PROCEEDINGS

OF SCIENCE

Supporting grid-enabled GPU workloads using
rCUDA and StratusLab

John Walsh*
Trinity College Dublin
E-mail: j ohn. wal sh@css.tcd.ie

Brian Coghlan
Trinity College Dublin
E-mail: coghl an@s.tcd.ie

David O’Callaghan
Trinity College Dublin
E-mail: davi d. ocal | aghan@s.tcd.ie

Recent advances in hardware and software virtualisatipahilities have made it possible to
customise hardware and software environments for a hugetyarf applications. Grid infras-
tructures have capitalised on many of these advances,donghe, through the use of grid-enabled
virtual machines which provide well-known and trusted usawices and environments. In par-
ticular, the StratusLab cloud distribution has greatlyilfated the creation of hybrid cloud/grid
infrastructures. At the same time, we have seen a rapiddsere the utilisation of General
Purpose Graphical Processing Units (GPGPUSs) to handlerabsdata parallel workloads.
There are significant technical difficulties in integrati®PGPUs as first-class grid-resources.
Furthermore, the use of full GPGPU hardware pass-througirtical machines, which could be
used to overcome some of these challenges, has only haddisuitcess. An alternative network-
based GPGPU virtualisation method has been shown to be mocessful.

We review these difficulties, and propose how both Strathsglrad network-based GPGPU virtu-

alisation, such as rCUDA and Mosix VCL, may be used to amateosome of these issues.

EGI Community Forum 2012 / EMI Second Technical Conference
26-30 March, 2012
Munich, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



Supporting grid-enabled GPU workloads using rCUDA and Sisaab John Walsh

1. Introduction

The increasing capabilities of general purpose graphics processitsg(@PGPUSs) over the
past few years has resulted in a huge increase in their exploitation by atlajoe scientific disci-
plines. With three of the top five clusters in the current November 20110Qjpbsupercomputers
list using NVIDIA GPGPUs, we would expect the number of GPGPU deployst grid resource
centres to grow significantly over the next few years. However, therévwab major problems in
supporting grid access to such resources. Firstly, there is currentyandardised way for re-
source centres to advertise/publish availability of these resourcesnd@®gdbere are deficiencies
in current batch scheduling systems which make it difficult to guarantdeséxe access to those
resources.

GPGPU application development is dominated by two API frameworks: Op@hG@ind
CUDA[3]. OpenCL supports heterogeneous compute environmentsasuaND and Intel CPUs,
AMD, Intel and NVIDIA GPGPUSs, and Cell Broadband Engine co-gssnrs. CUDA applications
currently run on NVIDIA GPGPU devices only. However, the GNU Ocplalject[4] is attempting
to enable CUDA application development for non-NVIDIA processoldD& applications offer
a performance advantage over OpenCL|[5].

We present the results of investigations into access to many GPGPUs distiivetea grid-
enabled cluster. We propose a possible virtual machine(VM) architetttateemploys multiple
distinct virtualisation technologies: GPGPU virtualisation using Mosix VCLFg@JDA[7], and
machine virtualisation using the StratusLab[8] "Infrastructure as a $&r{l&aS) distribution. The
proposed solution is, however, intended to be vendor-neutral, anddnditial experiments with
our GPGPU VM were carried out using the Xen Cloud Platform[9]. In addljtiee consider that in
so far as the current hardware technology allows, the architectuteedanther extended to achieve
greater levels of user configuration, control and security. A potengiaéfit in using this model
is to serve as an alternative method to easily exploit many locally distributed GRP&®urces
without the need for additional application frameworks such as MPI[10].

Using a cloud approach for provisioning GPGPU worker nodes on thepéan Grid Infras-
tructure (EGI)[11] has already been investigated[12]. Our investigatiowever, looks at some of
the challenges that we have encountered with both the currently availabiedra and software
solutions. It should therefore also serve as a partial review of thermistate of the art. This is a
"work in progress".

2. GPGPU Grid Integration Challenges

Although it is fairly straightforward to assemble grid-enabled worker soglith GPGPUSs,
integrating them as first-class resources, such as CPU and storagecess into the grid infras-
tructure is a much more challenging problem. The fundamental issues avss#idcin greater
detail in the following sub-sections.

2.1 Batch System Integration

Some batch system schedulers, such as SLURM[16], (SUN) Grid Haginend LSF[18],
now support "Generic" or "GPGPU Resources". Maui[19] - the premifob scheduler used by



Supporting grid-enabled GPU workloads using rCUDA and Sisaab John Walsh

the many of EGI resource centres - does not have official suppo@RP&PU resources. There is
an experimental patch[20] that enables this feature, however we bageen able to confirm its
robustness and functionality. MOAB[21], the advanced commerciatinffef Maui, also support
GPGPU resource scheduling. MOAB requires Torque versions 2.5gber, which supports a
"gpu" attribute.

2.2 Hardware device level access security

In order to allow batch users to access the GPGPU device, the operategisaccess control
is generally permissive and allows all users to read from/write to the devidhelcase of typical
grid compute resource centres with multi-core worker-nodes, eaclewndde tends to expose as
many job-slots to the batch system as there are CPU cores. A side-éffastis that simultaneous
user jobs may interfere with each other if they attempt to access the same Gle@iee concur-
rently. NVIDIA GPGPUs can offer some level of protection through B¥CLUSIVE_THREAD
or EXCLUSIVE_PROCESSompute Mode facility; when using this, one of the competing jobs
will fail when trying to access the GPGPU device.

NVIDIA provides a second method to expose only a specified set ofeetaa process by set-
ting theCUDA_VISIBLE_DEVICES8nvironment variable. SettingUDA_VISIBLE_DEVICES=""
in a process has the effect of hiding all NVIDIA GPGPU devices wheessed through the CUDA
API. Indeed, SLURM uses this variable for both GPGPU allocation anddeige process level
protection between multiple devices on the same host[22]. Note, howeves, tisar’'s job could
unset this environment variable and therefore bypass any such desilo#ity restrictions im-
posed byCUDA_VISIBLE_DEVICESNe are not aware if there are similar mechanisms available
for AMD or Intel GPGPUs.

The authors note that there may be some scope to exploit batch systernupratod) epilog
facilities to change device ownerships, but we have not investigated thssbiby.

2.3 GPGPU Glue-schema support

The Grid Information System plays a pivotal role in collecting and publishurgsgrealtime
information about the accumulated set of grid resources. The informatmoésssed and repub-
lished according to a well defined standardised format known aSlie Schem3]. The Glue
Schema defines a set of attributes and their semantics. Its intended usedtiteddaesource
discovery, selection and monitoring. The current standard is versiom@uever, version 1.3 is
the predominant standard used by most production resource centres.

The most common usage of the Glue Schema relates to standard CPU anel chpagjlities.
The Glue Schema 2.0 standard defines an ExecutionEnvironment [24{iittitiat could be used
to publish GPGPU resources, but the authors have not yet investigatedvether this is fully
suitable for GPGPU "single instruction multiple data" (SIMD) models of execution

It should be noted that the EUmedGrid community use the gCERequirement3DL ex-
pression and a CREAM CE BLAH customisation hook to explicitly assign grid BB {®bs to
the appropriate GPGPU resources[25][12]. This solution does mess resource discovery and
usage, and it depends on an a-priori knowledge of how the softwsir®ement tag is used.



Supporting grid-enabled GPU workloads using rCUDA and Sisaab John Walsh

2.4 Information System Providers

The grid information system is populated and updated regularly with data etttinough
the use of information system provider "Plugins”. Notwithstanding the lac&kno&ppropriate
GPGPU Glue Schema resource definition, the additional batch systenrslipgations covered
in section 2.1 preclude the authors at present from developing amteo@PGPU information
system plugins.

3. GPGPU Virtualisation

We considered two complementary approaches to GPGPU virtualisationrSthesés GPGPU
PCI pass-through to a VM. This aims at ensuring that the VM has completeotawer the
GPGPU, and therefore retains excellent and undiminished flops/sealmudiation rates. The sec-
ond approach, networked GPGPU virtualisation, uses socket basedwucation. Here the VM
accesses a non-local GPGPU through a network connection.

3.1 GPGPU Hardware Virtualisation

Full GPGPU hardware virtualisation is, at the time of writing, a highly specialised and
quite far from being a turnkey capability[13]. The current limiting factodude: 1) CPU support
for direct I/0O to PCI devices; 2) Motherboard support for direct /@@l devices; 3) Kernel and
hypervisor support for PCI pass-through; and, 4) GPGPU sujfmaPCl pass-through.

Both items 1 and 2 are closely related, but can be solved with appropriatsdrarsupporting
Intel VT-D or AMD IOMMU CPU extensions. Recent updates to the Linuxniet address PCI
pass-through and direct I1/0O to any PCI devices passed into the coffititsldrtual machines.
However, unlike most other PCI devices, there are still significant clggiem full GPGPU PCI-
pass-through and very few GPGPU devices support this. To date weentwd yet succeeded in
creating a guest VM on our experimental test-bed using our existing GRfaRlware.

3.2 Networked GPGPU Virtualisation

A more successful approach to the GPGPU virtualisation problem usestsdiwer model
with the GPGPU exposed through a network layer. This has been usddbdp@Fax[14], rCUDA,
gVirtuS[15], and Mosix VCL. The server nodes, i.e. those nodes wititrobover the physical
GPGPU, can be relatively lightweight: They only need OS support to atbhesGPGPU and they
do not need any additional software such as a grid middleware stackli&hts themselves do not
require any physical GPGPU, but have access to collections of rem@®G& Our experimental
test-bed was used to investigate two solutions: rCUDA and Mosix VCL. Toieeb were partially
driven by the need to accommodate both CUDA and OpenCL application sss.ca

3.2.1 rCUDA

The rCUDA model allows the GPGPU client to transparently access "liste@R&Pserver
nodes. Client application code must be recompiled and linked against tlaeaa@nt rCUDA
libraries. These libraries implement most of the CUDA 4.0 runtime API and hahdlaeetwork
communication with the rCUDA servers. Each server node must host omerer GPGPUs and



Supporting grid-enabled GPU workloads using rCUDA and Sisaab John Walsh

must launch a server daemd@UDAd . This daemon uses a customisable TCP port number (with
default). The client program will interrogate the environment varig&f®JDAto determine which
server host/port pairs to communicate with.

3.2.2 Mosix VCL

The Mosix VCL model takes a different approach to rCUDA, and works whe OpenCL
1.1 framework only. The "back-end" nodes host one or more Opeasr@bled CPUs or GPG-
PUs. The "Hosting Node" front-end communicates with the back-end naoslag a "broker"
daemon. The OpenCL applications are launched using the "vicrun" sdrlps script accepts
an optional user-defined command-line argument parameter that aftectthé broker allocates
remote CPUs/GPGPUs to the client application. The default policy is to allocatesallirces.
Unlike rCUDA, the OpenCL application does not require any re-compilatiothe client.

3.2.3 Performance Considerations

The introduction of a network-layer will have a significant impact on thdgperance of
GPGPU code. Using high-bandwidth, low-latency interconnects suchfiagbbind will reduce
some of the impact. Best perfomance by both rCUDA[26] and Mosix VCLi2 &chieved with
long kernel operations coupled with infrequent buffer I/0. Mosix V@bports an additional API,
SuperCL, that improves the performance of the network-layer by sntang a programmable
sequence of kernel or memory operations into a few asynchronousnkgtackets.

4. GPGPU Provisioning with StratusLab

StratusLab is an open-source cloud distribution based on OpenNebukltives both grid
and non-grid resource centres to offer and to exploit 1aaS cloudsroVides the client tools to
fully manage the life-cycle of a virtual machine, and also provides a "mailkee" of pre-built
VM images. Moreover, StratusLab facilitatesntextualisation - the process of enabling cus-
tomisations to the end-user’s deployed virtual appliances. StratusLabiteall to be a complete
tool-chain to deploy the rCUDA/VCL front-end nodes.

4.1 Contextualisation Issues

As StratusLab only permits contextualisation of the VM guest and not theVigpehost, we were
unable to use it to manage the GPGPU server back-end. Furthermonartierid contextualisa-
tion is "static" as we do not currently have a mechanism for choosing GB@tamically from

the pool of distributed resources. To simplify integration into our existingidalive provide a

gLite worker-node front-end VM image.

4.2 Batch System Configuration

We have no mechanism to dynamically add the front-end node into the poataf bystem
worker-nodes. We therefore use static worker-node entries. Tioh bgstem is also configured
so that the front-end presents a single job slot. As only one job can rureomdtker-node, this
ensures exclusive access to the allocated GPGPUs.



Supporting grid-enabled GPU workloads using rCUDA and ishab John Walsh

5. A Fully Virtualised Architecture

We have considered some of the difficulties in hosting virtual machines witGRGBPU pass-
through. However, assuming that such hurdles can be overcome witbpaiggpe hardware, OS
and hypervisor support, we propose that if such full virtualisation atbadines of that illustrated
in Figure 1 were available, then we could greatly enhance the available temmastructure.
Firstly, access to the GPGPU resources would be protected from competingrrent processes.
Secondly, a fully virtualised architecture would allow us to use the cloud phatéxclusively to
contextualise and deploy both front-end and back-end rCUDA/Mosix X@ies.

Key
) User allocated Virtual Machine
Physical Machine with one or accesses remote Virtual GPGPU using
more GPGPUs Mosix VCL/rCUDA
— .. T T B SV ' - <
L VetielMacins Wi e stple Vibial GRGPU S es™ — Esth WM hosts a Sl Vil GPGFU

Figure 1: A fully virtualised architecture. Each user-allocatedwd machine has multiple unique virtual
GPGPUs. These are accessed transparently through Mosixov@LUDA.

p

6. Conclusions and Further Work

We have identified issues that hinder us from integrating GPGPUs addisstgrid resources.
Some progress can be made by ensuring that the community agree on apriapeIGPGPU re-
source Glue Schema definition. Furthermore, we have identified batcinsgsheduler deficien-
cies and how the configuration of multi-core worker nodes in the batchrsystey cause GPGPU
job integrity issues.



Supporting grid-enabled GPU workloads using rCUDA and Sisaab John Walsh

We have proposed how a multi-layered virtualisation may provide some jobdestelction,
and how this may be used to provide an alternative execution environmerRItavMen accessing
many distributed GPGPUs.

We have discussed weaknesses in our cloud provisioning system, hbis atage our VM
GPGPU contextualisation is static, and how we do not currently have a msechamwhich the
GPGPU resources can be requested. Future work may include anientehshe OpenNebula
platform to accommodate detection of GPGPU resources on the hyperades,nand then to
facilitate either PCI pass-through or network based GPGPU allocation methods

References

[1] Top 500 Supercomputers List, November 2011 p: / / ww. t op500. org/ | i sts/ 2011/ 11

[2] M. Scarpino,0OpenCL in Action: How to accelerate graphics and computatianning Publications
Co., ISBN 9781617290176, 2011

[3] D. Kirk, Wen-mei HwuProgramming Massively Parallel Processors: A Hands-onrpph Morgan
Kaufmann Publishers, ISBN 9780123814722, 2010

[4] GNU Ocelot Homepaght t p: / / code. googl e. conl p/ gpuocel ot/

[5] Jianbin Fang and Ana Lucia Varbanescu and Henk Sips, AfZehensive Performance Comparison
of CUDA and OpenCL, The 40-th International Conference amalRd Processing (ICPP’11), Taipei,
Taiwan.

[6] VCL Homepagént t p: / / www. nosi x. org/txt_vcl . htnl

[7] rCUDA Homepagéenht t p: / / www. r cuda. net /

[8] StratusLab Project Homepaghbt t p: / / www. St r at usLab. eu/ i ndex. php

[9] Xen Cloud Platform Homepad& t p: / / www. xen. or g/ pr oduct s/ cl oudxen. ht m

[10] M. Snir, S. W. Otto, ; Huss-Lederman, S.; Walker, D. Worgarra, J. (1996), MPI: The complete
reference , MIT Press , Cambridge, MA .

[11] European Grid Infrastructure Homepaget t p: / / www. egi . eu

[12] Vella, F., Cefala, R.M., Costantini, A., Gervasi, Odaranci, C, GPU Computing in EGI
Environment Using a Cloud Approach, International Conieezon Computational Science and Its
Applications (ICCSA) 2011, pp. 150-155

[13] Teo en MingXen VGA Passthrough to Windows 8 with Xen 4.2-unstdtilép: / / wi ki . xen.
or g/ wi ki / Xen_VGA Passt hrough to Wndows 8 with_Xen 4. 2-unstable

[14] Merritt, Alexander M. and Gupta, Vishakha and Vermahidhek and Gavrilovska, Ada and Schwan,
Karsten, Shadowfax: scaling in heterogeneous clusteesgstia GPGPU assemblies, Proceedings
of the 5th international workshop on Virtualization tectogies in distributed computing (VTDC'11),
pp. 3-10

[15] Giulio Giunta, Raffaele Montella, Giuseppe Agrillodaiuseppe Coviello, A GPGPU Transparent
Virtualization Component for High Performance Computiriguels, Euro-Par 2010 - Parallel
Processing, Lecture Notes in Computer Science, 2010, \@k271/2010, pp. 379-391

[16] SLURM Batch Scheduler Documentatidr t p: / / www. schednd. com sl ur ndocs/



Supporting grid-enabled GPU workloads using rCUDA and Sisaab John Walsh

[17]

(18]

(19]

(20]

[21]

(22]

(23]
(24]

(25]

(26]

[27]

Univa Grid Engine Version 8
http://ww. uni va. com product s/ gri d- engi ne/ what s- new

IBM Platform Computing LSF Webpaget t p: / / ww 03. i bm coni syst ens/
t echni cal conmput i ng/ pl at f or ntonput i ng/ product s/ | sf/index. ht m

Maui Cluster Scheduler Webpage
http://ww. adapti veconputi ng. com resour ces/ docs/ maui /i ndex. php

Maui Batch Scheduler System GPGPU code suppottp: / / www. super cl ust er. or g/
pi permai |l /t orqueuser s/ 2012- February/ 014041. ht m

Moab Documentation Websijte
http://ww. adapti veconputi ng. com resour ces/ docs/ mwi 7- 0/ Cont ent /
t opi cs/ nodeAdm ni st ration/ gener al nodeadmi n. ht ni

SLURM GPU support codat t p: // gi t hub. coml SchedM sl ur nf bl ob/ mast er/ src/
pl ugi ns/ gres/ gpu/ gres_gpu.c

OGF Glue Schemaversion 1.8t t p: //forge. gri df orum org/ sf/ go/ doc14185

OGF GLUE 2.0 ExecutionEnvironment Definitjon
http://glue20. web. cern. ch/ gl ue20/ #t abl eExecut i onEnvi r onnment

EUMed GPU Integration webpagéat t p: / / wi ki . eunedgri d. eu/ twi ki / bi n/ vi ew
I nfrastructureStatus/EunedSitelnstallati onGPU

J. Duato et alAn efficient implementation of GPU virtualization in highfeemance clusters
EURO-PAR 2009 WORKSHOPS, LNCS, vol. 6043. Springer-VerlL0, pp. 385-394

A. Barak and A. ShilohThe Virtual OpenCL (VCL) Cluster PlatfornfProc. Intel European Research
& Innovation Conf., pp. 196, Leixlip, Oct. 2011.



