PROCEEDINGS

OF SCIENCE

AppPot: bridging the Grid and Cloud worlds

Riccardo Murri

GC3: Grid Computing Competence Center
University of Zurich

E-mail: riccardo.murri@gmail.com

Sergio Maffioletti*

GC3: Grid Computing Competence Center
University of Zurich

E-mail: sergio.maffioletti@gc3.uzh.ch

This paper presents AppPot, a system for creating Linux software appliances. AppPot appliances
can be run as a regular batch or grid job and executed in user space, and require no virtualization
support in the infrastructure.

The main design goal of AppPot is to bring the benefits of a virtualization-based IaaS cloud to
existing batch-oriented computing infrastructures. In particular, AppPot addresses the application
deployment and configuration on large heterogeneous computing infrastructures: users are able to
prepare their own customized virtual appliance to provide a safe execution environment for their
applications. These appliances can then be executed on virtually any computing infrastructure,
being it a private or public cloud, as well as any batch-queueing compute cluster.

We give an overview of AppPot and its features, the technology that makes it possible, and
briefly report on experiences running it in production use within the Swiss national grid infras-
tructure SMSCG.

EGI Community Forum 2012 / EMI Second Technical Conference
26-30 March, 2012
Munich, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:riccardo.murri@gmail.com
mailto:sergio.maffioletti@gc3.uzh.ch

AppPot Sergio Maffioletti

1. Introduction

Application deployment and configuration on large heterogeneous systems is a complex in-
frastructure issue that requires coordination among system administrators, end users, and grid-level
operation teams. This is further complicated when it comes to scientific applications that are, in
several important cases, not included in the mainstream Linux distributions.

Virtualized infrastructures and software appliances provide an effective solution to these prob-
lems. However, they require a specific infrastructure and a usage model that is markedly different
form the batch-oriented processing that is still the backbone of scientific computing.

This paper presents a system (called “AppPot”) to bring the benefits of virtualization-based
Infrastructure-as-a-Service (IaaS) clouds to existing batch-oriented computing infrastructures.

AppPot comes in the form of a set of POSIX shell scripts that are installed into a GNU/Linux
system image, and modify its start-up sequence to allow controlling task execution via the kernel
boot command-line. Another utility is provided to invoke an AppPot system image from the shell
command line, and request it to execute a given command. Together these features allow the usage
of AppPot Virtual Machine (VM) appliances in batch-oriented systems, including grids and local
clusters.

The paper is structured as follows: in Section 2, we describe AppPot, its features, and its
architecture; in Section 3 we review the goals that guided AppPot development and the problems
that we set forth to solve; in Section 4 we report on some real-world experiences and how they
relate to the issues outlined in Section 3. Finally, Section 5 recaps the main points of the paper.

2. What is AppPot?

AppPot is the name we give to a software product consisting of an “appliance” (a VM) and a
set of support scripts that are installed within the appliance or are used to run it, both interactively
and non-interactively.

An AppPot appliance consists basically of just an AppPot disk image, which is a complete
GNU/Linux system installed in a partition image file (in “raw” format). The AppPot disk image is
a regular VM disk image file; it can be used -and has been tested- with the KvM [4], UML [1, 11],
and VirtualBox [12] virtualization systems.

When run under the User-Mode Linux (UML) virtualization system, AppPot appliances can be
run as regular non-interactive jobs; this requires a few ancillary files:

1. a shell script apppot-start used to run a command-line program within the AppPot
appliance;

2. an UML Linux kernel;

3. the auxiliary programs s1irp [8, 5] and empty [2] that enable optional features of AppPot
(networking, I/O streams redirection).

All these files can, all or in part, be installed system-wide so that many users can benefit from a
shared installation.



AppPot Sergio Maffioletti

2.1 Using AppPot

There are three main usage modes of AppPot, detailed below.

Interactive local execution. Users receive an AppPot system image, containing a working in-
stallation of Debian GNU/Linux.! Users have full access rights to the AppPot system image thus
they can modify it by installing new software, libraries, reference data, etc. For instance a user can
install her own version of a computational code or a reference dataset that will be used during the
computational analysis.

AppPot is then started directly on the users’ own computer, using one of the supported VM
systems.

Batch job on a cluster resource. In a typical cluster setup, the AppPot appliance disk im-
age file together with a UML kernel are made available to the batch cluster execution node; the
apppot-start command is invoked by the batch job to run a command non-interactively within
the AppPot appliance.

Here we leverage the fact that the UML virtualization system can run in unprivileged mode
without any support from the cluster administrator: the disk image file and the UML kernel are the
only files which are needed to start a non-interactive UML VM.

Grid job AppPot can also be executed as a grid job on a distributed infrastructure. In this case,
the AppPot appliance disk image file, execution script and reference data need to be transferred
to the destination node before the execution. This is normally achieved by specifying those input
files as part of the grid job description file. Everything else works as in the “batch job on a cluster”
scenario.

The virtualized execution model within UML guarantees perfect sandboxing: the user cannot
gain no more privileges than the executing user already has.

3. Goals and use cases

The following scenarios are meant as an illustration of AppPot’s intended use cases. Through-
out the paper, we shall describe how the requirements from these use cases translate into design
decisions for AppPot, and how well the goals have been met.

3.1 Deployment of complex applications

Some software packages (notably, many scientific codes) require complex installation proce-
dures. Two commonly-encountered issues are:

1. The application depends on software that is not readily available on the host operating sys-
tem. This is often the case with many applications developed in-house by research groups,
which can only be compiled against a specific version of a support library. A more widely-
known example is given by the visualization software XCrysDen [6]: it depends on the

I'The AppPot support software tries to be cross-platform and just rely on the POSIX shell features, so it could run on
other Linux flavors as well. No tests have been performed on other Linux distributions, however, as Debian GNU/Linux
currently fulfills all of our needs.



AppPot Sergio Maffioletti

Meschach [9] library of linear algebra routines, which is not included in any Linux distri-
bution and rather difficult to compile on one’s own as its website is old and unmaintained.

2. The application has a complex or non-standard compilation procedure, and the documen-
tation is scarce. This is, for instance, the case with the GAMESS-US [7, 3] application:
the application must be compiled by running an interactive C-shell script that asks a few
questions about the system setup and then pre-processes and compiles the source files in a
sequence. If the system configuration does not fall among the variants listed in the supplied
configuration script, the system administrator has to inspect the script sources, figure out
what the values for the internal configuration variables should be, and modify the compila-
tion procedure accordingly.

In a grid infrastructure, there is an additional problem of scale: all systems administrators
must be conversant with the installation procedures of every software piece, and every application
must be compatible with all the computing systems available in the infrastructure.

3.2 Running self-developed code

A large fraction of research groups are developing their own software applications; oftentimes
for computational experiments that are ephemeral or limited in scope to a local group or niche
community.

Leveraging the User-Mode Linux [1] virtualization system, AppPot appliances can run on
grid and local clusters as regular batch system jobs, without the need for sysadmin support or root
access. This solves both the aforementioned problems:

e AppPot software appliances are a way to implement generic application deployment on a
computational grid, and especially to enable users to provide their own software to the com-
puting cluster: a complete AppPot appliance consists of three files, that can be copied to the
execution cluster with any available mechanism, including the “stage in” facilities provided
by most grid and cluster batch systems.

e Users can use an AppPot VM on their computer for coding, and then run the same VM as a
Grid jobs or in a Cloud IaaS infrastructure for larger tests and production runs.

4. Real-world usage
Let’s see now how the issues illustrated in Section 3 can be addressed using AppPot.

4.1 Deployment of complex applications

AppPot allows the execution of the appliance through UML; in this way, the appliance contains
the complex application as well as its full dependencies and, at the same time, it spares the grid
site administrators from executing and certifying the application deployment: all that is needed is
to make a certain AppPot VM image and accompanying UML kernel available.?

2yM-based appliance are a well-known solution to the complex application deployment problem. In this respect,
the only novelty introduced by AppPot is the use of UML as the underlying virtualization technology, which makes
deployment as easy as copying a few files.



AppPot Sergio Maffioletti

4.2 Running development code

In case the application has a frequent update cycle, to re-deploy the software appliance every
time is not a viable option. AppPot provides a snapshot/changes mechanism for this: users can
create a “changes” file that encodes the differences of the locally-modified appliance with a “base”
one: the “base” disk image is pre-deployed at grid sites, while users keep produce the “changes”
files from their own, locally-modified VM. During AppPot boot, the apppot-init script will
re-create the modified appliance from the base one, by merging in the changes.

This model has been successfully used in the Swiss Multi-Science Computational Grid (SMSCG)
infrastructure to support running in-house development code that however depends on a deep stack
of pre-requisites (e.g., Python code built upon several layers of statistical and imaging libraries).

4.3 Dynamical expansion of clusters

An AppPot VM appliance can be prepared, that contains a copy of local cluster execution node
Operating System (0S); it should be customized by the site admin to connect back to the home
site using a Virtual Private Network (VPN). This appliance can then be executed on an accessible
external computing infrastructure (e.g., the EGI infrastructure or any flavor of public clouds), which
results in a new node being added to the local batch system. With the aid of some control/monitor
software, this expansion can be made dynamic: one or more “compute node” appliance are started
each time the local cluster is overloaded resources. This is similar to the “glide-in” mechanism
implemented in the Condor batch execution system [10].

This approach has been successfully used in the Swiss VM-MAD project to dynamically expand
a local Sun Grid Engine cluster to support the execution of swarms of proteomics jobs. The Virtual
Machines Management and Advanced Deployment (VM-MAD) project is entering its final stages at
the time of this writing, so full details will appear elsewhere.

5. Conclusions

AppPot is currently used in production within the Swiss National Grid Infrastructure SMSCG,
supporting several use cases like those presented in this paper. We are collecting feedback on
the effectiveness of AppPot in large-scale grid computations; we would like to stress that such
effectiveness is not just a function of system performance, but should also include consideration of
how it makes large-scale computing more accessible (on the users’ side) and manageable (on the
systems administrators side).

A. List of acronyms

KVM Kernel-based Virtual Machine

laaS Infrastructure-as-a-Service

(o1 Operating System

POSIX Portable Operating System Interface



AppPot Sergio Maffioletti

SMSCG Swiss Multi-Science Computational Grid

UML User-Mode Linux

VM Virtual Machine

VM-MAD Virtual Machines Management and Advanced Deployment (project ETHZ.7

VPN

funded by the SWITCH AAA track)

Virtual Private Network

References

[1]
(2]

(3]

[10]

(11]
[12]

Jeff Dike. User Mode Linux. Prentice Hall, April 2006.

empty - run processes and applications under pseudo-terminal (PTY) sessions.
http://empty.sf.net/, July 2012.

M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory: GAMESS a decade later.
In C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria, editors, Theory and Applications of
Computational Chemistry: the first forty years, pages 1167—-1189, Amsterdam, 2005. Elsevier.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the Linux virtual machine monitor.
In Proceedings of the Linux Symposium, volume 1, pages 225-230, 2007.

J. Knoble. Almost Internet with SLiRP and PPP. Linux Journal, 1996(24es):2, 1996.

A. Kokalj. Computer graphics and graphical user interfaces as tools in simulations of matter at the
atomic scale. Comp. Mater. Sci., 28:155-168, 2003.

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki,
N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery. General
Atomic and Molecular Electronic Structure System. J. Comput. Chem., 14:1347-1363, 1993.

SLIRP (Wikipedia entry). http://en.wikipedia.org/wiki/Slirp. Cited 28 February
2012.

D. Stewart. Meschach: Matrix computations in C.
http://homepage.cs.uiowa.edu/~dstewart/meschach/meschach.html, 1994.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The Condor experience.
Concurrency and Computation: Practice and Experience, 17(2-4):323-356, 2005.

User-Mode Linux website. http://user-mode—-linux.sourceforge.net.

Oracle vm virtualbox. http://www.virtualbox.org, August 2012.



