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We discuss deviations from the exponential decay law which occur when going beyond the Breit-

Wigner distribution for an unstable state. In particular, we concentrate on an oscillating behavior,

remisiscent of the Rabi-oscillations, in the short-time region. We propose that these oscillations

can explain the socalled GSI anomaly, which measured superimposed oscillations on top of the

exponential law for hydrogen-like nuclides decaying via electron-capture. Moreover, we discuss

the possibility that the deviations from the Breit-Wigner in the case of the GSI anomaly are (pre-

dominantely) caused by the interaction of the unstable state with the measurement apparatus.

The consequences of this scenario, such as the non-observation of oscillations in an analogous

experiment perfromed at Berkley, are investigated.
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1. Introduction

The decay law of unstable systems plays a crucial role in Physics: the electromagnetic decays
of atoms, the decays of radioactive nuclei, of hadronic resonances and of the Standard Model
particles such as the weak interaction bosons and the Higgs boson, are all described by the well
known exponential decay law. Once the decay rateΓ is calculated from the microscopic interactions
or measured in experiments, the decay law is simply given byp(t) = e−Γt , wheret is the time after
the preparation of the unstable state andp(t) represents the survival probability.

On the other hand, it is a fact that both in Quantum Mechanics [1] and in Quantum Field The-
ory [2, 3] a pure exponential decay law is not obtained: deviations from the exponential law are
present at times very close to the initial preparation timet = 0 and at very late times, while at “in-
termediate” times the exponential law represents a very good approximation. In particular, at late
times the decay law follows a power-law, which is however very difficult to observe experimentally
because it occurs at times for which the survival probability is already vanishingly small. On the
other hand, the deviations at small times occur within a veryshort time scale, for instance 10−15

s for the electromagnetic decays of an excited hydrogen atom[4] and even shorter for hadronic
decays [2]. It is thus experimentally very challenging to observe such deviations and to confirm the
predictions of the theory. Only in 1997 cold atom experiments allowed to clearly observe for the
first time deviations from the exponential decay law of unstable systems (via tunneling of atoms
out of a trap) [5]. In particular, this experiment has shown that the survival probability at small
times is not exponential, but it is rather a Gaussian, i.e. the derivative ofp(t) goes to zero at times
close to the initial time,p′(0) = 0. In turn, this behavior allows for a quite peculiar modification
of the decay law induced by measurements: when pulsed measurements on the system (inducing
a collapse of the state into the original undecayed state) are performed during the non-exponential
regime, one can obtain a slower or faster decay of the system depending on the frequency of the
measurements. Those two effects, called Quantum Zeno and Anti-Zeno effects theoretically pre-
dicted in Refs. [6, 7, 8, 9], have been then observed in the same experiment which has proven the
existence of non-exponential decays [10]. This experimental success triggered a new interest of the
physics community on the topic of deviations from the exponential decay law, not only because it
represents a new and deep confirmation of the predictions of quantum theory, but also because it
opens the possibility to engineer the decay of unstable quantum systems, see for instance Ref. [11].
Also, the general theory of measurement in quantum mechanics, which is still a quite active area
of research, benefits from these experimental results [12].

In 2008, an experiment at the Storage Ring of the GSI facilityof Darmstadt has reported
the observation of non-exponential decays of hydrogen-like ions which decay via electron capture
[13]. Quite remarkably, the survival probability shows an exponential decay with superimposed
oscillations. These data stimulated many discussions and many different possible explanations
have been proposed. Presently, there is no accepted theoretical explanation of this phenomenon
and, more important, an experimental confirmation of the results is still lacking. By assuming that
the phenomenon observed at GSI is real, we present a possibleexplanation in terms of “standard”
quantum mechanical effects [14]. Moreover, we present further consequences of our explanation
which can be proved or disproved in the near future. We also discuss the results obtained at the
Berkeley Lab where no oscillations for the decays of the samenuclei have been observed [15].
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Figure 1: Survival probability for different values of the low energycutoff Λ1. Γ = 1, Λ2 = 200Γ (a.u.).
The exponential decay law turns into a power law at large times.

2. A phenomenological approach to unstable states

The standard empirical approach to the decay of unstable states is to assume that the decay
rateΓ, i.e. the number of decays per unit time, is constant and doestherefore not depend from the
“history” of the unstable system, in particular it does not depend on the time of “preparation” (in
a quantum mechanical meaning) of the unstable state. This immediately leads to the exponential
survival probabilityp(t) = e−Γt .

Denoting the energy distribution function (alias the spectral function) of the unstable state
with d(x) [1], the survival amplitudea(t) is the Fourier transform ofd(x), a(t) =

∫ ∞
−∞ dxd(x)e−ixt ,

and the survival probability is just given byp(t) = |a(t)|2. The “empirical” exponential decay law
is theoretically justified, if we assume thatd(x) is a Breit-Wigner distributiond(x) → dBW(x) =
1

2π
Γ

(x−M)2+Γ2/4 , whereM is the mass of the unstable state (i.e. its energy in the rest frame) andΓ
its decay width. Note thata(0) = 1 (the state is prepared at the instantt = 0 with unit probability,
p(0) = 1). When calculating the Fourier transform, the integral gets only the contribution of the
simple pole located atxpole= M− iΓ/2 leading toaBW(t) = e−iMt e−Γt/2 and thuspBW(t) = e−Γt .

The exponential law works astonishingly well when comparedto the experiments. However,
there are two evident problems in assuming a Breit-Wigner spectrum: (i) It does not allow for the
existence of a minimum of energy (threshold for the decay), i.e. it corresponds to an Hamiltonian
unbound from below. (ii) The behavior of the Breit-Wigner atlarge energies is such that, while the
normalization can be imposed (and thus unitarity), all the momenta of the distribution, including
also the average energy of the unstable state, diverge. We need to cure these two problems in order
to build a physically motivated distribution function. In Quantum Field Theory, once the interac-
tion Hamiltonian between the unstable state/particle and the decay products is known, the spectral
function is proportional to the imaginary part of the dressed propagator, i.e. the one obtained by
the resumming all the loops, see Ref. [16]. This procedure allows to correctly describe the spectral
function in the whole energy spectrum. In particular, thereappears a threshold which then, in the
survival probability, regulates the decay law of the systemat large times, for which a power law is
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realized. The high energy behavior of the spectral function, which controls the survival probability
at small times, represents unfortunately a much more complicated problem. All field theories are
valid until a cutoff of energy where some new physical ingredients enter, for instance the Planck
energy scale in particle physics. Following this reasoning, we construct here the simplest phe-
nomenological model for the spectral function and, as a consequence, for the survival probability:
we assume a Breit-Wigner spectrum corrected by two cuts in the energy, a low energy cutΛ1 and
a high energy cutΛ2:

a(t) = N
∫ M+Λ2

M−Λ1

dx
Γ

(x−M)2+Γ2/4
e−ixt , (2.1)

whereN is such thata(0) = 1. For such distribution, obviously all the momenta are finite (in
particular the average energy of the unstable state). We show in Figs. 1 and 2 the effect of varying
these two parameters on the survival probabilityp(t) and on the decay rate as a function of time.
The quantityh(t) defined ash(t) = −dp(t)/dt (h(t)dt represents the probability that the unstable
state decays in the time interval betweent andt +dt).

As expected, the exponential behavior dominates over a verylong time scale but deviations
are clearly present. The low-energy cutoffΛ1 regulates the time after which the exponential law
turns into a power law (in our approach the index of the power law cannot be adjusted, one should
introduce another parameter which fixes how fast the decay rate falls to zero at threshold). When
varying the high-energy cutoffΛ2, the survival probability remains basically very similar to an
exponential law (see Ref. [14] and figures therein), but veryinteresting features emerge in the
behavior ofh(t) = −p′(t). The high energy cutoff regulates the behavior of the decay probability
at small times after the preparation of the system and manifests itself (in the Fourier transform) as
an oscillation superimposed to the exponential decay law. The larger the cutoff, the larger is the
frequency of the oscillation and the smaller is the amplitude of the oscillation as one can notice in
Fig. 2 (where, for simplicity, the choiceΛ1 =Λ2 has been made). The physical interpretation of this
phenomenon is quite natural:Λ2 determines the bandwidth of the continuum of states into which
the unstable state can decay. The plots shown in Fig. 2 interpolate between the pure exponential
decay which occurs in presence of a large bandwidth continuum and a pure oscillating probability
which occurs in a system of two discrete levels (Λ2 very close to the average energy of the unstable
system) where Rabi oscillations are obtained.

The physical origin of the cutoff(s) can be twofold: there can be “natural” cutoffs determined
by the microphysics of the interaction of the unstable stateand its decay products (as the low-energy
threshold and the high-energy cutoff mentioned above), butthere could be an “experimental” cutoff,
which is caused by the interaction of the unstable system with the experimental apparatus that
measures the decay. As we will discuss in the following, in the case of the GSI anomaly the
experimental cutoff must dominate (i.e. it is the smaller one).

3. The peculiar case of the GSI anomaly

The interesting properties of the decay law explained before, especially the oscillating behav-
ior of h(t) shown in Fig. 2 emerging for “small” values of the cutoff(s) (one or two orders of
magnitude larger thanΓ), mighthave been already observed in experiments. In particular, we want
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Figure 2: Decay rate as a function of timeh(t) for different choices of the high energy cutoffΛ2. Γ = 1,
Λ1 = Λ2 (a.u.). Also the exponential decay rate is shown for comparison.

to point to what has been named the “GSI anomaly” seen at the heavy ions storage ring at the GSI
facility of Darmstadt. In 2008 Ref. [13] reported the observation of non-exponential decays of
Hydrogen-like ions140Pr and142Pm in the electron-capture reactions of the form:

M → D+νe (3.1)

whereM denotes the ‘mother state’ (i.e. the unstableH-like nuclide140Pr or142Pm) andD denotes
the ‘daughter state’ (i.e. the nuclei140

58 Ce and142
60 Nd, respectively).

Calling N(t) the number of unstable particles at the instantt, it has been found thatdN/dt
doesnot follow a simple exponential law. The experimental points were fitted with superimposed
oscillations:

dNdec

dt
=−

dN
dt

∝ e−λ t(1+acos(ωt +φ)) , (3.2)

wheredNdec/dt represents the number of decay per time (see Fig. 3-5 of Ref. [13]). These results
stimulated the theoretical modelling of this phenomenon, but the origin of these oscillations is
not yet clear: explanations of the observed experimental data by invoking neutrino oscillations,
neutrino spin precession and quantum beats seem indeed not to be satisfactory, see Refs. [17, 18,
19, 20] and refs. therein.

In Ref. [14] we have put forward an interpretation of the GSI results based only on Quantum
Mechanics: Following the discussions of Sec. II, we assumedthat the mass distribution of the
mother state is not a pure Breit-Wigner. In doing the calculations the survival probability amplitude
of Eq. (2.1) withΛ = Λ1 = Λ2 has been used. We have shown that for142Pm the cutoffΛ ≃ 32Γ ≃

0.5·10−15 eV, whereΓ = 0.0224 s−1 is the decay width of the state, gives rise to oscillations which
are qualitatively similar to those measured in Ref. [13].

The required value of the cutoffΛ is very small. An intrinsic origin of this cutoff based on
QED and QCD fundamental interactions, on the line of Ref. [4], seems very improbable in this
case. A more promising direction consists in assuming that the cutoff originates from the inter-
action of the unstable system with the measuring apparatus.Indeed, the experiment performed at
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the GSI storage ring is unique. After their “creation”, the unstable Hydrogen-like140
59 Pr and142

61 Pm
ions are stored in a ring equipped with a Shottky Mass spectrometer which measures the frequency
of rotation of the ions inside the ring. This frequency depends on the charge to mass ratio of the
ions. When the reaction (3.1) takes place, the charge to massratio, and thus the rotation frequency,
change. In this way the experimentalists at GSI can monitor the decay of these unstable systems
few seconds after their preparation and for a period of a couple of minutes. Some important features
of this experiment are worth to be mentioned: While the ions need∼ 0.5 µs to complete a turn
in the storage ring, their frequency of rotation within the frequency spectrum is identified within
averagely∆tresolution≃ 200 ms. This means that the ‘measurement’ of the state of the unstable ions
does not occur at every turn1. This measurement is clearly not an ‘ideal measurement’ in the quan-
tum mechanical sense, according to which the collapse of thewave function occurs instantaneously
as soon as the wave function of the unstable system interacts/overlaps with the measurement appa-
ratus (the projection postulate of Quantum Mechanics). We connect the cutoffΛ entering into the
expression (2.1) to the precision of the experiment throughthe time-energy uncertainty relation:

Λ ∼
1

∆tresolution
∼ 10−15 eV . (3.3)

This number is remarkably close to the value (mentioned above) needed to describe the oscillation
seen in the GSI experiment. It seems therefore that the possibility of an apparatus-induced cutoff
is viable and deserves further discussion. Indeed, the factthat the measurement itself can modify
the decay law of an unstable system has been already experimentally proven by the observation
of the quantum Zeno and Anti-Zeno effects [10]. To our knowledge, the first theoretical work on
this problem is Ref. [21] “Does the Lifetime of an Unstable System Depend on the Measuring
Apparatus” and recently a new interest on this issue has grown, see Refs. [11, 12] and refs. therein.
In Ref. [21] it is analyzed how the decay of an unstable state into two particles is modified by
the measuring apparatus such as a bubble chamber. A length scale R is introduced and named
“localization radius”, which corresponds to the distance between the decay products beyond which
the experimental apparatus can ascertain whether the system has decayed or not. In this scheme,
the following formula forp(t), formally identical to Eq. (2.1) forΛ = Λ1 = Λ2 = w/2, has been
obtained by studying the dependence of the lifetime of the unstable state from the experimental
apparatus:

p(t) = N

∣

∣

∣

∣

∫ ER+w/2

ER−w/2
dE

e−iEt

(E−ER)2+ γ2/4

∣

∣

∣

∣

2

, (3.4)

whereN is a normalization constant,ER is the average energy (i.e. the massM) of the unstable
state,γ the width of the state (i.e.Γ) if it is not disturbed by the measurement, and the cutoffw is
proportional to the ratio of relative velocityv of the two decay products and the localization radius
R, w = v/R. The interpretation ofw in the case of Ref. [21] is quite clear: it is related to the
time needed by the measuring apparatus to destroy the correlation between the unstable state and
its decay products and it is thus of the same type of Eq. (3.3).As discussed in that paper, for the

1Another important experimental limitation concerns the time interval which lasts between the disappearance of the
frequency of the mother ion and the appearance of the frequency of the daughter ion in the frequency spectrum. This
time interval of 900 ms and 1200 ms (for140Pr and142 Pm respectively) is related to the cooling of the stream before it
can be identified by the mass spectrometer.
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typical measuring apparatuses in particle physics (as for instance the bubble chamber)w is very
large: 1017-1022 s−1 and therefore the exponential decay is obtained to a very good approximation
in most of the cases. The arguments in Ref. [21] leadingw are analogous to the emergence of a
cutoff Λ = w/2 in our case.

Indeed, one should go beyond these qualitative considerations and build a detailed theoretical
model for the interaction between the unstable ions and the measuring apparatus also in the case
of the GSI experiment, but this represents a quite demandingeffort which is left for future work.
Moreover, it will be also important to study in detail the effect of the ‘collapse’ of the wave function
in the case of the GSI experiment. As discussed in Ref. [22, 23], the non-occurrence of the Zeno
effect (and therefore the clock is not reset at each measurement) would assure that the quantity
measured in the experiment coincides (up to a normalization) with the functionh(t) = −p′(t).
These issues go at the very heart of Quantum Mechanics: in this sense, the GSI experiment could
represent a wonderful way to directly investigate them.

As a next step we list the predictions and consequences whichhold in the framework of our
proposed interpretation.

(i) The curveh(t) = −p′(t): Our theoretical functionh(t) (which represents the decay prob-
ability per unit time and unit ion and it is thus proportionalto dNdec/dt) evaluated starting from
Eq. (2.1) shows some peculiar differences w.r.t. the experimental fitting curve of Eq. (3.2). Our
h(t) vanishes for short times (a general feature due to the fact that p′(0) = 0), the first peak is more
pronounced than the others and the oscillations are damped faster than the fitting curve in Eq. (3.2),
see Fig. 2 and the detailed discussion and figures in Ref. [14].

(ii) β+ decay channel: TheH-like ions under study at the GSI do not decay only via the
electron-capture mechanism of Eq. (3.1), but decay (in bothcases sizably) via aβ+ decay:M →

D′+e++ νe, whereD′ refers to theH-like daughter state for this process. In the case of theβ+

decay a positron is emitted which is absorbed by the environment extremely fast. Thus, for the
β+-channel the corresponding cutoff turns out to be much larger than 10−15 eV: the deviations
from the exponential decay law are very small and thus unobservable in this channel (see Fig. 2 to
‘see’ the effect of an increased cutoff). This discussion isalso useful to clarify the following point:
at variance with the positron, in the electron-capture decay of Eq. (3.1) the emitted neutrino does
not interact with matter and is therefore not responsible for the determination of a time scale. For
a mathematical description of the two-channel case we referto Ref. [24]. A detailed study of the
two-channel problem using the formalism of Ref. [24] is alsopart of our outlook.

(iii) Berkeley-experiment: In the experiment performed atthe Berkeley Lab [15]no oscilla-
tions in the decay law for142Pm in relation to the ‘same’ process of Eq. (3.1) have been observed.
As already noticed in Ref. [25], there are peculiar differences from the GSI experiment w.r.t. the
Berkeley one: in the latter, the atoms are not ionised and areinside a lattice, thus also phonons
are emitted in the final state. However, in the framework of our interpretation, the crucial fact is
that very soon after the electron capture of Eq. (3.1), aK-shell vacancy is formed and a photon
is very soon emitted. Thus, just as in the previous case,∆t is much shorter and, conversely, the
cutoff is much larger in the Berkeley-experiment:ΛBerkeley≫ Λ. The oscillations have a too small
amplitude and period and cannot be observed. Moreover, the absence of oscillations at the Berke-
ley experiment is a further strong argument against an intrinsic cutoff emerging out of microscopic
form factor.
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(iv) Independence of the period and amplitude on the employed H-like ion: In the framework
of our interpretation, the cutoffΛ is almost uniquely related to the measurement process and is
therefore independent of the employed mother nuclide. Thus, the period and the amplitude of
the superimposed oscillations, which are controlled by thecutoff only, are also expected to be
comparable: this is indeed the case of the two ions studied inRef. [13]. Notice that the same cutoff
of Eq. (3.3) for both ions140Pr and142Pm corresponds to quite different ratios ofΛ/Γ, which are
∼ 32 and∼ 470 respectively. It is interesting that the measurement-induced cutoff can explain
naturally these quite different ratios.

(v) Repetition of the experiment. If the GSI experiment is performed with an improved time
resolution, we expect that the corresponding cutoff increases, see Eq. (3.3), and thus the period and
the amplitude of the oscillations decrease, see Fig. 2 for a numerical example.

Finally, it should be stressed that, while the here described qualitative features are general, a
quantitative analysis should go beyond the simple formula of Eq. (2.1). This will be possible once
that, as mentioned above, a detailed study of the interaction of the system as a whole (unstable state
plus measurement) will be undertaken.

4. Conclusions

In this work we have described deviations from the exponential decay law when the energy
distribution is not a Breit-Wigner function. In particular, we have studied a modified energy distri-
bution in which cutoffs on the left and on the right sides of the peak have been introduced. We have
proposed that the oscillations seen in Ref. [13] in the electron-capture decay ofH-like ions may
originate from a similar modification of the energy distribution of the mother state [14]. Inspired
by Ref. [21], we have linked through the time-energy uncertainty relation the physical origin of the
cutoff Λ to the time uncertainty of the measuring apparatus at GSI. Itis quite remarkable that the
cutoff obtained in this way, see Eq. (3.3), is of the same order needed to obtain the time modulation
of 7 s measured in Ref. [13].

We have analyzed the consequences of our proposal: very muchsuppressed oscillations in the
β+ decay-channel because of a much larger cutoff, which makes them unobservable: the standard
decay law holds here; similarly, suppressed oscillations (and thus exponential decay law) in the
electron-capture decay channel at the Berkeley experiment; a mild dependence of the period and
amplitude on the unstable ion; more suppressed oscillations when the GSI experiment is repeated
with an increased time resolution (period and amplitude decrease).

As an outlook for future works we mention the precise modelling of the measurement proce-
dure and the detailed study of the two-channel problem.
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