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Results of a study of dielectron and pion production in p + Nb collisions at incident proton beam
energy 3.5 GeV are presented. The data are taken by the High Acceptance Di-Electron Spectrom-
eter (HADES) at GSI Darmstadt.
The dielectron invariant mass distributions are compared to data from elementary p+p reactions
at the same beam energy. At this energy above the light vectormeson production threshold, the
omega peak is clearly identified. The collected statistics and high acceptance for pair momenta
within the interval 50-2000 MeV/c allow for a study of momentum dependence of the omega
yield and spectral shape. The strongest medium modificationin the line shape is expected for low
momenta mesons decaying inside the nuclear matter. Comparing the measured p+Nb data with
the p+p reference experiment results, the significant change in yield of low momentum dielectron
pairs in the vector meson mass region is observed.
Data on the emission of charged pi mesons, which are related to neutral pions representing a dom-
inant contribution to the dielectron yield, are shown as well. They contribute to the results from
systematic studies of pion production in proton-nucleus collisions, which point to a transition of
the pion source from simple NN collisions to the emission of thermalized pions from a fireball,
when increasing the atomic number of the target nucleus. Thedata also serve as a reliable tool
for normalization of the dielectron data.
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1. Introduction

The dependence of hadron properties on medium effects represents one of the most important
open problems of modern nuclear and particle physics. From afundamental point of view, the
partial restoration of the QCD chiral symmetry is expected to lead to a mass modification of vector
mesons at finite temperature and/or finite nuclear density.

The QCD inspired models predict a change of the meson spectral function based on the chiral
condensate modification by about 30% already at nuclear saturation density [1, 2, 3]. Similarly, a
principially different approach of hadronic many-body models [1, 4] also gives prediction of signif-
icant modifications in spectral function shape of vector mesons, likeρ , ω andφ , when embedded
in nuclear matter.

Di-leptonic decay channels of vector mesons are well suitedfor the investigation of nuclear
collisions because leptons do not interact strongly and carry out undistorted information about the
properties of a meson decaying in the dense and hot nuclear matter. On the other hand, electro-
magnetic signals are very difficult to handle mainly due to the huge hadron background and low
branching ratio for electromagnetic channels.

Di-lepton spectra measured at the CERN SPS in several experiments [5, 6, 7] at various
energies up to 158 AGeV indicate significant in-medium modifications of theρ meson spectral
shape. At lower energies (1-2 AGeV) the DLS experiment [8] and recently the HADES collabora-
tion [9, 10, 11] systematically measured dilepton production from elementary collisions, light and
medium-size collision systems. In the medium size system ofAr+KCl at 1.75 A GeV, an excess
of the dielectron yield as compared to the elementary pp and np systems at intermediate masses
below theρ/ω mass is observed.

Another possibility to study hadron properties inside nuclear matter are proton, pion or photon
induced reactions. In this case one explores a medium at ground state density and zero temperature
where the predicted modifications of the meson spectral function is smaller than at higher densities.
On the other hand, the advantage is that the system is well defined as it does not undergo a com-
plicated density and temperature time evolution as in the nucleus-nucleus collision. Theρ meson
spectral shape from cold nuclear matter was measured by the CLAS experiment at JLab [12] and
the KEK-E325 experiment at [13]. However, both experimentswere not sensitive to low dilepton
pair momenta where the predicted effects are strongest, andthe results are not conclusive so far.
For theω andφ meson several experiments [14, 15, 16, 17] reported a sizable broadening of the
total decay width inside the medium in the yield measurements using the transparency ratio method
[18].

In this paper we present preliminary results on inclusive dielectron pair production in proton
induced reactions on the Nb target atEkin = 3.5GeV measured with the HADES spectrometer [19].
The reference spectrum was obtained in p+p reactions measured at the same energy [20]. The data
taken with high statistics and acceptance covering the low pair momenta are sensitive to expected
spectral shape changes as well as yield suppression due to collision broadening.
We also present data on the analysis of charged pion production. The results contribute to the data
from systematic studies of pion production in proton-nucleus collisions (see e.g. [21]), and serve
as a reliable tool for normalization of the dielectron data obtained in the same experiment.
The High Acceptance DiElectron Spectrometer HADES is devoted mainly to study the production
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of dielectron pairs from proton, pion and nucleus induced reactions at 1-2 AGeV. At the same time,
the spectrometer provides detection and high quality identification of charged particles in a large
solid angle.

2. Experiment

HADES [19] is a magnetic spectrometer designed as second-generation device for measure-
ments ofe+e− pairs. The spectrometer is segmented into six identical sectors that cover labo-
ratory polar angles between 18 and 85 degrees. Its large azimuthal acceptance covers between
65% and 90% of 2π at small and large polar angles, respectively. A fast hadron-blind Ring Imag-
ing CHerenkov counter (RICH) is used for electron and positron identification. Four planes of
Multi-wire Drift Chambers (MDC I - MDC IV), together with a superconducting magnet, form the
magnetic spectrometer for track reconstruction and momentum determination. In the region behind
the magnetic field, a set of electromagnetic Pre-Shower detectors (at polar angles 18◦ −45◦) and
a time-of-flight wall are installed which form the META (Multiplicity and Electron Trigger Ar-
ray). The time-of-flight detector wall is subdivided into 2 regions: TOF (at polar angles 45◦−85◦),
consisting of 384 scintillator slabs of varying length, which are read out at both ends, with a time-
of-flight resolution ofσ = 150 ps, and TOFINO (at polar angles 18◦−45◦), consisting of 24 scin-
tillator plates readout on one end, with a time-of-flight resolution of σ = 450 ps. The TOFINO is
placed directly in front of the Pre-Shower detector, which provides precise position measurement.
The TOF/TOFINO detectors are also used for fast charged-particle multiplicity measurements. To-
gether with the Pre-Shower detectors they provide additional lepton/hadron discrimination power
and track coordinate measurements with a spatial resolution in the range from 14 to 25 mm.

In the reference pp experiment, a proton beam of 107 particles/s with a kinetic energy of 3.5
GeV was incident on a 4.4 cm long liquid hydrogen target. For details on the experiment and results
see [20].
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Figure 1: Impact parameter distribution for all (“minimum bias”) andLVL1 accepted reactions
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In the p+Nb experiment a beam of protons with kinetic energy 3.5 GeV and intensity 2×107

per 10 second spill was incident on a segmented Nb target (12 rings, each 0.45 mm thick) with
2.9% total nuclear interaction length. The presented data were collected under the LVL1 trigger
condition which was based on a fast determination of the charged-particle multiplicity (Mch) in the
time-of-flight detectors. Events withMch ≥ 3 were selected.

The LVL1 trigger bias was obtained from UrQMD transport model [22] calculations followed
by full scale GEANT-3 [23] simulations of the detector setup. Fig. 1 shows the simulated impact-
parameter distributions. For the “minimum bias” events corresponding to the total reaction cross
section we require in UrQMD at least one nuclear interaction. Then we pass these events through
our analysis code and require that they fulfill the LVL1 condition. LVL1-triggered events cor-
respond to 56% of the total reaction cross section, however one can see that selection of more
“central” reaction is rather weak. Still this condition enhances the averaged multiplicity for e.g.
π− by 42% which has to be taken into account in the data analysis,see following sections.

Resulting dilepton cross sections were obtained via the comparison of the measured yield
of a known physical process inside the HADES acceptance and its measured cross section. In
p+p collisions it was obtained via the exclusive measurement of elastic p+p collisions and the
known integrated cross section inside the HADES acceptance. In p+Nb collisions such exclusive
measurement was not possible. The physical source chosen there is the production of negative pions
in proton induced reactions on nuclei. This was measured recently by the HARP-CDP collaboration
[21] for a number of nuclei and projectile energies.

3. Charged pions

Due to the high intensity of the proton beam we did not use the diamond detector detecting
individual beam particles, which usually provides the “start” time for time-of-flight measurement.
Therefore the energy loss of particles detected in the time-of-flight TOF/TOFINO detectors was
used for the particle identification.
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Figure 2: Distribution of the energy loss versus charge*momentum of particles detected in inner TOFINO
(left) and outer TOF (right) detectors

Fig. 2 shows the distribution of the energy loss versus charge× momentum, together with cuts
selecting regions with positive and negative pions.π− mesons can be identified with high purity

4



P
o
S
(
B
o
r
m
i
o
2
0
1
2
)
0
1
9

Study of hadron properties in cold nuclear matter with HADES P. Tlusty

in a large interval of momentap ≥ 150MeV/c, while the range forπ+ is limited to the region
150≤ p≤ 600MeV/c due to an overlap with protons at higher momenta. Moreover, at momenta
≈ 200MeV/c the energy loss of protons stopped in the scintillators of the outer TOF detector is
the same as forπ+, which makes the identification in this region difficult. Forthis reason we limit
ourself in this paper only on results on negative pions.

After the particle identification was done for all tracks, the resulting yields were corrected for
efficiency and purity of the PID method, as well as for the detector and tracking efficiencies. The
detection/tracking efficiency has been obtained from MonteCarlo simulations. Additionally an
acceptance correction in azimuthal angle was applied.
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Figure 3: Multiplicity distribution of theπ− measured in various polar angle bins. Data are corrected for
the LVL1 trigger bias. Only statistical errors are shown.

The multiplicity enhancement due to the LVL1 trigger bias of42% was taken into account
by the correction factor 1.42± 0.14. The systematic error of 10% was estimated from different
scaling factors obtained from experiment and simulation, for two LVL1 trigger settings ofMch≥ 2
andMch ≥ 3.

The resulting pion multiplicities, corrected for the LVL1 trigger bias, are shown in Fig. 3. In
order to obtain the normalization factor needed for determination of the dilepton pair production
cross section, the resulting pion multiplicities are compared to existing data from a systematic
study of pion production from p+A [21]. The system p + Nb was not measured but the systematics
allows for an interpolation for our collision system using two reactions p+Cu and p+Ta at closest
measured energies 2.20 and 4.15 GeV. To interpolate the HARP-CDP data to our reaction system,
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a global scaling factors of 2.00, 0.96, 1.16, and 0.48 were applied to the 2.20 GeV p+Cu, 4.15 GeV
p+Cu, 2.20 GeV p+Ta, and 4.15 GeV p+Ta data sets, respectively.
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Figure 4: Inclusive cross section forπ− production in p +93Nb collisions at 3.5 GeV in the polar angle
range 20◦ ≤ θ ≤ 75◦.

Then we scaled the HADES multiplicity data to the HARP cross section. The scaling factor
σR = σπ−(HARP)/Mπ−(HADES) is in fact the total reaction cross section for p +93Nb at 3.5 GeV.
The result of this is shown in Fig. 4. The scaling factor was obtained from the pion multiplicity
by fitting the HADES data points multiplied by the scaling factor bin-by-bin to the HARP-CDP
results.

As seen in Fig. 4, the cross section shapes for HARP data at higher energy differ at low
momenta. The origin of this dicsrepancy needs to be investigated. Therefore, only a region of
pT > 300MeV/c was used for the normalization. The resulting total reaction cross section is
848 mb. Statistical errors are negligible, while the systematic error is estimated as 15%, with
uncertainty of the trigger enhancement factor as a main source. The result differs by 14% from the
value 982 mb calculated by a parametrization of the total absorption cross section [24].

4. Di-electrons

All possible combinations of identifed e+e- tracks have been formed event by event and cor-
rected for detector and reconstruction efficiencies. The latter ones were deduced using Monte-Carlo
simulations embedded into real events. Invariant mass spectra of the unlike-sign pairs were con-
structed from singlee+e− tracks. To increase the purity of thee+e− sample a cut on the single
track momentum 0.08 < pe/(GeV/c) < 2.00 was applied. The combinatorial background (CB)
was extracted from all like-sign pair combinations inside the same event. Since the CB stems pre-
dominantly from external conversion it could be reduced by cutting on the pair opening angle >
9 degrees and on the track fitting quality. By subtracting theCB from the unlike-sign pairs the
signal spectrum was obtained. The signal to background ratio isS/B≈ 1 atMee= 200MeV/c2 and
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increases up toS/B≈ 10 atMee= 750MeV/c2. The dielectron cross section was obtained from the
measured multiplicities based on theπ− production analysis, see previous section. The data were
also corrected for thee+e− multiplicity enhancement due to the LVL1 trigger, estimated from the
simulations as 1.08.

Figure 5: Inclusivee+e− invariant mass distributions from p +93Nb and p+p collisions at 3.5 GeV.

The measured invariant mass distributions ofe+e− pairs from p+Nb and p+p reactions are
shown in the left panel of Fig. 5. Systematic errors od 21% and20% for p+Nb and pp, re-
sepectively, are displayed by the coloured horizontal bars. The low-mass part of the spectrum is
dominated byπ0 Dalitz decays(Mee < 150MeV/c2), while the intermediate part(150MeV/c2 <

Mee < 550MeV/c2) can be attributed toη and∆(1232) Dalitz decays. The high mass part of the
distribution is dominated by the direct decay of the light vector mesonsω , ρ and φ . The peak
around 780MeV/c2 corresponds to the direct decay of theω meson. A mass resolution of 2% at
the ω mass is extracted. The remaining signal continuum in this mass region may originate from
in-mediumρ decays.

To compare the spectral shapes of the p+p and p+A measured distributions, the p+p data were
rescaled to the p+Nb results. The result is shown on the rightpanel of Fig. 5. Two scaling methods
were used, showing consistent results. First is the ratio ofπ0 produced in two systems (used in Fig.
5), estimated asσ pNb

π0 /σ pp
π0 = 31± 6.5. The second correction factor based on ratios of reaction

cross sections and number of participants results inσ pNb
π0 /σ pp

π0 ×< A >part
pNb/ < A>part

pp = 27.3. It is
apparent from Fig. 5, that the p+Nb and p+p spectral shapes are almost identical without any mass
dependency.

The situation changes considerably when one uses the HADES large momentum acceptance
for e+e− pairs, and applies the condition one+e− momenta. At high momentapee > 0.8GeV/c
the spectral shapes are still very similar, while at lower momentapee < 0.8GeV/c the significant
changes are apparent in regionMee> 0.4GeV/c2. The analysis is at its final stage, and the results
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will be published soon. Preliminarily, a strong excess yield is observed in p+Nb system in the mass
region where theρ meson is expected to be dominant. One can speculate about twopossible reason
for this effect. One is feeding of low momenta di-lepton pairs from the secondary interactions
which produce baryonic resonances andρ meson, second is theρ spectral shape modification. A
change of theω line shape cannot be determined from the data due to very low yield in theω mass
peak in the p+Nb system. The lower yield at the same time points to theω collisonal broadening,
and is in agreement withγ induced reactions data [25].

5. Summary

Data on dielectron production from cold nuclear matter measured by the HADES spectrometer
were presented. Comparing the p+Nb data with the p+p reference experiment results, a signifficant
excess of low momenta dielectron pairs in theρ meson mass region is observed. At the same time,
theω yield seems to be lower in the pA system which is consistent with broadening of its spectral
function in the medium.

We also presented data on the charged pion production. The results allowed for a reliable and
precise normalization of the dielectron data, and contribute to the data from systematic studies of
pion production in proton-nucleus collisions.
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