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The strong CP problem is thatSU(3) gauge field instantons naturally induce a CP violating term in

the QCD Lagrangian which is constrained by experiment to be very small for no obvious reason.

We show that this problem disappears if one assumes the existence of at least one black hole

somewhere in the universe. The argument is reminiscent of Dirac’s argument for the quantization

of charge, in which the existence of one monople anywhere in the universe suffices to require the

quantization of electric charge everywhere. Comments are made regarding appearance of similar

terms in spacetimes of general topology.
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1. Introduction

In quantum chromodynamics (QCD)[1] - the generally accepted theory of quarks and gluons
- there was a prediction that there should be a light pseudoscalar particle associated with the con-
served current associated with global chiral rotations of the quarks. No such meson was observed,
and this was called the “U(1) problem”. It was realized that the quantum effects spoiled the con-
servation of the quark axial current, making its divergenceproportional toTrFµνF∗µν whereFµν

is theSU(3) field strength,F∗µν its Hodge dual, and the trace is taken overSU(3) indices.

This divergence corresponds to a CP-violating Lagrangian density of the form

LCP−violating =
θg2

32π2 TrFµνF∗µν (1.1)

whereg is theSU(3) gauge coupling constant, andθ is a free parameter. Overall, this expression is
proportional to the Pontryagin density, which on integration over spacetime is an integer topological
charge representing the numbern of times thatS3 (considered as physical spaceR

3 plus a point at
infinity) nontrivially “winds around”SU(3). The physical gauge-invariant vacuum is constructed
as a superposition of states of winding numbern, each weighted byeinθ with the sum running from
n = −∞ to n = ∞ in order to preserve gauge invariance under the “large” gauge transformations
which are not continuously connected to the identity.θ is not determined by the theory, and can,
in principle, take any value between 0 and 2π.

When the weak interactions and quark masses are included,θ is shifted by an amountarg(det(m))

wherem is the quark mass matrix, but the basic form of the expressionremains the same and
unless the shiftedθ is zero (orπ, but this subtlety will not concern us here) this term leads to
a (CP-violating) electric dipole moment|dn| for the neutron. The present upper bound|dn| <

2.9×10−26e·cm, wheree is magnitude of the electron charge[2] , impliesθ < 10−9. The puzzle of
why θ is so small is the “strong CP problem”.

A wide variety of solutions have been proposed, generally involving new physics. Many pos-
tulate particles called axions[1] associated with an additionalU(1) symmetry which can be used to
rotateθ to zero. These have not been observed and are in general quiteconstrained by astrophys-
ical considerations. Other ideas include adding dimensions to the usual 3+1 that we know [4], or
making them some fractional value a little less than four [5]. Two-dimensional fundamental objects
(2-branes) [6] have been considered, as have microscopic wormholes [7], hypothetical new interac-
tions [8], new (non-axion) particles [9], supersymmetry [10], and magnetic monopoles[11]. It has
also been claimed that certain choices of regularization techniques could solve the problem[12].
It has even been suggested that a staggering 1032 copies of the Standard Model could do the job
[13]. It has also been argued[14] that the strong CP problem might naturally not appear at all if one
simply reformulated QCD in terms of holonomies (gauge invariant traces of Wilson loops). This
list of ideas and references is not meant to be complete, but rather to show that the problem has
driven theorists to a wide range of quite exotic scenarios inthe search for an explanation. Despite
all this creativity, the strong CP problem is still generally considered unsolved.

The point of this paper is that the problem could be resolved without unobserved exotica, and
without spoiling the solution of theU(1) problem, if the spacetime integral of the Pontryagin den-
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sity were somehow to be zero – something I now argue will happen if one allows for the existence
of even one black hole.

In elementary particle physics one usually ignores gravity, and works with quantum field the-
ory in flat and topologically trivial spacetime. While quantum field theory in a general curved
spacetime[3] is highly nontrivial, the question asked hereonly requires a little topology.

First let us recall where the instantons come from that lead to the strong CP problem[15,
16]. We look forSU(3) gauge field configurationsAµ which go to the identity (up to a gauge
transformation) at spatial infinity, with all the directions at infinity identified. These turn out to fall
into topologically distinct classes labelled by elements of π3(SU(3)).

For completeness, and to make clear the origin of theπ3(SU(3)), let us repeat the argument
in more detail. Pure gauge configurations are of the formAµ = iU†(x)∂µU(x) whereU(x) takes
its values inSU(3) andx = (t,~x). Using the gauge freedom to setA0 = 0, which essentially means
we consider time-independent fields, only partially fixes the gauge. If we requireU(~x) = 1 as
the spatial~x goes to infinity in all directions this is the same as looking for maps from spatialR3

compactified at infinity (that is,S3) into SU(3). Instantons and correspond to homotopy classes
[S3,SU(3)] of these maps. By definition,[S3,SU(3)] = π3(SU(3)) and sinceπ3(SU(3)) = Z we
have homotopically distinct maps labelled by the integers,which turn out to be the very topological
charges that come from the integration of the Pontryagin density in equation 1.1.

The key observation of this paper is that if we have black holes present and repeat the argument,
we should replace[S3,SU(3)] by [M,SU(3)] whereM is a manifold (now with boundary) created
from theS3 described above with a 3-ball bounded by a 2-sphere excised for each black hole present
– effectively we are removing a set of distinct points (and balls around them) from space.

Physically, we require that the gauge fields go to the identity (up to gauge invariance) on the
surfaces of black holes (as well as at infinity), in a similar spirit to reference [17] in which this con-
dition is invoked to argue for spacetime foam as a universal regulator. Alternatively, we can regard
spacetime as having punctures wherever there are black holes, corresponding to excised open balls,
or even just requiring that the points at the centers of the black holes (where the curvature blows
up, so these points aren’t really part of a manifold) are removed. Note that we don’t need to assume
spacetime foam or wormholes (as have been used to argue for solutions to the strong CP problem
before) and the black holes in question need not be virtual ormicroscopic – any astrophysical black
holes (or, indeed just one) would do. In particular,π1(M) is assumed to be trivial, as is usual in
considerations of the strong CP problem (and for which thereis no experimental evidence to the
contrary) . In many ways, this is meant to be a very conservative solution to the strong CP problem
invoking essentially no new physics beyond what is generally known.

The scene is essentially one in which the spacelike slice of the classical background is replaced
by one with some number of points removed.

Now let us consider the homotopy classes of maps[M,SU(3)] from M to SU(3). M is clearly
simply connected (π1(M) = 0), as every closed loop can be continuously shrunk to a point. If
we consider possibly topologically nontrivial maps fromM to SU(3) then the usual Postnikov
construction [18] tells one that one has to considerπ2(SU(3)), but this is zero, and one is left
with nothing to worry about except[M,K(π1(SU(3)),1)] with K(π1(SU(3)),1) being the relevant
Eilenberg-MacLane space.
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By definition that means that[M,K(π1(SU(3)),1)] = H1(M,π1(SU(3))). SinceM is simply
connected, one immediately sees that this is zero, and thus all maps fromM to SU(3) are homo-
topically trivial (continuously deformable to the identity). We could argue directly that it is also
zero due to the fact thatSU(3) is simply connected andπ1(SU(3)) = 0.

If one wants to argue that the true gauge group should beSU(3) with its Z3 center divided
out[19], making the first homotopy group nonzero, then the first argument given in the above
paragraph still makes the case.

The integral in equation 1.1 now vanishes as the corresponding topological charge is zero,
and the strong CP problem would seem to be solved. The argument is essentially the same one
that one has for a local electromagnetic contribution to thedivergence of the axial current, but no
electromagnetic theta term sinceπ1(U(1)) = 0.

Clearly, analogous arguments hold for any finite-dimensional Lie groupG in place ofSU(3)

sinceπ2(G) is always zero in this case[18] and the same reasoning applies. An example is the
SU(2) of electroweak theory, so there is no theta term for this either.

Some care is needed if multiply connectedM is considered since one does not want to induce a
θ -like term for theU(1) of electromagnetism. Such an electromagneticθ term is absent in standard
analyses since, as noted above,π3(U(1)) = 0, and thus there are noU(1) instantons to worry about.

In the case of topologically more complicated spacetimes additional gravitationally-induced
CP violating effects may be present[20]. In particular, terms proportional tofµν f ∗µν where f is the
electromagnetic field strength tensor andRab

µνR∗µν
ab whereR is the spacetime curvature tensor can be

present. These contributions are not usually considered part of the “strong CP problem”, although
it is very interesting that these terms are not obviously suppressed by powers of the Planck scale. In
the case of theRab

µνR∗µν
ab the spacetimes involved clearly are not of the form considered here since

corresponding instantons do not refer to topologically nontrivial gauge fieldsover spacetime but
rather topologically nontrivial spacetimes. Whether the arguments made here can be extended to
this case is not obvious, but I hope to be able to return to thisinterersting question in future work.
Of related interest is also [21] in which the suggestion is made that the usual instanton sums may
need to be modified in some theories.

As this paper was being completed, I became aware of a relatedpaper[22] by Etesi. This author
considers both black and “white” holes (which it is not clearexist), finding results for[M,SU(3)]

which agree with those here. The claim in that paper however is not that the Pontryagin term inte-
grates to zero, but rather that one should consider a sort of “effective homotopy” which takes into
account the causal structure of the relevant spacetime and for which the corresponding homotopy
classes are not trivial and the strong CP problem remains. The idea is that one should only con-
sider homotopies whose initial and final stages can be compared by an observer in finite time. This
leads to a re-appearance of theθ vacuum structure which we just got rid of, and the solution ofthe
strong CP problem is based an additional assumption which iscertainly not required in the usual
formulation of the strong CP problem. In factθ arises in a quantum mechanical superposition of
states of all instanton numbers making even the meaning of a suitable observer unclear at best.
Indeed the term “instanton” refers to the fact that one considers field configurations which can be
thought of as at least approximately localized in time. Thisleads to that paper missing the key
point I make here which is that even a single black hole (no “white holes” needed) suffices to make
all theSU(3) field configurations topologically trivial. In this wayTrFµνF∗µν can still be nonzero
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locally to solve theU(1) problem, while globally all the corresponding gauge field configurations
are topologically trivial.

In contrast to essentially all other attempts to solve the strong CP problem, the approach pre-
sented here requires no modification of the standard treatment of the problem other than to include
the presence of normal (indeed classical) black holes as part of the structure of spacetime. No
undiscovered exotica need be invoked.

It may seem surprising that the existence of even one singular object - in this case a black hole
- could have implications for elementary particle physics,but there is actually a rather old analog.
Long ago in 1948, Dirac had used topological arguments to show[23] that the presence of justone
magnetic monopole would require electric charge everywhere to be quantized. Here we see that,
similarly, the presence of just one black hole can resolve the strong CP problem.
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