
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using
rCUDA and StratusLab

John Walsh∗

Trinity College Dublin
E-mail: john.walsh@scss.tcd.ie

Brian Coghlan
Trinity College Dublin
E-mail: coghlan@cs.tcd.ie

David O’Callaghan
Trinity College Dublin
E-mail: david.ocallaghan@cs.tcd.ie

Recent advances in hardware and software virtualisation capabilities have made it possible to
customise hardware and software environments for a huge variety of applications. Grid infras-
tructures have capitalised on many of these advances, for example, through the use of grid-enabled
virtual machines which provide well-known and trusted userservices and environments. In par-
ticular, the StratusLab cloud distribution has greatly facilitated the creation of hybrid cloud/grid
infrastructures. At the same time, we have seen a rapid increase in the utilisation of General
Purpose Graphical Processing Units (GPGPUs) to handle massively data parallel workloads.
There are significant technical difficulties in integratingGPGPUs as first-class grid-resources.
Furthermore, the use of full GPGPU hardware pass-through tovirtual machines, which could be
used to overcome some of these challenges, has only had limited success. An alternative network-
based GPGPU virtualisation method has been shown to be more successful.

We review these difficulties, and propose how both StratusLab and network-based GPGPU virtu-

alisation, such as rCUDA and Mosix VCL, may be used to ameliorate some of these issues.

EGI Community Forum 2012 / EMI Second Technical Conference
26-30 March, 2012
Munich, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using rCUDA and StratusLab John Walsh

1. Introduction

The increasing capabilities of general purpose graphics processing units (GPGPUs) over the
past few years has resulted in a huge increase in their exploitation by all themajor scientific disci-
plines. With three of the top five clusters in the current November 2011 Top500[1] supercomputers
list using NVIDIA GPGPUs, we would expect the number of GPGPU deployments at grid resource
centres to grow significantly over the next few years. However, there are two major problems in
supporting grid access to such resources. Firstly, there is currently nostandardised way for re-
source centres to advertise/publish availability of these resources. Secondly, there are deficiencies
in current batch scheduling systems which make it difficult to guarantee exclusive access to those
resources.

GPGPU application development is dominated by two API frameworks: OpenCL[2] and
CUDA[3]. OpenCL supports heterogeneous compute environments suchas AMD and Intel CPUs,
AMD, Intel and NVIDIA GPGPUs, and Cell Broadband Engine co-processors. CUDA applications
currently run on NVIDIA GPGPU devices only. However, the GNU Ocelotproject[4] is attempting
to enable CUDA application development for non-NVIDIA processors. CUDA applications offer
a performance advantage over OpenCL[5].

We present the results of investigations into access to many GPGPUs distributed over a grid-
enabled cluster. We propose a possible virtual machine(VM) architecturethat employs multiple
distinct virtualisation technologies: GPGPU virtualisation using Mosix VCL[6] or rCUDA[7], and
machine virtualisation using the StratusLab[8] "Infrastructure as a Service" (IaaS) distribution. The
proposed solution is, however, intended to be vendor-neutral, and indeed initial experiments with
our GPGPU VM were carried out using the Xen Cloud Platform[9]. In addition, we consider that in
so far as the current hardware technology allows, the architecture canbe further extended to achieve
greater levels of user configuration, control and security. A potential benefit in using this model
is to serve as an alternative method to easily exploit many locally distributed GPGPU resources
without the need for additional application frameworks such as MPI[10].

Using a cloud approach for provisioning GPGPU worker nodes on the European Grid Infras-
tructure (EGI)[11] has already been investigated[12]. Our investigation, however, looks at some of
the challenges that we have encountered with both the currently available hardware and software
solutions. It should therefore also serve as a partial review of the current state of the art. This is a
"work in progress".

2. GPGPU Grid Integration Challenges

Although it is fairly straightforward to assemble grid-enabled worker nodes with GPGPUs,
integrating them as first-class resources, such as CPU and storage resources, into the grid infras-
tructure is a much more challenging problem. The fundamental issues are discussed in greater
detail in the following sub-sections.

2.1 Batch System Integration

Some batch system schedulers, such as SLURM[16], (SUN) Grid Engine[17] and LSF[18],
now support "Generic" or "GPGPU Resources". Maui[19] - the prominent job scheduler used by

2



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using rCUDA and StratusLab John Walsh

the many of EGI resource centres - does not have official support for GPGPU resources. There is
an experimental patch[20] that enables this feature, however we have not been able to confirm its
robustness and functionality. MOAB[21], the advanced commercial offering of Maui, also support
GPGPU resource scheduling. MOAB requires Torque versions 2.5.6 orhigher, which supports a
"gpu" attribute.

2.2 Hardware device level access security

In order to allow batch users to access the GPGPU device, the operating system access control
is generally permissive and allows all users to read from/write to the device. In the case of typical
grid compute resource centres with multi-core worker-nodes, each worker-node tends to expose as
many job-slots to the batch system as there are CPU cores. A side-effect of this is that simultaneous
user jobs may interfere with each other if they attempt to access the same GPGPUdevice concur-
rently. NVIDIA GPGPUs can offer some level of protection through theEXCLUSIVE_THREAD
or EXCLUSIVE_PROCESSCompute Mode facility; when using this, one of the competing jobs
will fail when trying to access the GPGPU device.

NVIDIA provides a second method to expose only a specified set of devices to a process by set-
ting theCUDA_VISIBLE_DEVICESenvironment variable. SettingCUDA_VISIBLE_DEVICES=""
in a process has the effect of hiding all NVIDIA GPGPU devices when accessed through the CUDA
API. Indeed, SLURM uses this variable for both GPGPU allocation and to provide process level
protection between multiple devices on the same host[22]. Note, however, that a user’s job could
unset this environment variable and therefore bypass any such devicevisibility restrictions im-
posed byCUDA_VISIBLE_DEVICES. We are not aware if there are similar mechanisms available
for AMD or Intel GPGPUs.

The authors note that there may be some scope to exploit batch system prologue and epilog
facilities to change device ownerships, but we have not investigated this possibility.

2.3 GPGPU Glue-schema support

The Grid Information System plays a pivotal role in collecting and publishing quasi-realtime
information about the accumulated set of grid resources. The information isprocessed and repub-
lished according to a well defined standardised format known as theGlue Schema[23]. The Glue
Schema defines a set of attributes and their semantics. Its intended use is to facilitate resource
discovery, selection and monitoring. The current standard is version 2.0, however, version 1.3 is
the predominant standard used by most production resource centres.

The most common usage of the Glue Schema relates to standard CPU and storage capabilities.
The Glue Schema 2.0 standard defines an ExecutionEnvironment [24] attribute that could be used
to publish GPGPU resources, but the authors have not yet investigated as to whether this is fully
suitable for GPGPU "single instruction multiple data" (SIMD) models of execution.

It should be noted that the EUmedGrid community use the gLiteCERequirementsJDL ex-
pression and a CREAM CE BLAH customisation hook to explicitly assign grid GPGPU jobs to
the appropriate GPGPU resources[25][12]. This solution does not address resource discovery and
usage, and it depends on an a-priori knowledge of how the software environment tag is used.

3



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using rCUDA and StratusLab John Walsh

2.4 Information System Providers

The grid information system is populated and updated regularly with data obtained through
the use of information system provider "Plugins". Notwithstanding the lack ofan appropriate
GPGPU Glue Schema resource definition, the additional batch system support limitations covered
in section 2.1 preclude the authors at present from developing appropriate GPGPU information
system plugins.

3. GPGPU Virtualisation

We considered two complementary approaches to GPGPU virtualisation. The first uses GPGPU
PCI pass-through to a VM. This aims at ensuring that the VM has complete control over the
GPGPU, and therefore retains excellent and undiminished flops/second calculation rates. The sec-
ond approach, networked GPGPU virtualisation, uses socket based communication. Here the VM
accesses a non-local GPGPU through a network connection.

3.1 GPGPU Hardware Virtualisation

Full GPGPU hardware virtualisation is, at the time of writing, a highly specialised area and
quite far from being a turnkey capability[13]. The current limiting factors include: 1) CPU support
for direct I/O to PCI devices; 2) Motherboard support for direct I/O toPCI devices; 3) Kernel and
hypervisor support for PCI pass-through; and, 4) GPGPU support for PCI pass-through.

Both items 1 and 2 are closely related, but can be solved with appropriate hardware supporting
Intel VT-D or AMD IOMMU CPU extensions. Recent updates to the Linux kernel address PCI
pass-through and direct I/O to any PCI devices passed into the control of its virtual machines.
However, unlike most other PCI devices, there are still significant challenges in full GPGPU PCI-
pass-through and very few GPGPU devices support this. To date we have not yet succeeded in
creating a guest VM on our experimental test-bed using our existing GPGPUhardware.

3.2 Networked GPGPU Virtualisation

A more successful approach to the GPGPU virtualisation problem uses a client/server model
with the GPGPU exposed through a network layer. This has been used by ShadowFax[14], rCUDA,
gVirtuS[15], and Mosix VCL. The server nodes, i.e. those nodes with control over the physical
GPGPU, can be relatively lightweight: They only need OS support to access the GPGPU and they
do not need any additional software such as a grid middleware stack. Theclients themselves do not
require any physical GPGPU, but have access to collections of remote GPGPUs. Our experimental
test-bed was used to investigate two solutions: rCUDA and Mosix VCL. The choices were partially
driven by the need to accommodate both CUDA and OpenCL application use cases.

3.2.1 rCUDA

The rCUDA model allows the GPGPU client to transparently access "listed" GPGPU server
nodes. Client application code must be recompiled and linked against the replacement rCUDA
libraries. These libraries implement most of the CUDA 4.0 runtime API and handlethe network
communication with the rCUDA servers. Each server node must host one ormore GPGPUs and

4



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using rCUDA and StratusLab John Walsh

must launch a server daemonrCUDAd . This daemon uses a customisable TCP port number (with
default). The client program will interrogate the environment variableRCUDAto determine which
server host/port pairs to communicate with.

3.2.2 Mosix VCL

The Mosix VCL model takes a different approach to rCUDA, and works with the OpenCL
1.1 framework only. The "back-end" nodes host one or more OpenCL-enabled CPUs or GPG-
PUs. The "Hosting Node" front-end communicates with the back-end nodesusing a "broker"
daemon. The OpenCL applications are launched using the "vlcrun" script.This script accepts
an optional user-defined command-line argument parameter that affects how the broker allocates
remote CPUs/GPGPUs to the client application. The default policy is to allocate allresources.
Unlike rCUDA, the OpenCL application does not require any re-compilation on the client.

3.2.3 Performance Considerations

The introduction of a network-layer will have a significant impact on the performance of
GPGPU code. Using high-bandwidth, low-latency interconnects such as Infiniband will reduce
some of the impact. Best perfomance by both rCUDA[26] and Mosix VCL[27] is achieved with
long kernel operations coupled with infrequent buffer I/O. Mosix VCL supports an additional API,
SuperCL, that improves the performance of the network-layer by encapsulating a programmable
sequence of kernel or memory operations into a few asynchronous network packets.

4. GPGPU Provisioning with StratusLab

StratusLab is an open-source cloud distribution based on OpenNebula that allows both grid
and non-grid resource centres to offer and to exploit IaaS clouds. Itprovides the client tools to
fully manage the life-cycle of a virtual machine, and also provides a "marketplace" of pre-built
VM images. Moreover, StratusLab facilitatescontextualisation - the process of enabling cus-
tomisations to the end-user’s deployed virtual appliances. StratusLab lends itself to be a complete
tool-chain to deploy the rCUDA/VCL front-end nodes.

4.1 Contextualisation Issues

As StratusLab only permits contextualisation of the VM guest and not the hypervisor host, we were
unable to use it to manage the GPGPU server back-end. Furthermore, the front-end contextualisa-
tion is "static" as we do not currently have a mechanism for choosing GPGPUs dynamically from
the pool of distributed resources. To simplify integration into our existing fabric, we provide a
gLite worker-node front-end VM image.

4.2 Batch System Configuration

We have no mechanism to dynamically add the front-end node into the pool of batch system
worker-nodes. We therefore use static worker-node entries. The batch system is also configured
so that the front-end presents a single job slot. As only one job can run on the worker-node, this
ensures exclusive access to the allocated GPGPUs.

5



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using rCUDA and StratusLab John Walsh

5. A Fully Virtualised Architecture

We have considered some of the difficulties in hosting virtual machines with fullGPGPU pass-
through. However, assuming that such hurdles can be overcome with appropriate hardware, OS
and hypervisor support, we propose that if such full virtualisation alongthe lines of that illustrated
in Figure 1 were available, then we could greatly enhance the available compute infrastructure.
Firstly, access to the GPGPU resources would be protected from competingconcurrent processes.
Secondly, a fully virtualised architecture would allow us to use the cloud platform exclusively to
contextualise and deploy both front-end and back-end rCUDA/Mosix VCLnodes.

Figure 1: A fully virtualised architecture. Each user-allocated virtual machine has multiple unique virtual
GPGPUs. These are accessed transparently through Mosix VCLor rCUDA.

6. Conclusions and Further Work

We have identified issues that hinder us from integrating GPGPUs as first-class grid resources.
Some progress can be made by ensuring that the community agree on an appropriate GPGPU re-
source Glue Schema definition. Furthermore, we have identified batch system scheduler deficien-
cies and how the configuration of multi-core worker nodes in the batch system may cause GPGPU
job integrity issues.

6



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using rCUDA and StratusLab John Walsh

We have proposed how a multi-layered virtualisation may provide some job levelprotection,
and how this may be used to provide an alternative execution environment to MPI when accessing
many distributed GPGPUs.

We have discussed weaknesses in our cloud provisioning system, how atthis stage our VM
GPGPU contextualisation is static, and how we do not currently have a mechanism in which the
GPGPU resources can be requested. Future work may include an extension of the OpenNebula
platform to accommodate detection of GPGPU resources on the hypervisor nodes, and then to
facilitate either PCI pass-through or network based GPGPU allocation methods.

References

[1] Top 500 Supercomputers List, November 2011http://www.top500.org/lists/2011/11

[2] M. Scarpino,OpenCL in Action: How to accelerate graphics and computation Manning Publications
Co., ISBN 9781617290176, 2011

[3] D. Kirk, Wen-mei HwuProgramming Massively Parallel Processors: A Hands-on Approach Morgan
Kaufmann Publishers, ISBN 9780123814722, 2010

[4] GNU Ocelot Homepagehttp://code.google.com/p/gpuocelot/

[5] Jianbin Fang and Ana Lucia Varbanescu and Henk Sips, A Comprehensive Performance Comparison
of CUDA and OpenCL, The 40-th International Conference on Parallel Processing (ICPP’11), Taipei,
Taiwan.

[6] VCL Homepagehttp://www.mosix.org/txt_vcl.html

[7] rCUDA Homepagehttp://www.rcuda.net/

[8] StratusLab Project Homepage, http://www.StratusLab.eu/index.php

[9] Xen Cloud Platform Homepagehttp://www.xen.org/products/cloudxen.html

[10] M. Snir, S. W. Otto, ; Huss-Lederman, S.; Walker, D. W., Dongarra, J. (1996), MPI: The complete
reference , MIT Press , Cambridge, MA .

[11] European Grid Infrastructure Homepage, http://www.egi.eu

[12] Vella, F., Cefala, R.M., Costantini, A., Gervasi, O. and Tanci, C, GPU Computing in EGI
Environment Using a Cloud Approach, International Conference on Computational Science and Its
Applications (ICCSA) 2011, pp. 150-155

[13] Teo en Ming,Xen VGA Passthrough to Windows 8 with Xen 4.2-unstable, http://wiki.xen.
org/wiki/Xen_VGA_Passthrough_to_Windows_8_with_Xen_4.2-unstable

[14] Merritt, Alexander M. and Gupta, Vishakha and Verma, Abhishek and Gavrilovska, Ada and Schwan,
Karsten, Shadowfax: scaling in heterogeneous cluster systems via GPGPU assemblies, Proceedings
of the 5th international workshop on Virtualization technologies in distributed computing (VTDC’11),
pp. 3-10

[15] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo and Giuseppe Coviello, A GPGPU Transparent
Virtualization Component for High Performance Computing Clouds, Euro-Par 2010 - Parallel
Processing, Lecture Notes in Computer Science, 2010, Volume 6271/2010, pp. 379-391

[16] SLURM Batch Scheduler Documentation, http://www.schedmd.com/slurmdocs/

7



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
1
0

Supporting grid-enabled GPU workloads using rCUDA and StratusLab John Walsh

[17] Univa Grid Engine Version 8,
http://www.univa.com/products/grid-engine/whats-new

[18] IBM Platform Computing LSF Webpage, http://www-03.ibm.com/systems/
technicalcomputing/platformcomputing/products/lsf/index.html

[19] Maui Cluster Scheduler Webpage,
http://www.adaptivecomputing.com/resources/docs/maui/index.php

[20] Maui Batch Scheduler System GPGPU code supporthttp://www.supercluster.org/

pipermail/torqueusers/2012-February/014041.html

[21] Moab Documentation Website,
http://www.adaptivecomputing.com/resources/docs/mwm/7-0/Content/

topics/nodeAdministration/generalnodeadmin.html

[22] SLURM GPU support codehttp://github.com/SchedMD/slurm/blob/master/src/
plugins/gres/gpu/gres_gpu.c

[23] OGF Glue Schema version 1.3, http://forge.gridforum.org/sf/go/doc14185

[24] OGF GLUE 2.0 ExecutionEnvironment Definition,
http://glue20.web.cern.ch/glue20/#tableExecutionEnvironment

[25] EUMed GPU Integration webpage: http://wiki.eumedgrid.eu/twiki/bin/view/
InfrastructureStatus/EumedSiteInstallationGPU

[26] J. Duato et al.An efficient implementation of GPU virtualization in high performance clusters,
EURO-PAR 2009 WORKSHOPS, LNCS, vol. 6043. Springer-Verlag, 2010, pp. 385-394

[27] A. Barak and A. Shiloh,The Virtual OpenCL (VCL) Cluster Platform, Proc. Intel European Research
& Innovation Conf., pp. 196, Leixlip, Oct. 2011.

8


