 

In principle ( , )gE r t
� �

 is the instantaneous applied field calculated from eqs. (1), (5), 

including eventual fluctuations. But it should be noted that the time scales involved in these are 

much longer than the phenomena here described and therefore gE
�

 may well be considered as 

constant within the electron and ion transit time scale. 

                                                 
1 Parallel-Plate Chamber: the fully metallic version of RPC. 
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Equation (9) a) is just Poisson’s equation applied to the net space charge density (scρ ) 

created respectively by the electron, positive ion and negative ion numerical densities, 

( , ), ( , ), ( , )e i in r t n r t n r t+ −
� � �

. The elementary charge is 191.60 10
p

q C+
−= × . Such equation must 

be accompanied by the relevant electrical boundary conditions, which must include the resistive 
materials. In most practical cases it is very likely that the relaxation times of those materials will 
be much longer than the very short time scale of avalanche development (few ns) and the 
resistive materials can be treated as pure dielectrics. In this case the avalanche calculations in 
RPCs are essentially similar to any other detector’s. 

Eq. (9) b) states that the total electric field E
�

 felt by the avalanche is the sum of the space-
charge field and the applied field. If the former is comparable to the later the avalanche is said 
to be under the influence of the “space-charge effect”, while if the former is much weaker than 

the later then gE E≈
� �

,  (9) a) can be ignored and equations c) to e) become independent of each 

other. This is the “small avalanche”, “proportional avalanche” or “Townsend avalanche” limit, 
so called because in average the total charge generated will be proportional to the amount of 
primary charge: 
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 (10) 

Equations (9) c) to e) are all similar and describe for each point in space what are the 
possible causes for a change in time of the densities of the different species (electron, positive 
ion, negative ion). These must be complemented with the relevant initial conditions.  

The left hand side (lhs) of these eqs. is just the standard matter conservation equation, 

involving the total particle flow density for each species, given in (9) f). The parameter aW
�

 is 

the respective swarm drift velocity, following the direction of E
�

 (or against for negative 
particles). The first term in the right hand side (rhs) of (9) f) is the drift particle flow density and 
the second term the diffusion particle flow density, also known as Fick’s law. The parameter 

aD  is the diffusion coefficient.  
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The rhs of eqs. (9) c) to e) expresses particle creation or destruction. The factor ( ) eWα η−
�

 

in (9) c) is the swarm net ionization rate (ionizations minus attachments per unit time)1 and, 
multiplied by the electron flow density, accounts for the creation of new free electrons by 
ionization and for their destruction by attachment in electronegative mixtures, creating negative 

ions. The spatial rate of ionization is the “first Townsend coefficient” α (ionizations per unit 

electron swarm path) and the spatial rate of attachment is the attachment coefficient η 
(attachments per unit electron swarm path). For a given gas mixture, the magnitude of the 

parameters , , ,a aW Dα η
�

 is a function of E
�

 only. The correspondence of these quantities on the 

remaining equations is straightforward, taking into attention the respective subscript labels. 
The term S accounts for “other” sources of ionization, to be specified later. 
Rigorously, the diffusion process is slightly different along the drift direction or along the 

direction perpendicular to it, originating slightly different diffusion coefficients in each of these 
directions. This fine point is generally disregarded in this type of calculations. Likewise, there is 
some dissent in the literature as whether the diffusion flow density should be included in the 
particle creation term. In here we have included such term, following [18], [19].  

Owing to the very different electron and ion drift velocities a considerable simplification can 
be achieved with little error if one decouples the almost instantaneous creation of the ion cloud 

by the electron avalanche from its posterior slow drift and diffusion. Defining eTɶ  as the total 

progression time of the electron avalanche (must stop at the anode),  (9) can then be simplified 
to 
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 (11) 

                                                 
1 In here the term “swarm” applied to a certain quantity implies that this is the local average of this quantity over 

the ensemble of all relevant particles that are present in this location. For instance, the swarm electron velocity at a 
point in space and time is the spatial average of the velocity of all electrons in the immediate vicinity of this point. 

DISCUSS the connection between swarm approximation and real electrons. 



P
o
S
(
R
P
C
2
0
1
2
)
0
3
3

 

 

 

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

 

2

0 0

,0

,0

( )
) &boundaryconditions

)

) 0,  with ( ,0) ( , )

) 0,  with ( ,0) ( , )

)

e

sc i i e e
sc p

sc g

i
i i i e

i
i i i e

a a a a

n n n T
a V q

b E V E

n
c j n r n r T

t
n

d j n r n r T
t

e j W n D

ρ
ε ε+

+ −

+
+ + +

−
− − −

− −∇ = − = −

= −∇ +

∂ + ∇ ⋅ = =
∂
∂ + ∇ ⋅ = =
∂
= −

ions'drift for t > Tɶ

ɶ�

� � �

� � � � ɶ

� � � � ɶ

� ��

{ , }a a i i
n

= + −













∇


 (12) 

where ( )e en Tɶ  denotes the electron density after the progression of the electron avalanche, 

typically lying on the surface of the cathode. If the anode is metallic this is totally annulled by 
the image charge, but if the anode is resistive it will perturb the gap field, as discussed in section 
3.2.  

En rigueur, only in the diffusionless limit, when the avalanche is point-like, it is possible to 

define sharply the avalanche’s progression time up to the anode. The progression time eTɶ  in 

(11) should be understood as a time at which the electron current becomes negligible, as it is 
never mathematically null (next section). 

Is it worth noting that in this approximation and if S can be neglected, which is often the 

case, ,0in +  and ,0in −  are identically distributed in space and the net ion charge density 

( )i ip
q n n+ + −− , which governs the space-charge effect, depends only on ( )α η− , likewise the 

electrons. Therefore only the combination ( )α η−  matters for the development of the 

avalanche.  

4.2. Small avalanches 

The small avalanche approximation was defined in (10) as the limit at which the electric 
field caused by the avalanches’ own space-charge is negligible when compared to the applied 
field. In this limit considerable progress can be done analytically. 

Very good expositions can be found in the literature; for instance Raether [26] gives all 
details on the case when diffusion is neglected. Much more complicated situations, involving 
detachment and metastable atoms are treated in [17], but this work focuses on a somewhat 
different point of view. As diffusion is a determinant process in RPCs, actually ruling the very 
important space-charge effect via the avalanche width, in here we will treat both the 
diffusionless and diffusive cases for an arbitrary point of release of a single primary electron-ion 
pair and the case of an uniform ionization line in the absence of diffusion. Other situations can 
be treated by superposition. 
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In this section we will use the geometry and quantities defined in Fig. 7. The avalanche starts 

at the origin of the (cylindrical) coordinates and progresses towards the anode at a distance 0z . 

The gap width is g . 

gE
�

z
0zg

ρ
,e iW −

�

iW+

�

 
Fig. 7 – Definition of geometry, coordinate system and some quantities used in this section. 

In the small avalanche limit the coefficients are constant and the equations (10) are linear. 
Taking additionally S=0, reasonably simple and useful solutions can be obtained. These 
conditions can be somewhat relaxed at the expense of more opaque expressions [27].  

From the linearity of the equations it follows that the evolution of an arbitrary initial 

distribution ( ),0an r
�

 can be calculated by convolution: 

 ( ) ( )
{ , }

, ,0 ( , )a a a

all space a e i

n r t n r n r r t d r
= ±

′ ′ ′= −∫
� � � � �

⌣ . (13) 

where ( , )an r t
�

⌣  is the impulse response for each relevant species and for each initial electron-ion 

pair position r
�

. Owing to the presence of the electrodes, the impulse response is dependent on 
the position the initial electron. 

Combining (10) and (11) one gets: 
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 (14) 

where, for compactness, we will use *( )α η α− = . The main equation to be solved is (14) a). 

Once en⌣  is known it is simple to calculate the ion densities 
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i e in t j t W dt z
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η± ±
   = ⋅ +   
   
∫
�

⌣ ⌣  (15) 

where for ,0in +⌣  we added an extra ion at the origin, the pair of the initial electron. Taking into 

account the presence of the anode, the positive and negative ions distribution generated by the 
electron avalanche and that will flow later to the, respectively, cathode and anode are 

 ,0( ,0) ( )i i en r n t T± ±= =� ɶ
⌣ ⌣  (16) 

The flow of ions to the electrodes is calculated by the convolution (13) of (16) with the 

impulse solution of (14) d), ih±⌣ , which is a particular case of the solution of (14) a): 

 ( ) ( ), ,0 ( , )i i i

all space

n r t n r h r r t d r± ± ±′ ′ ′= −∫
� � � � �

⌣ ⌣ ⌣   (17) 

The total number of generated ions is 
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which should agree with the total flow of particles through the electrode planes 
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  (19) 

where ,a zj  is the total particle flow in the z direction: 
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The currents and total charges induced in the external electrodes by the different particles 
will be  
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where γ  is an electrical induction factor with units of charge per length defined in section 6.1, 

(96), (97)1. 

4.2.1. Diffusionless limit 

Very simple and useful expressions can be derived for the case when diffusion can be 

neglected ( 0aD =  in (14) e)). In this case the diffusionless solution of (14) a) is 

 ( )*

e eW t
e en z W tα δ= −⌣  (21) 

where ( )xδ  is Dirac’s delta function. This represents a point-like avalanche that progresses in 

the gap with velocity eW  along z, containing at 0t =  a single electron at 0z = . Therefore, the 

radial coordinate is not necessary and it was omitted. The vanishing of the avalanche when it 

encounters the anode at 0z z=  is not part of this solution and must be taken into account 

externally.  
Of course, in the diffusionless limit the particle flow density is only in the z direction and 

given by 

 , { , }a a z a a
a e i

j j W n
= ±

= = ⌣⌣ ⌣   (22) 

The number of electrons in the avalanche is (19): 

 
*

0e z
eN α=⌣   (23) 

which, in the diffusionless limit, is equal to the total avalanche charge when it touches the 

anode: 
*

0
0( / ) e z

e egap
n t z W dV α= =∫ ⌣ . 

Following (20), the current and charge induced by the electrons is  

 
( ) ( )

*

) 0( e eW

e ind

t

ee zI W W t
α θγ −=⌣  (24) 

 

*
0

( ) ( )*

e 1z

e ind e indQ N
α

γ γ
α

−= = ⌣⌣  (25) 

where ( ) ( )
x

x x dxθ δ
−∞

′ ′= ∫  is the Heaviside function and we have defined the quantity ( )e indN⌣  

(number of created electrons/*α ) for later use. 

The ion distributions created in the gap by the progressing electron avalanche are, following 
(15)  

                                                 
1 For metallic anode and cathode /

p
q gγ +=   
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i en t z W t z zαα
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   = − − +     
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⌣  (26) 

which results (16) in the ion distribution at 0 /e et T z W= =ɶ  
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θ θ δ
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�
⌣  (27) 

and the corresponding total number of generated ions is (18) 
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0i e indN N
α
η±
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⌣ ⌣   (28) 

The number of generated particles (including the primary pair) of each species respect the 
properties (the first being an obvious necessity) 
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2 1
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  (29) 

Note that in the absence of attachment (0η = ) the second line reduces to 2tot eN N=⌣ ⌣ , which is 

a necessary property as well.  
The impulse solutions of (14) d) are, respectively 

 ( )i ih z W tδ± ±= −   (30) 

which upon convolution (13) with (27) yield the drifting ion charge densities  
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0
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⌣   (31) 

which is are just clipped drifting exponentials. (Note that 0iW+ < , 0iW− > .) The presence of 

the electrodes is not contained in this solution.  
Defining the ionic particle flow densities as in (22) it can be verified that (18) agrees with 

(19).  
Applying (20), the induced current densities are 
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  (32) 
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A representation of these currents can be seen in Fig. 8. 

 
Fig. 8 – Representation of the positive ions current and the total ionic current in the 

diffusionless case for parameters 140 mmα −= , 110 mmη −= , 130 /
e

W mm sµ= , 

0.3 /
i

W mm sµ± = , 0 0.35mmz = , 0.5 mmg = , /
p

q gγ += . All subsequent figures of this 

section will be represented with these parameters. 

Substituting 0z g d= =  in (32) one recovers eqs. 2.25 and 2.26 of [26].  

The ionic induced charges are (20) 

 
( )( )

( )

*
( ) ( ) 0 0*

( ) ( ) 0*

1i ind e ind

i ind e ind

Q g N z g z

Q N z

αγ α
α

ηγ
α

+

−

 = − + + −  

= −

⌣

⌣

  (33) 

The total induced charge can be written as 

 
( ) ( ) ( ) ( )
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2
tot

ind e ind i ind i ind

e ind

N
Q Q Q Q g

g gQ

γ

γ α

+ −= + + =

= +

⌣
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⌣

  (34) 

The first line expresses the necessary property that the total induced charge is proportional to 
half of the total number of generated particles (twice the number of electrons), just reflecting the 
fact that particles are produced in pairs and that the full drift of each pair induces the charge 
equivalent to a single elementary charge. The second line is specific of Townsend 
multiplication: for large gas gains the electronic (fast) induced charge is a fixed fraction of the 

total induced charge:( ) ( )/ind e indQ Q gα≈  . Note that for a chamber delimited by metallic 

electrodes (a PPC) 
p

g qγ += . 

 
The expressions presented so far are for a single primary electron-ion pair: the impulse 

solution. Other situations can be calculated by superposition, on account of the linearity of the 
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base equations. As an example we will calculate a uniform ionization across the gap, totalling 

one electron-ion pair. In this case any impulse quantity 0( )X z⌣  will correspond to  

  0 0 0

0

1
( ) ( )

g

X z X z dz
g

= ∫ ⌣   (35) 

The result for the induced currents is 
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  (36) 

reproducing eqs. 2.31 and 2.35 of [26], while there is a slight discrepancy on 2.34. A 
representation of the currents’ development can be seen in Fig. 9, along with a comparison with 
(24) and (32). 

 
Fig. 9 – Representation of the induced electronic (left) and total ionic (right) currents for 
uniform ionization across the gap and for a single electron avalanche starting at 

( )* * *
0 ln (e 1) / ( ) /gz gα α α= −  which results in the same total amount of electronic induced 

charge. While the electronic currents are quite different in shape, the ionic currents are 
undistinguishable.  

The corresponding induced charges are 
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  (37) 

It is clear that relations that don’t depend explicitly on 0z , such as (29) and (34), are not 

changed by the distribution of the primary charges and remain true. 
Comparison between (37) and (24), (33) shows that at high gas gain the ratio between the 

induced charge (electronic or ionic) generated from a single electron released from the cathode 
and the induced charge generated from the same amount of primary charge distributed evenly 

across the gap approaches * gα . 

4.2.2.  Drift and diffusion 

1.1.1.1 Electrons 
We start by noticing that the function 

 ( ) ( )
( )2

2

*

*

expexp
44

, exp
4 4

ee
e e

e e

e e

z vt

D tD t
n r t W t

D t D t

v W D

ρ

α
π π

α

 −  − −   
   =

= +

�
⌣

 (38) 

is a solution of the electron’s equation (14) a) [19] and that 
0

lim ( )e
t

n rδ
→

= �
⌣ , ( )rδ �  being the 

tridimensional Dirac delta function. That is, en⌣  describes the electronic particle density of an 

elementary avalanche issuing from a single electron at the origin. The total number of particles 

contained in the avalanche grows exponentially in time as ( )*exp eW tα , moves with velocity 

*
e ev W Dα= +  and spreads gaussianly with variance 2 eD t  (so 2.36 2 eFWHM D t= ). 

Essentially this is what is shown in Fig. 15 a) for the proportional region t<3 ns, as the initial 

width was made extremely small. Note that the swarm electron velocity v  is slightly larger than 

the average electrons physical velocity eW . This is possible because v  denotes the movement of 

a mathematical point (the point of highest swarm density), which is not bound by physical 
constraints.  

Similar impulse responses apply to eqs. (14) d), with the obvious exchange of labelling and 

setting * 0α = . 
Often we will need (38) integrated over the plane parallel to the electrodes: 
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D t
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The electrons’ flow density is in this case given by (14) e), 

 
*ˆ ˆ( ( ) )

( , ) ( , ) ( , )
2

e e z
e e e e

e z W D t e
j n r t n r t v r t

t
ρρ α+ + −

= =
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⌣ ⌣ ⌣⌣   (40) 

where ̂ ˆ, ze eρ  are the unit vectors in the direction of each coordinate axis and ( , )ev r t
� �
⌣  is the local 

velocity of the electron swarm. (Not to be confused with the constant v  defined above – 

( , )ev r t
� �
⌣  results from the usual definition of flow density j nv=

� �
.) The total flow in the z 

direction (integrated radially) is 

 
*

,

( )
( , ) ( , ) ( , )

2
e e

e z e e e

z W D t
j n z t n z t v z t

t

α+ −= =⌣ ⌣ ⌣⌣   (41) 

where ˆ( , ) ( , )e e zv z t v r t e= ⋅� �
⌣  is the swarm velocity in the z direction. 

Note that for negative z, particularly in the first instants of the avalanche, when the density 

gradients are stronger, there can be a flow of electrons towards the cathode (, 0e zj < ) in some 

regions of the avalanche. Under the formulation of the hydrodynamic model (9) these negative 
flows will generate “negative particles” that are obviously unphysical. In here these are 
integrated in, so there is an implicit, although slight, approximation. 

The total number of electrons eN⌣  generated by the elementary avalanche (38) is, following 

(19): 

 
*

0z
eN eα=⌣  (42) 

In this aspect there is no difference between this one and the diffusionless case discussed in the 
previous section. 

Following (20) and making the slight approximation of disregarding the presence of the 

cathode (g = ∞ ), the electronic induced current and charge is given by  

 ( ) ( )2

0* 0
( )

1
exp 1 erf exp

2 42
e

e ind e e
ee

z vtz vt D
I W t W

t D tD t
γ α

π

      −−
= + − −               

⌣   (43) 

 ( ) ( )*
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e ind e ind
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Q Nγ γ

α
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It is quite remarkable that the calculation yields a total electronic induced charge that is the 
same as in the diffusionless case (24). A representation of both (24) and (43) is shown in 
Fig. 10. 

 

 
Fig. 10 – Electronic induced current with and without diffusion ( 0eD → ) calculated for the 

same parameters as in Fig. 15 and 227.08 10 /
e

D mm sµ−= × . The corresponding induced 

charge is the same for both cases.. 

 
Concerning the treatment of other initial distributions, for instance, if the initial electron 

distribution is Gaussian with variance 2σ , centred in the origin and containing 0N  electrons, it 

results from (13) and (38): 
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 (45) 

which is gaussian with variance equal to the sum of variance of the initial distribution with the 
variance resulting from diffusion.  

1.1.1.2 Ions 
The ion distribution generated during the avalanche follows (15), which explicitly becomes 

 
*

,0

0

1( )
( , ) ( , ) ( )

02

t
e e

i e

z W D t
n r t n r t dt z

t

α α δ
η±

′   + −′ ′= +   ′   
∫

� �
⌣ ⌣   (46) 

Apart from the initial electron-ion pair, both distributions follow the same spatial-temporal 

development and differ only by the relative factor /α η . This integral cannot be evaluated 
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analytically. A numerical example is presented in Fig. 11, illustrating the fact that the correct 
superimposition of the electron and ion distributions, fundamental for the space-charge effect, 
depends on the correct modelling of diffusion 
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Fig. 11 – Electron and net (positive-negative) ion density calculated according to (38) and (46) 
(numerically) along the central line of the avalanche (ρ=0) for the parameters of Fig. 15, 
t=3 ns. As in this picture the avalanche proceeds from right to left it can be directly compared 
with Fig. 15. The inset shows that the ion density over the central line has a relatively limited 
range, as diffusion spreads the charge as the avalanche proceeds.  

In the diffusive case the electron avalanche progression time eTɶ  must be taken 

mathematically as infinite (in practice only a few electron transit times) because (38) is never 
mathematically null for finite time. The ion distributions remaining in the gas gap after the 
avalanche is over are 
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  (47) 

whose z profile after radial integration is just 

 ( ) ( )*
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and the corresponding total number of generated ions is  
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exactly the same as in the diffusionless case. Note that although the electron swarm (38) has a 
Gaussian radial profile the ions’ (47) hasn’t. 

The impulse solutions of (14) d) are the travelling and expanding Gaussians: 
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  (50) 
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To calculate the distribution of drifting ions one should convolve (47) with (50) over all 
space, which can be done only numerically. In Appendix I it is justified that, owing to the 
Gaussian radial profile of both (40) and (50), if in the end we are interested only in the 
longitudinal distributions (integrated radially) one may instead convolve only the longitudinal 
distributions (48) and (51), yielding 
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  (52) 

The corresponding ion flow density is given by 
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of which a representation is shown in Fig. 12. Note that the presence of the electrodes is not part 
of this solution. 

 
Fig. 12 – Representation of the positive (red lines) and negative (blue lines) ion densities for 
t=0 ns (solid lines) and t=300 ns (dashed lines). The positive ions count as negative flow, as 
the positive z direction lies towards the anode. Note that the electrodes are not incorporated in 
these solutions, so the swarms flow indefinitely. 

The induced ion currents are 
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 (54) 

of which a representation is shown in Fig. 13 

 
Fig. 13 – Representation of the total ionic currents with and without diffusion. The same 

charge is induced in both cases. 245.0 10 /
i

D mm sµ±

−= × . 

Remarkably, the ionic induced charges calculated after (20) and (54) are exactly the same as 
for the diffusionless case (33), equally holding the properties (34). 

4.2.3.  Space-charge field 

Neglecting the presence of the electrodes (close to a spatially small avalanche distant from 
the electrodes) the space-charge field can be approximately calculated for the small avalanche 
approximation. However, when the field becomes significative relatively to the applied field the 
small avalanche approximation ceases to be valid.  

It is clear that the point-like avalanche approximation presented in section 4.2.1 doesn’t 
produce any realistic field, so only the diffusive case can be considered. 

Owing to its spherical symmetry, the field created by the electronic part of a small avalanche 
(38) can be straightforwardly calculated by application of Gauss’ law of electrostatics, yielding 
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  (55) 

pointing towards the centre of the electron cloud at 0, z vtρ = = . Naturally, superimposition 

will apply. This is however limited to the electron swarm under the small avalanche limit. As 
soon as there will be some space-charge effect the electron distribution loses its spherical 
symmetry and (55) will become inaccurate. The ion’s distribution (46) is not spherically 
symmetric in any case. 

 
Fig. 14 – Representation of the radial electric field (55) generated by the electron swarm (red 
line). For comparison, the electron charge density (38) is represented in blue. 

 
It is more general to consider only rotational symmetry, which is preserved in any case of the 

swarm approximation. A ring of radius a  centred at the origin and containing the constant 

linear charge density λ  creates the potential and field ([8] v.I pp. 176) 
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where ( )K k  and ( )E k  are the complete elliptic integrals of the first and second kinds. Over 

the axis (56) simplifies to a well known result 
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For a rotationally symmetric volume charge distribution ( , )h zρ  the superposition formula 

will be just the convolution 
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with a similar formula for the field.  
In particular, for a radially Gaussian volume charge distribution 
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ρ σλ πσ−= , such as the integrand of (46), the radial contribution to the 

axial field can be integrated analytically  
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  (59) 

The remainder of the calculation must be performed numerically. 

4.3.  Space-charge effect 

The space-charge field causes two effects: reduction of the avalanche gain because for the 
bulk of the swarm the electric field is reduced with respect to the applied field and promotion of 
the appearance of runaway self-sustained discharges called “streamers”. The former effect is 
observable in a number of ways (see, for instance, [26] section 3.7, [28], [29]): 

- for fixed irradiation and geometry the growth of the induced charge with the 
applied voltage deviates from the exponential behaviour (25) and becomes 
almost linear;  

- the ratio of electronic to total induced charge become larger than the ratio given 
in (34) for Townsend avalanches;  
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- the charge spectrum changes its shape, with suppression of the larger 
avalanches. 

4.3.1. Numerical calculations 

An example of a calculation of the electron avalanche performed by finite elements for an 
axially symmetric avalanche is shown in Fig. 15. The gas (pure tetrafluorethane) parameters 

were taken from [20] and the applied field is 60 /gE kV cm= . Attachment is small in this gas 

and it was ignored. The S term was also taken to be zero.  
A tiny electron swarm containing the charge of one electron is started very close to the 

cathode with a Gaussian spatial density distribution and then drifts downwards while 
multiplying and growing in size by diffusion. An ion cloud trails behind, with partial 
superimposition. For development times up to 3 ns the velocity is constant and the shape of the 
electron’s isodensity lines is circular, while after this time there is an apparent acceleration and 
distortion of the electron swarm owing to the space-charge effect. This can be verified in Fig. 15 
b) top left panel, which shows that up to 3 ns the electric field is essentially equal to the applied 
field, while for 5 ns there is a quite strong distortion. At this time most of the ion swarm is 
under the influence of a reduced electric field (the electrons are “pushed back” by the positive 
ions) and it can be seen (same figure, rhs panel) that the initial exponential current growth is 
thwarted. This self-control of the avalanche charge via the space-charge effect is a fundamental 
feature of the avalanche-mode RPC operation (e.g. [21]-[25]). 

It is clear that the full 3D solution of  (11) requires extremely heavy numerical machinery. 
Naturally, avalanches can as well be modelled by pure microscopic Monte-Carlo methods, 

following all details of the movement of every particle. However, for large avalanches 
containing up to 108 charged particles this is hardly a practical proposition.  

An interesting combination of both methods is the method of “clouds”, where small parts of 
the avalanche are propagated over a short time step following the analytical solutions for small 
avalanches subject to the local electric field. The field is then recalculated after each step and 
the process re-iterated. One advantage of this method is that the avalanche gain fluctuations can 
be incorporated in the propagation of the sub-avalanches. It was successfully applied to the 
calculation of axially symmetric avalanches [24]. 
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1 ns0 ns 2 ns 4 ns3 ns 5 ns

z 
(m

m
)

 a) 

b) 
Fig. 15 - Representation of the development of an axially symmetric avalanche following the 
hydrodynamic approach,  (11). a) Cross-section of the charge distributions around the 
symmetry axis. The gray contour lines represent the percentiles of the electron distribution 
(isodensity lines) while the colour map represents the percentiles of the density of ions. The 
yellow line represents the electron’s drift velocity. The avalanche was started from the 
cathode (z=2 mm). Note that for times up to 3ns the velocity is constant and the shape of the 
electron’s isodensity lines is invariable, while after this time there is an apparent acceleration 
and distortion of the swarm. b) – Top left panel: electric field along the centre of the 
avalanche after 3ns (blue line) and 5 ns (green line). Bottom left panel: corresponding electron 
(solid line) and ion (dashed line) numerical densities. Right panel: induced current, showing 
the initial exponential growth and the onset of space-charge effect after 3 ns. 
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4.3.2. Analytical models 

Besides numerical calculations, there were attempts to parameterize the space-charge effect 
in some compact formula that might reproduce the experimental data, typically modifying (14)
 a) by the introduction of a charge-dependent effective first Townsend coefficient 

( )eff eff eNα α= .  

Before going into details we need to formulate (14) a) in simplified way. Neglecting 

diffusion the avalanche is point-like (21). Inserting already effα , volume integration (18) of 

both members of (14) a) yields 

 0

( )
( ) /e

eff e e e

dN t
W N t t z W

dt
α= <  (60) 

Of course, at 0 / et z W=  the avalanche reaches the anode and stops. This equation may be 

restated in terms of the avalanche progression length as 

 0

( )
( )e

eff e

dN z
N z z z

dz
α= <  (61) 

Neglecting attachment, the total induced charge will be, after (29) and (34), just 

( ) ( ) ( )ind e ind i ind eQ Q Q gNγ+= + =⌣ ⌣ , while ( )e indQ⌣  and ( )i indQ +⌣  depend on the specific space-

charge models. 

In the following, ,e satN  denotes the indicative charge scale at which the transition from the 

Townsend to the space-charge regime occurs. 
 
Raether’s formulation ([26] section 3.7) is  
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α α
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 (62) 

It is apparent that the multiplication ceases if ( ),ln / 1e e satB N N = , so the solution converges to 

the asymptotic value 1/
, , e B

e max e satN N= . The solution is 
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 (63) 

The two segments match to the first derivative. 
 
Aielli’s formulation [28] amounts to  
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 ( ),1 /eff e e satN Nα α= −  (64) 

and the solution of (61) is then integrated to yield 
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where 0z  is a free parameter. The asymptotic behaviour is linear: 
,

,
e e sat

e e sat
N N

N N z cteα +
≫
≃ . 

 
The formulation of [22], which is here slightly expanded, is 

 
( ),1 /

eff m

e e satN N

αα =
+

 (66) 

with the solution  

 ( ) ( ), 0 ,e , /
mM m zm

e e sat e satN N w K K N Nα+= =  (67) 

where ( )w x  is Lambert’s function [30] defined by ( ) ( )w xe w x x= . The asymptotic behaviour is 

,
,

e e sat

m
e e sat

N N
N N m z cteα +

≫
≃ , linear for 1m=  as approximately observed experimentally. 

 
A comparison between the more exact numerical approach and the analytical ones is still 

missing. 

4.4. Avalanche fluctuations 

The avalanche growth is not fully deterministic, particularly on the initial stages of the 
avalanche when the number of electrons is lower than about one hundred (see for instance [31] 
Figure 6). After this stage the avalanche growth proceeds deterministically, essentially as 
described in sections 4.2 and 4.3. As a result, the final avalanche charge and the other related 
quantities will fluctuate around the average values given in these sections. As we will need later 

to consider other sources of fluctuations, will label this as the stochastic process A . 

As the stochastic behaviour is concentrated in the very first stages of the avalanche, when the 
avalanche charge is small, it is useful to describe the stochastic variations as a fictious random 

initial charge 
0

N  with probability distribution function (PDF) ( )P
A 0
N  and unit average value 

that will then multiply deterministically according to a deterministic function 0( )eN N , 

reaching a final average value eN . In these conditions the PDF of eN  is given by [25] 
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 ( ) ( )
0 0

0
0 ( )e

e
e

P P
=

∂=
∂A A N N N

N
N N

N
 (68) 

where 0( )eN N  is the inverse function of 0( )eN N . Naturally, all these functions and PDFs are 

also function of other problem variables, such as 0, ,d zα , etc. These concepts are illustrated in 

Fig. 16. 

Progression distance or time

Space-charge regime

Stochastic behaviour

Exponential growth
(Townsend avalanche)

Charge saturation 

level

( )P T

( )eP N

( )log eN

( )0P N

Timing threshold

Deterministic behaviour ( )0eN N

~100 e-

( ),e satN

 
Fig. 16 – Illustration of the concepts subjacent to (68). The avalanche charge ( )e zN  (blue 

line) has initially an erratic (stochastic) behaviour until it reaches a level of about 
100 electrons. Then the behaviour is largely deterministic, starting by an exponential growth 

region (small avalanche). At some charge ( ),e satN the space-charge regime sets in and there 

is a departure from exponential growth. The stochastic part can be taken into consideration by 
exponential back-extrapolation from the exponential growth region (red lines), generating the 

fictious distribution ( )0P N , which is deterministically propagated in time via the function 

0( )eN N . If charge is measured after a certain development length it will be visible the 

charge distribution ( )eP N . If the development time is measured at a certain charge 

threshold level, it will be produced the time distribution ( )P T . 

It seems to be a reasonable approximation [25] to use for 0( )eN N  average relations of the 

kind (63). However, the need to calculate the derivative in (68) restricts its use to models on 

which the large-charge behaviour depends on 0N . Of the models described in section 4.3 only 

(67) satisfies this property. However in [25] these models were modified in order to allow their 
use in this context [32] and it was found that all of them described similarly the available data. 
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4.4.1. Small avalanches 

For the calculation of ( )0P
A
N  one may consider the stochastic evolution of a small 

avalanche, progressing by a distance z, which is generally accepted as being given by Legler’s 

avalanche theory. For sufficiently large eN  (approx. 100e ≥N ) the Laplace transform of 

( )P
A e
N , ( )eM

A
N , also called the moment-generating function (MGF), is given by [33] 

 ( ) *(1 )
, 1 , ze

e
e

N r s r
M s r N e

N s r
αη

α
− += = − =

+A
 (69) 

where s  is the complex frequency. Laplace-transform inversion yields 

 ( ) /(1 ) ( ) e er N
e e

e

r
P r r e

N
δ −= − + N

A
N N  (70) 

This is actually a mixture of two distributions. A δ  distribution at zero charge with weight 

1 r− , corresponding to the probability that the avalanche will be extinguished owing to the 

electronegativity of the gas represented by η , and, with weight r , an exponential distribution 

with average value /eN r . Therefore the average value of ( )eP
A
N  is eN . 

If the avalanche is started by m electrons the corresponding PDF is the m-fold 

self-convolution of (70), with MGF ( )
e

m
M

N
. The explicit PDF is given in [33], [34]. In [33] it 

is also discussed the exact case. 

Considering that for a small avalanche the swarm charge is proportional to 0N , 
*

0 0 0( ) z
e ee Nα= =N N N N , it can be easily seen from (68) and (70) that  

 ( ) 02
0 0(1 ) ( ) e rP r rδ −= − + N

A
N N  (71) 

4.4.2. Large avalanches (space-charge regime) 

In here we will touch the case of fixed-length avalanches, which is theoretically interesting 
but seldom realized in RPCs, as the ionizing particles will leave an ionization trail. The only 
circumstances where this may be realized is the amplification of the dark noise, presumably (but 
hasn’t been investigated) generated by single electrons emitted by the cathode, or a dedicated 
experiment [25]. 

As stated above, the avalanche gain distribution ( )eP
A
N  under influence of space-charge 

effect may be calculated from (68) and (71) by application of a 0( )eN N  function, for which it 

can be used the space-charge model (67) (or any other for which the derivative 0 / ed dN N  is 
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meaningful, that is, eN  actually depends on 0N  in a non-trivial way). The necessary model 

functions are 

 

( ) ( ) ( )
( )
( )

0 , ,

0

e , /

e1

1 e

mK m zm
e e sat e e sat

K m zm

K m zm
e

N N N w K K N N

w KN K

N w KK

α

α

α

′−

′−

′−

′ ′= =

′′∂ +=
′′∂ +

 (72) 

An example of the ( )eP
A
N  thus obtained is shown in Fig. 17, to be compared with the data 

in [25] Figure 1. 

5.0µ106 1.0µ107 1.5µ107 2.0µ107
Ne

1.µ10-7

2.µ10-7

3.µ10-7

4.µ10-7

5.µ10-7

6.µ10-7

PHNeL

 

Fig. 17 – Representation of ( )eP
A
N  calculated from (68), (71) and (72) for 170mmα −= , 

6
, 2 10e satN = × , 0.3z mm= , { }1,1.5,2m= . The parameters ,e satN  and m control the 

large charge behaviour. 

5. Signal fluctuations 

Even if the detector is irradiated with perfectly identical particles, the signal generated will 
not be equal for each particle. Apart from the avalanche gain fluctuations described in 

section 4.4 (process A ), there are other sources of fluctuations contributing to the final 

generated charge: the cluster statistics (process B ), the position 0z  of each cluster (process C ) 

and the variable number of clusters generated by each particle (process D ). 

Secondary, technological, factors are the polarization fluctuations treated in section 3, either 
stochastic or position-dependent, and geometric variations, most importantly gap-width 
variations, which can be treated in the framework of a small-perturbations approach. 
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The coherent combination of all these fluctuations hasn’t been treated theoretically. 
However, solutions for some particular cases of importance are known. Naturally, numerical 
calculations by Monte Carlo are possible  [31], [22]. 

5.1. Primary ionization 

As high-energy charged particles cross the RPC gas gap, ionization clusters will be produced 
in the gas. Such clusters originate from collisions with the atomic electrons, ionizing the atom. 
The ejected electron may produce further local ionization producing an ionization cluster. The 
ensemble of the electrons produced by a passing ionizing particle is called “primary charge”. An 
illustration is shown in Fig. 18. 

The number n  of clusters (process D ) is Poisson-distributed with PDF and generating 

function, respectively, 

 
( )

( 1)

e

!
( )

( ) e

d

d

n
g

P n

C

n
ζ

λ

λ

λ

ζ

−

−

=

=

D

D

 (73) 

where λ  is the average cluster density and therefore gλ  is the average number of clusters 

produced in the gas gap.  
 

gE
�

ε
g

d

z0

 
Fig. 18 – Representation of the ionization process in RPCs. The crossing charged particles 
deposit a random number of charge clusters at random locations. Each cluster contains a 
variable number of electron-ion pairs. 

The details of the primary charge production are better simulated by tools such as HEED 

[35]. For minimum-ionizing particles the amount of pairs in a cluster (process B ) obeys 

approximately the empirical statistic  

 2
0 0( )P n n−∝  (74) 
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In here this contribution will be not taken into account, but a comprehensive treatment of its 
influence on the time resolution, along with many statistical techniques useful in this context, is 
given in [33]. 

5.2. Time distribution 

The time distribution ( )P T  obtained by measuring the avalanche development time 

corresponding to a certain threshold induced current and avalanche charge ( ), ,e ind th e e thI W Nγ=  

(in the spirit of (24)), as illustrated in Fig. 16, has been calculated by several authors ([34], [36]) 
culminating in a very comprehensive treatment by Riegler [33]. In here it will be presented only 

a streamlined and slightly simplified calculation (neglecting process B ) and the main results. 
In the spirit of (68), the change of variable relevant for the determination of time will be  

 ( ) ( )
0 0

0
0 ( )

P P
=

∂=
∂N N T

N
T N

T
 (75) 

for which we need to know the function 0( )T N  and its inverse. Note that we are calculating 

the intrinsic time jitter of the detector, neglecting any external factor, such as electronics. 
Experience seems to indicate that these factors don’t play a dominant role in well-designed 
systems. 

All calculations so far assume that the detection takes place while the avalanches are still 
progressing in the gas gap and that avalanches starting too close to the anode don’t contribute: 

only those within a distance *g  of the cathode will be visible. For 0.3 mm gas gaps this distance 

seems to be about half of the gap and the assumption was confirmed by corresponding Monte-
Carlo simulations [36].  

In this region it will be deposited an average number of clusters *gλ , Poisson-distributed 

(73), and the stochastic part of the avalanche growth will be described by (71). The equivalent 

0( )P N  will be the compounding ([37] v.1, pp.286, v.2, pp.437) of (73) with (71), with MGF  

 ( ) ( )( ) *e 1xp
r

M s C
s

s g
r

M rλ −
+

  = =     
A+D D A

 (76) 

Laplace-inversion yields 

 ( ) ( ) ( )*
0

2 *
2 *

1 0 0
0

0 e e 2rr g r g
P I r gλ λ λ δ−−=

 
+ 

  
A+

N

D
N N

N
N  (77) 
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where 1I  is the modified Bessel function of first order. The singular term ( )*r g
ee λ δ−

N  

represents the fundamental Poissonian inefficiency arising from the average number of 

avalanches *r gλ  developing in the region *g .  

If the timing threshold lies below the space-charge regime (see Fig. 16), the function 

0( )T N  can be obtained from 
*

, 0
eW t

e thN N eα=  (see (21)). Expressing ,e thN  as a time, 

*

,
e thW t

e thN eα=  one gets 

 ( )*

0
e th thW t tN e eα τ τ− −= =  (78) 

where, for compactness, it was used the reduced time ( )*/ et Wτ α= . Keeping only the regular 

part of (77), renormalized to unity, finally it is possible to apply (75): 

 ( )
( )

( )*

* *
1

ln
2

,e
1

th(r)u

r g

r g I r g u
u e

e
P u

u

τ
λ

λ λ
+ −−=

−
=

D

T

A+
T  (79) 

A remarkable feature of this distribution is that its shape depends only on * ln(1 )r g ελ = − , 

that is, depends only on the fundamental inefficiency of the detector. Keeping this constant, 

variations of thτ  or of r  generate only translational movements, so all momenta about the mean 

( )( )
n

E E −
 
T T  depend only on *r gλ . This is also true (on a different variable) if 

exponentially-distributed cluster statistics is considered [33].  

The term e uu −  in (79) is a Landau-like distribution corresponding to a single-electron 

avalanche in the limit * 0r gλ → . 

The variance of T  can be calculated as a series [34]  

 

( )

( )

( ) ( )
( )

*

*

2

2

1

*

*

2

1 1

2, ( ) ( )

e

! 1 e

( )

n n n
n nn

V

nr g

n

V

r g

V

W n W n W n

r g
W r g

n

E E

λ

λ

ζ ψ ψ

λ
λ

∞∞ ∞

=

−

+

= =

−

+

 + −  
 

=
−

 = −
 

= ∑∑ ∑

DA

A D A D
T T


���� 
���������� �� ��

 (80) 

where ( )2,nζ  is the generalized Riemann Zeta function and ψ  is Euler’s Psi function. The 

first variance term V
A

 is related to the avalanche statistics (process A ) while the second term 
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V
D

 is related to the ionization statistics (process D ). The asymptotic behaviour of both terms is 

*1/V V r gλ
A D
≃ ≃  as shown in Fig. 19. 
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b) 
Fig. 19 – a) Representation of the time resolution distribution (79) for 

{ }* 0.01,1,2,5,10r gλ = and 0, 1th rτ = =  (these produce only translational shifts). b) 

Standard deviation of the two variance components exposed in (80), along with their quadratic 
sum and asymptotic behaviour . 

Note that the experimental results are normally obtained by a gaussian fit to the experimental 
distributions and after a number of instrumental corrections such as time-charge correlation, 
generally producing values that are smaller than those shown in Fig. 19. For a more detailed 
study see [33]. 

The inclusion of cluster statistics (process B ) increases somewhat the variance and 

symmetrises ( )P T , except for exponentially-distributed cluster statistics, which has no 

effect [33]. 
 
In case the discriminating threshold is situated in the space-charge regime (see Fig. 16), (75) 

and (77) can be used in conjunction with some space-charge model. Using again model (67), the 
necessary model functions are 

 

( ) ( ) ( )
( )
( )

0 , , ,

0
,

e , /

e
,

1 e

mK mm
e sat e th e sat

K mm

e sat K m
e

N N w K K N N

w KN t
N

z Ww K

τ

τ

τ

τ

τ
α

′−

′−

′−

′ ′= =

′∂ = =
′∂ +

 (81) 

Substitution into (75) is straightforward but produces cumbersome expressions. An example of 

( )+space chargeP
A+D

T  is presented in Fig. 20. The three leftmost curves correspond to 

, ,e th e satN N< , are regularly spaced and not affected by the value of the parameter m of the 

space-charge model. The remainder curves lie in the space-charge region and their spacing 
increases owing to the “saturation” of the charge growth curve as exemplified in Fig. 16, more 
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so for larger m. Remarkably the variance of the distributions remains essentially unaffected, in 

agreement with the numerical results (with a different space-charge model) of Lippmann [24].  
For the case of single-electron avalanches a similar treatment allowed to calculate 

analytically the mean and variance of ( )+space chargeP
A+D

T  [25], confirming the weak dependence 

of the variance on ,e satN . 
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Fig. 20 – Examples of the time distributions obtained with a space-charge model 

( )+space chargeP
A+D

T . The conditions are 4
, 2 10e satN = × , * 4r gλ = , 1r = , 

{ }2 3 4 5 5
, 10 ,10 ,10 ,10 ,2 10e thN = ×  and { }1,1.5m=  respectively for the lhs and rhs 

panels. 

5.3. Charge distribution 

The charge spectrum generated in RPCs in Townsend avalanche regime have been studied 

by Monte-Carlo simulation ([23], [39]), but an analytical solution including processes A  to D  

was not yet derived. This is possible if cluster statistics is neglected, assuming that all clusters 
contain a single primary electron [38]. Under this approximation the distribution of the amount 
of charge created from a single primary electron-ion pair anywhere in the gap is the 

randomization1 ([37], v.II, pp.53) of (70) on the uniformly distributed parameter 0z : 

 ( ) ( ) ( ) ( )0 0

0

/1
,

e e
1

ln( )

e ed

e

r G r

e
e erP P z

d G
dz rδ

− −

−= + −= ∫A+C A

N N

N N N
N

 (82) 

where 
* gG eα=  is the maximum (cathode-to-anode) average gas gain. The average value is 

( ) ( ) n )/1 l (eE G G+ = −
A C

N .The corresponding MGF is 

 ( ) ( )1 ln
ln( ) /

M
r r s

r
G r G

s
s

+ − +  + 
=

A+C
 (83) 

                                                 
1 Also called mixture or weighting. 
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The distribution of the total generated charge will be the compounding ([37] v.1, pp.286, v.2, 
pp.437) of (73) with (83), 

 ( ) ( )( ) *
,

m
r s

r Gs

r
M s C M s m

λ
α

= + 
 + 

= =
A+C+D D A+C

 (84) 

Analytic Laplace-inversion of (84) is only possible for integer m, yielding cumbersome 

expressions for ( )eP
A+C+D

N . However, if G  is large we may consider the approximation [38] 

 ( ) ( )
1

1 1
1

m m m
m m

G

r s G r r
G G

r Gs G G r Gs r
M s

Gs
− −= ≈+ −     + −     + + +     

+ =
A+C+D

≫

ɶ  (85) 

which changes the momenta of eN  by amounts proportional to mG−  (which is small for large 

G and m not too close to zero) but allows analytical inversion, yielding 

 ( ) ( ) ( ) ( )
( )
1/

1
e /

e
mmG r

em m
e e

G r

m
P G Gδ

−−
− −

 
 = + −
 
  

ΓA+C+

-N

D
N N

Nɶ  (86) 

The term ( ) ( )m r g
e eG e λδ δ− −=N N  represents the fundamental inefficiency arising from 

either all avalanches being extinguished by the electronegativity of the gas or the probability 
that no cluster is produced.  

The function in square brakets is the statistical gamma distribution. For 1mG− ≪  (small 
intrinsic inefficiency) the mean and variance arise mostly from this function: 

 2
2 2

( )
ln( )

( ) ( )

e

e e

G G
E m g

r G

G
E E m

r

λ≈ =

 − ≈  
 

N

N N

 (87) 

One recognizes that the average generated charge is the average gain from (82) for large G , 

times the average number of clusters from (73). The relative standard deviation is just 1 / m . 

A multigap RPC, where N  identical gaps contribute simultaneously to the signal, is equivalent 

to an increasing λ  to Nλ  in a single gap, therefore reducing the relative standard deviation by 

a factor 1 / N . An illustration of ( )eP
A+C+D

Nɶ  is shown in Fig. 21 and comparison with data 

is available in [38]. 
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Fig. 21 - Representation of ( )eP
A+C+D

Nɶ  for 410G = , 0.5r = , {0.5,1,2,3}m= . Note 

the very different qualitative behaviour for 1m<  and 1m> . 

Note that for small eN  ( )/e G rN ≪ , ( )eP
A+C+D

Nɶ  follows a power law: 

( ) 1m
e eP −

A+C+D
N Nɶ ∼ . Therefore the parameter */m rλ α= , essentially the ratio between the 

cluster density and the effective first Townsend coefficient controls qualitatively the behaviour 

of ( )eP
A+C+D

Nɶ  for small eN : if 1m<  the function diverges at origin and it is monotonically 

decreasing, while for 1m>  it is null at the origin. This has been already noted in [39].  

 

6.  Signal Induction 

If the detector comprises only conductors and pure dielectrics, the appearance of currents on 
the readout electrodes is determined by electrostatic considerations only. However, in RPCs, the 
presence of materials of non-negligible conductivity strongly complicates the induction process. 
We will address first the former, simpler, case and then the later one. 

6.1.  Conductors and dielectrics 

The electric field1 ( , ) ( , )q q q qE r r V r r= −∇
� �� � � �

 created by each point charge q  present in the 

gas on the position (relative to the electrodes) qr
�

 will induce a corresponding surface charge 

density ς  over the surrounding metallic electrodes2, via the well known relation between the 

electric field at the surface of a conductor and the underlying surface charge density 

                                                 
1 Technically the Green’s function for the problem, as the field of any charge distribution can be calculated from 

this by superposition. 
2 Eventually the system of electrodes may not completely enclose the point-charge and some charge may be 

induced on the gas box or whatever conducting structure surrounds the detector. In the limit the charges may be 
induced on “the infinite”. The case of resistive electrodes will be treated below. 
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 ˆ( , )q qE surface r sς ε= ⋅
� �

  (88) 

being ŝ  the unit vector outwardly normal to the conductive surface. Therefore, there will be a 

current density 

 ( )ind

d
j

dt

ς=   (89) 

induced into the surface of the electrodes. The total amount of surface charge induced over each 
electrode is  

 ( ) ( ) ( )

th

m q q m q

surfaceof the
m electrode

Q r r ds qQ rς ′= =∫∫
� � �

  (90) 

where we have denoted by mQ′  the total surface charge per unit of inducing charge q .  

Alternatively, an electrostatic property generally known as Ramo’s theorem [40] gives mQ  

as 

 
0

( )
( ) m q

m q

V r
Q r q

V
= −

�
�

  (91) 

where the potential 0V  is applied to the mth electrode while keeping the other electrodes at null 

voltage and ( )m qV r
�

 is the corresponding potential at the position of the charge, called the 

“weighting potential”. Note that ( )mV r
�

 has no relation to the DC polarization potential but it 

may be proportional to it in some situations.  
Comparing (90) and (91) one can establish the equivalence 
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′∇ =�
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  (92) 

between the two views, where we have introduced the weighting field ( )m qE r
� �

, correspondent to 

the ( )mV r
�

 potential, calculated at the charge position qr
�

 and the gradient of mQ′  calculated with 

respect to the charge position qr
�

. In view of this, we may from now on use only one of the 

views, the equivalence with the other one being given by simple substitution from (92). 
However it may be noted that the induced current density details revealed by the charge field 
approach (89) are absent from the weighting field’s. 
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If the electrodes are connected to a low impedance load (otherwise see [41]) the electrode 
potential may be considered as constant during the induction process. Then, if the charge moves 

in space between two points ,1 ,2q qr r→� �
, across a difference in the weighting potential mV∆ , the 

charge that will flow on the external circuit connected to the mth electrode is 

 ( )
0

m
m ind

V
Q q

V

∆= −   (93) 

The rate of variation of the induced charge is the induced current 

 
0

( )m qm
m q

E rdQ
i qv

dt V
= = ⋅

� �
�

  (94) 

where qv
�

 is the velocity of the point charge. 
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Fig. 22 – Illustration of the two equivalent views on the charge induction process addressed in 
(90), (91). 

To apply (94) to a swarm described by the particle density n  and particle flow density j
�

, 

one considers a small region of volume dV  around the position r
�

, containing a charge 

dq q ndV±=  (q±  being the positive or negative elementary charge, whichever applicable) that 

moves on average with velocity /v j n=
��

 (see (40)), yielding the current induced per element 

of volume of the swarm 

 
0

m
m

E
di q j dV

V±= ⋅
�

�
 , (95) 
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which must be integrated to yield the total induced current and charge 

 
0

( )

0

m m

All space

m ind m

q
i j E dV

V

Q i dt

±

∞

= ⋅

=

∫

∫

��

  (96) 

If the weighting field is constant over each gas gap, the induced current calculation may be 
simplified to 

 
0

ˆ ,
m

m m
All gaps gap

q E
i j E dV

V
γ γ ±= ⋅ =∑ ∫

�
�

  (97) 

where the induction factor γ  (already mentioned in section 4) is defined and ˆ
mE  is the unit 

vector in the direction of the weighting field. This expression may be applied also as an 
approximation. 

 
If the detector comprises only conductors and pure dielectrics, the weighting field is 

determined by an electrostatic calculation. There are many commercial and academic (for 
instance [42]) programs capable of performing such calculations. 

Analytic solutions are known for some situations. A simple but useful case is the regular 
multigap RPC with N gas gaps and equally thick resistive plates shown in Fig. 23. The 
induction factor in this case can be trivially calculated as 

 

"electrical thickness"
of the plates

Total "electricaldistance"

( 1)
p

r

q

N d
Ng

γ

ε

+

= ++

����


��������

  (98) 

which is essentially the elementary charge divided by the “electrostatic thickness” of the RPC, 
showing that thicker detectors have in induction handicap. For a single gap without dielectrics1 

( 1, 0N d= = ) the induction factor is maximal: /
p

q gγ += . The expression can be easily 

generalized for a non-regular chamber with different gap and electrode widths and different 
permitivities. 

                                                 
1 A chamber with metallic electrodes commonly called PPC (Parallel-Plate Chamber). 
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rε

g
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V2=0V

1E
�

dd

g
1E
�
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rε

rε

 
Fig. 23 – Depiction of the weighting field for the top electrode ( 1m= ) of a regular multigap 
RPC with N=2 gas gaps and uniform external electrodes, corresponding to (98). 

In Table 1 there is a list of known analytical or semi-numerical field solutions of interest for 

RPCs, including charge fields qE
�

 and weighting fields mE
�

 for strip electrodes. For most cases 

the solutions are expressed in the form of a series or an integral that must be evaluated 
numerically. 

 
Table 1 – List of some analytic or semi-numerical solutions of situations of interest for RPCs. 

Situation Quantity Type of solution Ref 

Potential Series [8] v.2, cap III, 
eq.184 

Potential Fourier series [43] (2) 

Single charge between 
conducting plates filed with an 
homogeneous permittivity 

Potential Integral [43] (3) 

Voltage strip on a plane 
condenser filled with 
homogeneous permittivity 

Potential 
and field 

Closed form [43] (6,7,8) 
[44]  

Gap on a plane condenser filled 
with homogeneous permittivity 

Potential 
and field 

Closed + 
transcend-dental 
equations 

[44] 

Single charge between 
conducting plates filed with 3 
permittivity layers 

Potential 
and field 

Integral [45] (9) 

Voltage strip on a plane 
condenser filled with 3 
permittivity layers 

Potential 
and field 

Integral [45] (12,13,14) 

 

6.2.  Resistive materials 

As the constitutive materials of RPCs (REs and RLs) are not pure dielectrics but have some 
conductivity, currents will flow on them as the electric fields in their interior change owing to 
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the movement of the swarm charges. This will, as well, introduce polarization losses in the 
transmission of the signals towards the amplifiers (see section 7.5). 

Although this is a classical subject in detectors (e.g. [46]) it has been recently presented by 
Riegler [47] a very general theory of signal induction, comprising resistive internal elements 
and external impedances connected to the electrodes. The basic insight is that one may start with 

the electrostatic solutions and make the substitution / sε ε σ→ + , where σ  is the materials’ 

conductivity and s  a complex frequency. Inverse Laplace transformation s t→  yields the time 

response for a ( )tδ  impulse corresponding to the electrostatic case. One then proceeds by 

superposition (time-convolution). This procedure is valid both for the induction process itself 
and for the coupling (now RC-like) between the electrodes.  

For instance [48]: a charge distribution ( )rρ �  is created at time zero in a conductive 

homogeneous medium. A single unit charge in a homogenous dielectric (electrostatic solution) 

will produce the potential ( )1/ 4staticV rπε= �
. Upon substitution and Laplace-inversion the 

impulse response is 

 
/1

( , ) ( ) ,
4

te
V r t t

r

τ εδ τ
πε τ σ

− = − = 
 

�
�   (99) 

The parameter τ  is the material’s relaxation time that already appeared in section 3.2. The 

solution for the persistent charge distribution ( )rρ �  can be constructed by time and space 

superposition: 
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  (100) 

This is just the classical electrostatic solution multiplied by an exponential decay factor, arising 
because the charges in the material flow until the internal electric field is cancelled. 

As another example, (94) becomes 

 
0 0

( ) ( ( ), )
t

m q m q

q
i v t E r t t t dt

V
′ ′ ′ ′= ⋅ −∫
�� �

  (101) 

The current at the present time will depend on the charge position and velocity at times past, 

weighted by the time-dependent weighting field obtained by applying an impulse 0 ( )V tδ  to the 

mth electrode and using the Laplace transform procedure mentioned above.  
Several interesting cases are treated in [47], [48]. The behaviour-defining quantity is the 

materials’ relaxation time /τ ε σ= . For phenomena of typical duration T τ<<  (such as ( )tδ  
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impulses…) the materials behave as pure dielectrics and for the opposite case T τ>>  as good 

conductors. In the intermediate cases there can be relaxation and diffusion-like phenomena. To 

give orders of magnitude, permittivities are typically around 10 /pF m and bakelite 

conductivity around 710 /S m− 1 resulting in 1msτ ≈ , to be compared with typical electron 
transit times of tens of nanoseconds and ion transit times of tens of microseconds. It is clear that 
for the most common materials likely the conductivity of the REs plays no relevant role.  

However, the RLs, or special electrodes for high counting rates, may have much higher 
conductivity, which introduce additional phenomena. To illustrate this behaviour we will use 
the result in [45] eq. 71 to calculate a representative case: the influence of a bidimensional RL 

on the charge density (88) induced by a point charge q  (positive ion for instance) that moves 

from a metallic anode up to the RL in the time lapse T , as depicted in Fig. 24. For simplicity, 

all materials were considered as having the same permittivity ε , as this doesn’t vary much 

among most common materials, and the RL was collapsed to a bidimensional layer with surface 

resistivity ℜ . 

⊕ z a= −

0( )z RL=
z b=

ε
ε

⊕

z ρ

q
( , )tς ρ T

 
Fig. 24 – Representation of the situation treated as an example of the phenomena arising from 
the introduction of a RL of non-negligible conductivity in RPCs. 

A sketch of the calculation is given in Appendix II. The solution can be expressed in terms 
of the dimensionless variables  

 
2/ ( ), / ( ), ( ) / ,

/ , / , ( ),

a a a b a b a b q

t t T T a b

ρ ρ ς ς
τ τ τ ε

′ ′ ′= + = + = +
′ ′= = = ℜ +

 (102) 

which highlight the fundamental physical dependencies. In Fig. 25 it is shown a graphical 

representation of the reduced induced charge density ς ′  as a function of t′  for 

{ }0.8, 0,1a T′ ′= =  and several radial distances from the axis. For comparison, the 0ℜ =  case 

is also plotted. The induced current density is (89) the time-derivative of this curve. The induced 

charge eventually visible in the acquisition electronics is the induced charge density ς , 

integrated over whatever electrode shapes there will be in the surface (90) and time-weighted by 
the shaping of the front-end electronics (not included in this calculation), which typically limits 
the “observation time” over which the charge is collected, essentially defining where in the time 
axis in Fig. 25 the value of the induced charge should be taken. 

                                                 
1 Glass conductivity is much lower, around 

1110 /S m−
 



P
o
S
(
R
P
C
2
0
1
2
)
0
3
3

 

 

 

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

The fundamental behaviour is that for 1t′≪  the RL has little influence on the induction 

process, corresponding to the charge transparency situation. Otherwise, there is over time a 
transfer of induced charge from the axis towards the periphery (which will be visible if the 
electronics shaping time is long enough) in a wavelike pattern. In the limit of very long time 

( ~ 10t′ > ) the induced charge will be almost uniformly spread over the whole surface. If 

1T ′ ∼  or larger the full induced charge cannot be collected close to the axis, as it will be 
transferred away before the induction process ends. 

The charge transfer process resembles the diffusion-like process that would take place in a 
bidimensional RC network fed by the induction current density (e.g [46], [49]), but the formal 
equivalence hasn’t been investigated.  
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Fig. 25 – a) to c) Reduced induced charge density ς ′  as a function of t′  for 

{ }0.8, 0,1a T′ ′= =  and several radial distances from the axis (see Fig. 24 and (102)). For 

comparison, the 0ℜ =  case is also plotted (dashed lines). The induced current density into 

the surface is the time-derivative of these curves, resembling [48], figure 9. d) ς ′  as a 

function of ρ ′  for different times. (In this case the 0ℜ =  and 0t′ =  cases coincide.) There 

is over time a transfer of induced charge from the axis towards the periphery in a 
diffusion-like pattern.  
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The shape of the electrodes plays a role as well, as the charge-spreading effect is stronger 
close to the induction axis. A similar calculation for strip electrodes is given in [48] (see also 
Appendix II). 

 

7. Signal transmission 

The charge induction process injects a current into the readout electrodes, which must then 
be transmitted towards the amplifiers. This is particularly important for timing RPCs, which use 
a narrow gas gap that generates a very fast signal upon which a precise time is eventually 
measured. 

Naturally, there is an infinity of possible electrode arrangements. The most common cases 
are arrays of rectangular pads or a set of parallel strips. The first question is whether such 
conductor structures should be treated as multiconductor transmission lines (MTL) or just as 
circuit nodes. The general rule is that when the structures are “electrically large”, larger than the 
smallest significant wavelength of the signal, should be treated as transmission lines. Estimates 
[50] point to lengths of 80 cm for 2 mm gap RPCs and 5 cm for 0.3 mm gap RPCs.  

While for the case of strips (translationally invariant structures in one dimension) there is a 
well developed theory (e.g. [51], [52]) no work is known for the case of large pads. However, 
we will discuss below that also the standard MTL theory is likely inaccurate for widespread 
structures such as RPCs as it misses the fact that the strips are quite separated in space and that 
there must be some propagation velocity across the strips as well, which will limit the formation 
of fully organized propagation modes. 

7.1.  Frequency spectrum 

As stated above, to decide how to treat the problem it is important to know the signals’ 
frequency spectrum. 

Even if this is not exact owing to the space-charge effect, as a coarse guide we may calculate 
the Fourier transform of (43). Neglecting the second term within the square brackets, which, 

being negative, must not be dominant, taking a fixed width in the erf  term, equal to the width 

of the avalanche when the swarm centre encounters the anode, and allowing negative t  the 

following approximation is produced 

 ( )* 0
( ) ( )

0

1
( ) exp 1

2 2 /
e ind e ind e e

e

z vt
I I t W W t erf

D z v
γ α

  −= +    
  

ɶ≃⌣ ⌣ , (103) 

A Fourier transform calculation yields 

 2 0
( ) 32 2 *2

1
( ) exp e

e ind

e

D z
I K

vW
ω ω

ω α
 = − 
 +

ɶ
⌣  (104) 
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where 2 fω π=  is the angular frequency. Apart from scale factors represented by K , one 

recognizes a pole at *
eWω α= , clearly related to the gas amplification process. This is 

multiplied by a Gaussian, related to the diffusion coefficient. In Fig. 26 both ( )e indIɶ⌣  and 

( ) ( )e indI ωɶ
⌣  are represented for two values of eD , a realistic one and, for comparison, a very 

short one corresponding to an almost diffusionless situation. There two cutoff frequencies1: 

*
1 / (2 )ecf W α π=  is associated with the amplification process and 

3

2
0

ln(2)
2

2c
e

v
f

D z
π=  is 

associated with the diffusion process. For the values used in this figure 1 580cf MHz=  and 

2 860cf MHz= . 
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Fig. 26 – a) Representation of ( )e indIɶ⌣ for the same parameters used in Fig. 10 (solid line) and 

with eD  reduced by a factor 100 (dashed line). b) The blue line corresponds to ( ) ( )e indI ωɶ
⌣  

normalized to unity at low frequencies, for the two eD  cases studied. The red curve 

corresponds to the pole at *

e
Wω α= .  

7.2.  Signal transmission in stripline electrodes 

The general theory of MTLs has been particularized for the case of RPCs in [53] and further 
developed in [50]. The signal is injected in a single strip (or more if we proceed by 
superposition) by a current source. The problem is rather complex and there are many possible 
situations of interest. In here we will follow the view represented in Fig. 27, as it captures the 
essence of the problem. 

                                                 
1 Defined, as usual, as the frequency at which the attenuation associated with the corresponding term is 1/√2. 
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7.3. General theory 

In here we will outline only the most fundamental formulas and results. The interested reader 
may consult the vast bibliography on the subject (e.g. [50]-[54]) for details. 

The system consists of 1N +  translationally invariant electrodes, including one reference 
(“ground”) electrode. The currents in the strips and the strip-to-ground and 

termination-to-ground (at 0x = ) voltages are denoted by the 1N ×  vectors ( , )x tI , ( , )x tV  

and ( )T tV . A current pulse 0 0( , )I x t  is injected from the ground into a single (“driven”) strip at 

position 0x , propagating in both directions along x  and coupling to the neighbouring strips 

(crosstalk). The strips have length D  and are terminated by resistor networks (or just the input 

impedance of the amplifiers) at 0x =  and x D= . These terminations don’t need to be equal 
and can be extended to handle general linear networks and interconnections with other 
MTLs [54]. 
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Fig. 27 – Representation of the geometry and the most relevant quantities for the problem of 
propagation in a microstrip array, along with the main simplifications. 

 

The electrical properties are summarized in the N N×  per unit length capacitance, 

inductance, resistance and conductance matrices, respectively , , ,C L R G . In general these are 

symmetric matrices and all conductors will couple to each other via the diagonal elements, but 
later we will particularize for “weak-coupling” approximations.  

If all materials involved have magnetic permeability close to vacuum’s, the inductance 

matrix can be calculated from the capacitance matrix 0C  obtained with all dielectrics removed 
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 1 2
0 / c−=L C , (105) 

c  being the speed of light in the vacuum. Therefore, all parameters can be obtained by 
electrostatic1 calculations only. In case the medium is homogeneous (not an RPC…) with 

relative permittivity rε  then  

 
1 1

2 2/ rc vε

− −

= =C C
L  (106) 

where v  is the speed of light in the medium. This has important consequences, as in this case 

there are no “propagation modes”. 
The fundamental equations to be satisfied are 
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( )

2 2

2 2

2 2

2 2

z t t

z t t

∂ ∂ ∂− = + +
∂ ∂ ∂
∂ ∂ ∂− = + +
∂ ∂ ∂

V V V
LC RGV RC LG

I I I
CL GRI CR GL

 (107) 

The most remarkable feature of the signal transmission in MTLs (except in the case (106)) is 
the existence of propagation modes. Each mode consists in certain fixed ratios of currents in the 

electrodes that propagate ensemble at the same velocity. For N  electrodes there are N  modes, 

each propagating with its characteristic modal velocity mv , leading to the phenomenon of modal 

dispersion. The ensemble of the modes forms a basis of the space of all possible current 
patterns, so any desired initial current pattern will excite a certain number of modes with certain 
amplitudes and will disperse in accordance with the corresponding combination of modal 
velocities. 

In the time domain, modal analysis is possible only in the lossless case, vanishing the RHS 
of (107). The solution of the problem is [50] 
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(108) 

                                                 
1 The steady current calculations needed to calculate R  and G  are essentially the same as for electrostatics. 
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In here, j  denotes the order of the successive reflections, n  is the driven strip, 0Γ  and DΓ  are 

the voltage reflection matrices at each end of the chamber given by 

 ( )( ) 1

0, 0, 0,D D c D c

−
= − +Γ Z Z Z Z , (109) 

where cZ  is the characteristic impedance matrix that relates the currents and voltages in the 

strips, ( , ) ( , )cx t x t=V Z I , and 0,DZ  the termination matrix in each end of the chamber. Note 

that if 0,D c=Z Z  the reflection matrices vanish and there are no reflections. This requires all 

strips to be interconnected to each other by resistors with adequate values. In practice, 
second-neighbour connections may suffice [53]. 

In case there is just a simple, uniform, termination to ground in each strip in both ends, then 

0,D TR=Z 1  (1  is the unitary matrix), 0 D= = = −Γ Γ Γ 1 T , the solution can be written in a 

more compact way [50] 

 
( )

1 0
1 0

1

0

1 0
0

1

( 1) 2[ / 2]

( )
( ) 1

2
( 1) 2[ / 2]

2 ( )

j

n

jT
T

jT j

Nn
N

c T c

x j D
M I t

v
t

t
R

x j D
M I t

v

R

−

∞

=

−

−

  − +−  
  

 = = −
 

 − + −  
  

= +

∑
V T

I T M

T Z 1 Z

⋮
 (110) 

where [ ]/ 2j  represents the next higher integer of / 2j . 

The columns of the modal current matrix M  ( mM ) represent the current ratios that 

correspond to each mode and are the N  solutions of the eigenvalue problem 

 
2

1
m m

mv
=CLM M  (111) 

which is obtained by replacing the usual ansatz ( / )mt x v= ±I I  in the (lossless) 2nd eq. (107). 

The values 1
,m nM −  are the elements of 1−M  and correspond to the amount of excitation 

needed in each mode (m) to reproduce the current injection at strip n  boundary condition 

[ ]0 0( , ) 0, , ( ), ,0
T

z t I t=I ⋯ ⋯ (see [53]). The modal excitation is such that the modes interfere 

destructively over all strips except the nth. After some propagation length the modes will loose 
coherence owing to their different propagation velocities (modal dispersion) and the destructive 
interference is mitigated, leading to increased signals in the neighbouring strips. Potentially, 
after a sufficient long propagation length, each mode (typically spanning most of the strips) may 
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be observed at the terminations separated in time from the other modes. This causes modal 
crosstalk, to be discussed later in more detail. 

The characteristic impedance matrix is given by 

 1
c

−=Z LMvM  (112) 

with 

 
1 0 0

0 0 N

v

v

 
 =  
  

v ⋱  (113) 

This theory has been compared in some detail with measurements in RPC-like situations and 
a good agreement has been generally found [50], [53]. 

 
The same theory can be formulated in the frequency domain (see [52] for instance). In this 

case the ansatz is ( )e mxi t e γωω ±=I I . The input and output quantities are the Fourier 

time-transforms of the signals and the equations (107) become 

 

2

2

( ) ( )

( ) ( , )

,

m

m z

i i

γ ω ω
γ ω ω

ω ω

=

=
= + = +

V ZYV

I YZI

Z R L Y G C

 (114) 

proceeding the solution more or less along the same lines. In general, the modal propagation 

factors ( )mγ ω  are complex numbers, expressing losses in the real part (exponential attenuation 

along x ) and the modal propagation velocity in the imaginary part: 

 ( )
( )m m

m

i
v

ωγ α ω
ω

= +  (115) 

Although less intuitive, this approach has the advantage that it is possible to include losses 
and the frequency dependency of the materials and that all reflections are automatically taken 
into consideration in the output without need for iterations. Indeed, replacing the harmonic  
ansatz in (108), one sees that the sum over the reflections forms a power series that can be 
summed for each mode: 

 

( ) ( ) ( )00

1210
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1

2
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e e
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D xx
c D cm m
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ω ω
−−−
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− −−

+
 = − × 

 + 

∑
1 Γ

V 1 Γ Γ

Z M Γ Z M

 (116) 
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A very important practical characteristic is the amount of interstrip coupling (crosstalk), 

given by , ,/T m T nV V . This can be readily calculated numerically and general guidelines [53] 

seem to be that simple termination (no interconnections), lower amplifier input impedances and 
longer shaping times help reduce crosstalk. 

There are two contributing factors to this behaviour. For short counters, those for which the 
difference in propagation time between modes is small (including relevant reflections), that is, 

the modes remain coherent, crosstalk is determined just by the structure of the T  matrix. This 

can be seen from (110): neglecting reflections ( )0j =  and disregarding the differences 

between the modal propagation velocities it becomes just ( )0( ) [0,..., / ,...0]
2

T
T t I t x v= −T

I . 

As the counters become long, extra phenomena of interference/decoherence between modes 
becomes important, as shown, for instance, in [50] fig. 8, [53] fig. 7. This will be discussed in 
the next section. 

For optimization purposes, an analytical solution for these problems would be very useful, 
but this seems to be prohibitive in the general case because of the eigenvalue calculation (111). 
However, progress can be made in weak-coupling approximations. 

 

7.4. Weak-coupling approximations 

In a planar structure such as depicted in Fig. 27 it is clear that the direct coupling from a strip 

to its second neighbour, represented by 2mc , will be much smaller than to its nearest neighbour 

and may be neglected. For instance, the values given in [50] table 2 indicate that 

/ 1 /10mC C ≈ , 2 / 1 /10m mC C ≪ . Furthermore, realistic numerical examples [50], [53], 

suggest that the nearest-neighbour coupling strength is relatively weak, on the order of 10%. 
This suggests a number of simplifications that yield analytical solutions. 

7.4.1. Feed-forward 

The most radical approximation to weak-coupling is to modify the fundamental equations   
to neglect the back-interaction between the neighbouring and the driven strips [55] along with 
all direct coupling between the driven and all other strips except the first neighbours. This leads 
to constitutive matrices with the structure (giving as an example a 5-strip system, driven on 
strip 3) 
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0 0 0 0 0 0

0 0 0 0 0 0

,0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

m m

m m

m m

m m

g m

C C L L

C C L L

C L

C C L L

C C L L

C C C

−   
   −
   

= =   
   −   
   −   

= +

C L
 (117) 

In this approximation the driven strip behaves as a single conductor transmission line which 
induces signals in the neighbouring strips without being affected by them. The solution 
proceeds in cascade from the driven strip, so there are no modes and only strip pairs need to be 
considered. The solution for an externally driven stripline, corresponding to an avalanche close 
to one end of an RPC, is given in [55]. In particular it is shown that the signal induced in the 
neighbouring line is proportional to the time derivative of the driven line’s. 

7.4.2. Nearest neighbour 

A step further from the feedforward approximation would be to consider only interactions 

between nearest neighbours, neglecting 2mc . In this approximation the capacity matrix becomes 

(a symmetric tridiagonal Toeplitz – STT – matrix) 

 

0 0

0
1

0
1

0 0

, /

m

m m
m

m m
m

m

g m m

C C

C C C
C C u

CC C C
C C u

C C

C C C u C C

− 
 − −
  − −   = ≡ =− −     − −    − 
  

= + =

C

⋯

⋮ ⋱

 (118) 

As most of this section will deal with such type of matrices these will be represented in curly 
braces. The results will not depend on the size of the matrix and indeed the matrices between 
curly braces correspond to a 2-strip system under the same approximations. 

Requiring additionally / 1mu C C= ≪  (weak coupling), all expressions will be developed in 

series of u  and truncated to the first order. This renders all matrices STT, as the elements 

further removed from the main diagonal are quadratic in u . 

Besides C  we need the capacitance matrix with all dielectrics removed 

 0
0 0

0

1

1

u
C

u

− =  − 
C  (119) 

and from these all relevant quantities can be calculated. 
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 0

2
00

1 11
1

1

m

m

L
uLL

uL c C

L

 
    = =   

  
  

L  (120) 

 0

2
00

1

1

u uC
u uc C

− =  − 
CL . (121) 

The inverse squared modal velocities and the modal currents are the eigenvalues and the 

eigenvectors of CL  (111). For an STT matrix 
b a

A
a b

 =  
 

 of size N  there are simple 

analytical expressions for these [56]: 

 ,

2
2 cos , sin , , 1,2,...,

1 1 1m k m

m km
b a M m k N

N N N

π πλ    = + = =   + + +   
 (122) 

Furthermore, M  is unitary: 1− =M M . For instance, a 5 5×  system yields 

 

3 1 3 1 3

6 2 3 2 6
1 1 1 13 0
2 2 2 2

3 3 3,0 0 0
3 3 3
1 1 1 1

03 2 2 2 2

3 1 3 1 3

6 2 3 2 6

a

a

b

a

a

 
 
 
   − −  
  
  = + = −  

−   
   − −−   
 
 − −
  

λ M  (123) 

Because of the unitarity of M , the columns represent the current ratios for each mode and 
simultaneously the amount of excitation of each mode when the strip corresponding to a column 
is driven. If this is the central strip it can be seen that all odd modes are excited1 with equal 
amplitudes and the central mode inverted.  

Taking into consideration (121) and (122), the modal velocity spectrum is contained within 

 0 0

00 0

1 1
1 1

1 2 1 2
mv

u u u u
Cu u u u

c
C

− − ≈ < < ≈ + −
+ − − −

 (124) 

                                                 
1 All even modes are zero for the center strip, so can’t contribute. The modes are clearly related to the Fourier 

series. 
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If 0u u= , indicating a dielectrically homogeneous or compensated ([57], [58]) system, the 

spectrum collapses to a single velocity and there are no modes. 
In a 2-strip system there are the modal velocities 

 

0

0

0

1 1
2 2

1 1
2 2

u uv
Cvv c

v u uC

v

−∆   + +  
= =   ∆ −  − −

      

v , (125) 

spanning half of the maximum spectral width and reproducing eq. (5) of [58]. 
Curiously, within the weak-coupling approximations, the structure of the characteristic 

impedance matrix cZ  doesn’t depend on the details of the modal structure and the calculation 

proceeds as 

 

0

00

1 1
1 2

1 1
2

m

c
c c

m

c

Z u u
Z

Z
Z u uc C C
Z

  + 
      = =   +   

     

Z  (126) 
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2 1 2 ,
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1 1
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T

m c

u uT w
RwTT w

T u uww Z
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+  
     +− = = = =   ++   

     + 

1 Γ T  (127) 

which reproduces as well the 2-strip results of [58] equations (6), (7), (11). Actually, within 
these approximations, the only information gained in going beyond a 2-strip model is the 
knowledge of the modal structure (122). It is clear that there will be crosstalk also to 
second-neighbours, etc, but in the present approximation this is quadratically (cubically, etc), 
smaller and it is excluded from the expressions. It can be readily appreciated that the coupling 

crosstalk ( /mT T ) decreases with TR  (if T cR Z< ), u  and 0u . Taking 0 0.1, 2T cu u R Z≈ ≈ ≈  

this should be around 7%, as it is actually found in [50] Fig.15 (exact, compensated curves).  
 
A complementary form of crosstalk arises from modal dispersion. This is owed to the 

decoherence of the modes that initially interfere destructively at the injection point (0x ) of the 

current 0I . Taking the example of a 5-strip system (123) it can be seen that with, for instance, 

signal injection at strip 3, substantial excitation arises in all odd modes (values in column 3) and 
that these modes span all strips (values in colums 1, 3, 5). Therefore, if there is full decoherence, 
replicas of the injected signal (eventually inverted and/or scaled), corresponding to the 
individual modes, will be seen separated in time (see [53] figure 7 for instance) and will span 
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the full width of the counter regardless of how wide it is. The modes have no locality property! 
This is likely unphysical because there must be a lateral propagation velocity as well, which was 
not at all taken in consideration in the present theory. Given this, and in absence of a fuller 
theory, a 2-strip model is likely more realistic for a wide RPC than the N-strips’.  

Neglecting reflections (which actually decohere more as they travel longer before reaching 
the terminations) the 2-strip solution is, after (110),  

 

0 0
0 0

1 2

0 0
0 0

1 2

1
( )

4
m

T
m

x x
I t I t

v vT T
t

T T x x
I t I t

v v

    
− + −    

      =          − − −   
     

I . (128) 

The relative time delay between both modes per unit of the propagation length 0x  is, taking in 

consideration (125), 

 0
2

0 0

u ut v

x v C
c

C

−∆ ∆= = . (129) 

Replacing data from [50] table 2 (uncomp), this is on the order of 0.15 to 0.25 ns/m. 

Considering a signal 0( )I t  with duration of ~2 ns (e.g. from Fig. 10), the modes will 

completely decohere after about a 10 m propagation length. However, significant modal 

crosstalk when compared with coupling crosstalk (from T  matrix) is already visible for 2 m 

lengths ([50], fig 15), underlining the importance of modal compensation (making 0u u= ). It is 

also clear that a slow shaping in the electronics will increase the effective signal width and 
improve the situation, as suggested in [53]. 

In the frequency domain, for some frequencies there will be a phase inversion of one mode 
with respect to the other, destructive interference will turn into constructive and constructive 
into destructive, yielding the crosstalk peak and transmission dip shown in [50] Fig. 8 c). 

7.5.  Losses 

Resistive losses arise from the series resistance of the electrodes. As the current is not 

supposed to flow sideways, the R  matrix must be diagonal. 

Conductivity losses, to be expressed in G , arise from conductivity in the dielectrics, 
interconnecting the electrodes or these to ground, and from polarization losses that arise from 
the rearrangement of charges within dielectrics in response to electric field changes. In uniform 
dielectrics both conductivities are proportional to the capacity matrix [50], but it is unlikely to 
be so in non-homogeneous structures. Indeed, losses have been measured in a glass RPC and 
were found to have a more complex behaviour, with cut-off frequency about 1 GHz [50]. 
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The treatment of losses must be performed in the frequency domain following the 
formulation (114). In the general case the solution must be performed numerically [54], but we 
may argue that for the case of RPCs some approximations may be workable. 

For a single strip the constitutive matrices become scalars and from (114) it is obvious that 

 ( )( )YZ R i L G i Cω ωΓ = = + +  (130) 

which, to the first order in ,R G (low-loss approximation) yields 

 
2

RC LG
i LC

LC
ω+Γ ≈ − +  (131) 

emphasizing the attenuation coefficient and the propagation velocity (compare with (115)). 
The solution of (114) under the same low-loss plus the weak-coupling approximations 

described above reaches similar conclusions: the same, mode-independent, attenuation 
coefficient (131) and unchanged modal velocities and modes (122).  
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Appendix I 
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Appendix II 

Making the substitutions 2 / 1 / ( )s gsε ε σ ε→ + = + ℜ , 1 3ε ε ε= = , ,q a p b= = , and 

then taking the limit 0g →  in [45] eq. 71, yields (88) the surface charge induced by a point 

charge Q  in the position 0 0a z− ≤ ≤  over the surface of the top electrode ( )z b=  
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where 0J  is the Bessel function of first kind and zeroth order. Upon Laplace inversion, the 

response to a ( )Q tδ  impulse is 
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 (134) 

Dimensionless variables, indicated by a prime, where introduced to highlight the basic 
physical dependencies.  

The transportation of the charge Q  in the gap 0 0a z′ ′− ≤ ≤  with uniform velocity during 

the time lapse ( )/ ( )T T a bε′ = ℜ +  and then standing still at 0 0z =  can be calculated by 

superposition 
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 (135) 

where the factor ( )a bεℜ +  appears because the integral is being calculated in t′ . This yields 

the final result 
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This should be compared with the behaviour when 0ℜ → ,  
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 (137) 

 
Note: the calculation of the total charge induced in strip electrodes from expressions such as 

(136) is not difficult because the required integral over the surface of the electrode can be done 
analytically 

 2 2
0 2
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2sin( )
( )

X kX
J k x y dydx
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+ =∫ ∫  (1.138) 

remaining the integral in k  to be performed numerically. 
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