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1. Introduction

In quantum chromodynamics (QCD)[1] - the generally acatpheory of quarks and gluons
- there was a prediction that there should be a light pseaftrsparticle associated with the con-
served current associated with global chiral rotationefquarks. No such meson was observed,
and this was called the “U(1) problem”. It was realized thmegt uantum effects spoiled the con-
servation of the quark axial current, making its divergepagportional toTrF,,F**" whereF,,
is theU (3) field strengthF**V its Hodge dual, and the trace is taken o86(3) indices.

This divergence corresponds to a CP-violating Lagrangarsity of the form

eg2 *UV
Lcp—violating = WTVFWF (1.1)

whereg is theSU (3) gauge coupling constant, afds a free parameter. Overall, this expression is
proportional to the Pontryagin density, which on integratbver spacetime is an integer topological
charge representing the numimeof times thatS® (considered as physical spaké plus a point at
infinity) nontrivially “winds around”3J (3). The physical gauge-invariant vacuum is constructed
as a superposition of states of winding numhbegach weighted bg"? with the sum running from
n= —c to n = in order to preserve gauge invariance under the “large” gdtansformations
which are not continuously connected to the identlyis not determined by the theory, and can,
in principle, take any value between 0 arwd 2

When the weak interactions and quark masses are inclédsahifted by an amouratrg(det(m))
wherem is the quark mass matrix, but the basic form of the expressomins the same and
unless the shifted® is zero (orm, but this subtlety will not concern us here) this term leamls t
a (CP-violating) electric dipole momend,| for the neutron. The present upper boudd| <
2.9 x 10~%%e.cm, whereeis magnitude of the electron charge[2] , impl@s: 10~°. The puzzle of
why 6 is so small is the “strong CP problem”.

A wide variety of solutions have been proposed, generallglinng new physics. Many pos-
tulate particles called axions[1] associated with an &eftiil U (1) symmetry which can be used to
rotated to zero. These have not been observed and are in generatqoggained by astrophys-
ical considerations. Other ideas include adding dimemsiorihe usual 3+1 that we know [4], or
making them some fractional value a little less than four Tsjo-dimensional fundamental objects
(2-branes) [6] have been considered, as have microscopinlades [7], hypothetical new interac-
tions [8], new (non-axion) particles [9], supersymmetr@][land magnetic monopoles[11]. It has
also been claimed that certain choices of regularizatichrnigues could solve the problem[12].
It has even been suggested that a staggeriig ddpies of the Standard Model could do the job
[13]. It has also been argued[14] that the strong CP probléghtmaturally not appear at all if one
simply reformulated QCD in terms of holonomies (gauge iardrtraces of Wilson loops). This
list of ideas and references is not meant to be complete,abier to show that the problem has
driven theorists to a wide range of quite exotic scenaridbénsearch for an explanation. Despite
all this creativity, the strong CP problem is still generalbnsidered unsolved.

The point of this paper is that the problem could be resolvidont unobserved exotica, and
without spoiling the solution of thg (1) problem, if the spacetime integral of the Pontryagin den-
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sity were somehow to be zero — something | now argue will hapipene allows for the existence
of even one black hole.

In elementary particle physics one usually ignores graaityl works with quantum field the-
ory in flat and topologically trivial spacetime. While quant field theory in a general curved
spacetime[3] is highly nontrivial, the question asked tartly requires a little topology.

First let us recall where the instantons come from that leathé strong CP problem[15,
16]. We look forSJ (3) gauge field configurationd,, which go to the identity (up to a gauge
transformation) at spatial infinity, with all the direct®at infinity identified. These turn out to fall
into topologically distinct classes labelled by elemeritsggSU (3)).

For completeness, and to make clear the origin off§{&J(3)), let us repeat the argument
in more detail. Pure gauge configurations are of the f8gm= iU (x)d,U (x) whereU (x) takes
its values in9J (3) andx = (t,X). Using the gauge freedom to &t = 0, which essentially means
we consider time-independent fields, only partially fixes gauge. If we requir® (X) =1 as
the spatialk goes to infinity in all directions this is the same as looking haps from spatiak®
compactified at infinity (that is$®) into QU (3). Instantons and correspond to homotopy classes
[S®, U (3)] of these maps. By definitioriS*, U (3)] = 1s(3J (3)) and sincers(J (3)) = Z we
have homotopically distinct maps labelled by the integatgch turn out to be the very topological
charges that come from the integration of the Pontryagisitiem equation 1.1.

The key observation of this paper is that if we have blackdptesent and repeat the argument,
we should replacés®, U (3)] by [M, U (3)] whereM is a manifold (now with boundary) created
from theS® described above with a 3-ball bounded by a 2-sphere exas@@éh black hole present
— effectively we are removing a set of distinct points (anltisbkaround them) from space.

Physically, we require that the gauge fields go to the ideKtip to gauge invariance) on the
surfaces of black holes (as well as at infinity), in a simifaristo reference [17] in which this con-
dition is invoked to argue for spacetime foam as a univeesgllator. Alternatively, we can regard
spacetime as having punctures wherever there are black, lcoleesponding to excised open balls,
or even just requiring that the points at the centers of thelkbholes (where the curvature blows
up, so these points aren't really part of a manifold) are negdoNote that we don’'t need to assume
spacetime foam or wormholes (as have been used to argueldtioss to the strong CP problem
before) and the black holes in question need not be virtualioroscopic — any astrophysical black
holes (or, indeed just one) would do. In particuler(M) is assumed to be trivial, as is usual in
considerations of the strong CP problem (and for which tiere experimental evidence to the
contrary) . In many ways, this is meant to be a very consexvatlution to the strong CP problem
invoking essentially no new physics beyond what is gengkadbwn.

The scene is essentially one in which the spacelike slidesoflassical background is replaced
by one with some number of points removed.

Now let us consider the homotopy classes of maps3J (3)] from M to U (3). M is clearly
simply connected76 (M) = 0), as every closed loop can be continuously shrunk to a pdfnt
we consider possibly topologically nontrivial maps fravhto U (3) then the usual Postnikov
construction [18] tells one that one has to considgiSJ (3)), but this is zero, and one is left
with nothing to worry about excepi, K(mm(3J(3)),1)] with K(r5(SU (3)),1) being the relevant
Eilenberg-MacLane space.
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By definition that means thaéh, K (rm(SJ (3)),1)] = HY(M, m (U (3))). SinceM is simply
connected, one immediately sees that this is zero, and thogps fromM to J(3) are homo-
topically trivial (continuously deformable to the idegdit We could argue directly that it is also
zero due to the fact th&J (3) is simply connected anmd; (SJ(3)) = 0.

If one wants to argue that the true gauge group shoul8b@) with its Z3 center divided
out[19], making the first homotopy group nonzero, then that fargument given in the above
paragraph still makes the case.

The integral in equation 1.1 now vanishes as the correspgridipological charge is zero,
and the strong CP problem would seem to be solved. The argumessentially the same one
that one has for a local electromagnetic contribution todiiergence of the axial current, but no
electromagnetic theta term sinomgU (1)) = 0.

Clearly, analogous arguments hold for any finite-dimeraidie groupG in place ofSJ(3)
since 1p(G) is always zero in this case[18] and the same reasoning appfie example is the
U (2) of electroweak theory, so there is no theta term for thiseeith

Some care is needed if multiply connectdds considered since one does not want to induce a
6-like term for theU (1) of electromagnetism. Such an electromagn@tierm is absent in standard
analyses since, as noted abarefU (1)) = 0, and thus there are hb(1) instantons to worry about.

In the case of topologically more complicated spacetimelktiadal gravitationally-induced
CP violating effects may be present[20]. In particulamrteproportional td', f**¥ wheref is the
electromagnetic field strength tensor zRfﬁR;fjv whereRis the spacetime curvature tensor can be
present. These contributions are not usually consideradpthe “strong CP problem”, although
it is very interesting that these terms are not obviouslysegsed by powers of the Planck scale. In
the case of th(RfR,R;EV the spacetimes involved clearly are not of the form considi¢rere since
corresponding instantons do not refer to topologicallytrigial gauge fieldsover spacetime but
rather topologically nontrivial spacetimes. Whether thguenents made here can be extended to
this case is not obvious, but | hope to be able to return toititésersting question in future work.
Of related interest is also [21] in which the suggestion islentnat the usual instanton sums may
need to be modified in some theories.

As this paper was being completed, | became aware of a regdajezt[22] by Etesi. This author
considers both black and “white” holes (which it is not cleaist), finding results fofM, SJ(3)]
which agree with those here. The claim in that paper howeveoi that the Pontryagin term inte-
grates to zero, but rather that one should consider a sodffafctive homotopy” which takes into
account the causal structure of the relevant spacetimeaandhich the corresponding homotopy
classes are not trivial and the strong CP problem remains.idés is that one should only con-
sider homotopies whose initial and final stages can be cadgar an observer in finite time. This
leads to a re-appearance of th&acuum structure which we just got rid of, and the solutiothef
strong CP problem is based an additional assumption whichrtainly not required in the usual
formulation of the strong CP problem. In fa@tarises in a quantum mechanical superposition of
states of all instanton numbers making even the meaning aftabte observer unclear at best.
Indeed the term “instanton” refers to the fact that one aersifield configurations which can be
thought of as at least approximately localized in time. Th&ds to that paper missing the key
point | make here which is that even a single black hole (noitavioles” needed) suffices to make
all the SJ (3) field configurations topologically trivial. In this walrF,,F*#" can still be nonzero
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locally to solve theéJ (1) problem, while globally all the corresponding gauge fieldfagurations
are topologically trivial.

In contrast to essentially all other attempts to solve thengt CP problem, the approach pre-
sented here requires no modification of the standard treditofi¢he problem other than to include
the presence of normal (indeed classical) black holes asopdine structure of spacetime. No
undiscovered exotica need be invoked.

It may seem surprising that the existence of even one singhjact - in this case a black hole
- could have implications for elementary particle physhug, there is actually a rather old analog.
Long ago in 1948, Dirac had used topological arguments twgtg] that the presence of jushe
magnetic monopole would require electric charge everyaiehbe quantized. Here we see that,
similarly, the presence of just one black hole can resoleesttong CP problem.
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