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Modern DNA sequencing machines produce data in the range of 1-100 GB per experiment and
with ongoing technological developments this amount is rapidly increasing. The majority of ex-
periments involve re-sequencing of human genomes and exomes to find genomic regions that are
associated with disease. There are many sequence analysis tools freely available, e.g. for se-
quence alignment, quality control and variant detection, and frequently new tools are developed
to address new biological questions. Since 2008 we use workflow technology to allow easy incor-
poration of such software in our data analysis pipelines, as well as to leverage grid infrastructures
for the analysis of large datasets in parallel.
The size of the datasets has grown from 1 GB to 70 GB in 3 years, therefore adjustments were
needed to optimize these workflows. Procedures have been implemented for faster data transfer
to and from grid resources, and for fault recovery at run time. A split-and-merge procedure for a
frequently used sequence alignment tool, BWA, resulted in a three-fold reduction of the total time
needed to complete an experiment and increased efficiency by a reduction in number of failures.
The success rate was increased from 10% to 70%. In addition, steps to resubmit workflows for
partly failed workflows were automated, which saved user intervention.
Here we present our current procedure of analyzing data from DNA sequencing experiments,
comment on the experiences and focus on the improvements needed to scale up the analysis of
genomics data at our hospital.

EGI Community Forum 2012 / EMI Second Technical Conference
26-30 March, 2012
Munich, Germany

∗Speaker.
†Corresponding author

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
3
9

Challenges in DNA sequence analysis on a production grid Barbera D. C. VAN SCHAIK

1. Introduction

Technological advances and decreasing costs in DNA sequencing have enabled large-scale
genomics experiments to study disease. Examples of such experiments are whole genome and
exome sequencing (sequencing of DNA), characterization of transcriptomes (sequencing of RNA),
and meta-genomics (sequencing of DNA and RNA from multiple organisms in complex samples).
In the last few years the scientific and clinical studies became larger in terms of studying complete
genomes instead of limited sets of genes. Moreover, an increasing number of samples (e.g. several
individuals) are included in one study.

Modern DNA sequencers, also known as "next generation" or "high-throughput" sequencers,
work on the basis of massive parallelization of the sequencing process. One sequence run currently
produces about 200 million short DNA fragments. Further scaling-up is achieved by using multiple
DNA sequencers simultaneously. Many institutes use more than one DNA sequencer1, and the
largest sequencing center now uses more than 150 machines. Development of the sequencing
process is swiftly evolving, and with each upgrade of sequencing machines the amount of data that
is produced per experiment increases.

Storage and analysis of these data is a challenge [1, 2]. There are developments on reference-
based compression for the storage of the data [3] and more efficient algorithms for the analysis.
For computing, bioinformaticians resort to buying bigger clusters and exploring the possibilities of
distributed computing on grids and clouds (see reviews by Stein [4] and Schadt et al. [5]).

Another challenge is to cope with the variety of tools available for data analysis. Since the
high-throughput DNA sequencers came to the market, more than 500 new analysis methods and
tools were developed and published2. To keep up with advances in the field it is necessary to be
flexible in integrating or replacing new software in analysis pipelines. Workflow technology is
suitable to meet this requirement, because it allows the composition of workflows from modular
components that can be reused and shared.

And finally, DNA sequence analysis involves several experimental steps, involving collabora-
tion between various experts. In our organization, an academic hospital, biomedical researchers
working at various laboratories prepare samples for DNA sequencing experiments, and subse-
quently send them for sequencing to a central DNA sequencing facility or to an external service
provider. Analysis of the data is performed by the biomedical researchers themselves when knowl-
edge, suitable software and sufficient computing capacity are available "off-the-shelf". In other
cases biomedical researchers collaborate with the bioinformatics and e-Bioscience researchers, es-
pecially for the analysis of large experiments.

To manage the growing demands for data analysis, at the Academic Medical Center (AMC)
we started a pilot in 2008 to use the e-BioInfra platform [6] for the analysis of DNA experiments
on grid resources. BLAST and pre- and post-processing steps were integrated in a workflow and
several datasets were analyzed in parallel on the Dutch e-science grid3 as a proof-of-concept. This
pilot showed that a 30 fold speed-up could be obtained compared to serial execution [7]. This

1See a map of worldwide sequencing facilities: http://omicsmaps.com/
2See a list of existing software: http://seqanswers.com/wiki/Software
3http://www.biggrid.nl/
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BLAST workflow has been made available to end-users from the laboratory, and it is still regularly
used today [8].

Since this pilot we have integrated many other bioinformatics tools for DNA sequence analysis
in a similar fashion, including: BWA [9], Samtools [10], Varscan [11], the Picard toolkit4, the
GATK package [12] and many more. These components are integrated into workflows that are
used mainly by bioinformaticians, and sometimes also by biomedical users directly. Until this date
around 40 studies have been performed with the aid of the e-BioInfra platform.

Since 2008, however, the data throughput from the sequencing facility has increased. The data
volume increased from 1 GB to 70 GB per file and the number of experiments per study increased
as well. This raised several challenges that needed to be addressed. The methodology used in our
pilot worked well for some time, but for current and future experiments we needed to revise the
strategy. Not only scaling the data became a challenge, but it also became necessary to take into
account the complete process, from data generation to transfer to the grid, processing in parallel,
and delivery of results to the biomedical researchers.

In this paper we describe the procedures and tools adopted to perform DNA analysis exper-
iments on the Dutch Grid from data generation to sharing of results. Secondly, we describe how
the original strategy used in the pilot phase was improved to cope with larger datasets, and we
measured the time gain and reduction of errors resulting from these improvements (see section 4).
Finally, we discuss the current procedure and suggest further improvements.

2. DNA sequence analysis on the grid

In this section we describe the set-up and challenges faced for performing DNA sequence
analysis on the Dutch grid using the e-BioInfra platform. To facilitate understanding of the im-
provements described in this paper, we present a brief overview of the platform (section 2.1) and
how it was used during the pilot phase for processing DNA sequencing data (section 2.2). Finally
we identify and discuss in section 2.3 the various problems faced in the production phase due to
the data growth, which motivate the improvements described in section 3.

2.1 e-BioInfra platform: short introduction

The e-BioInfra platform provides generic services for executing and monitoring data analysis
workflows on a distributed computing infrastructure (DCI). A detailed description of the platform
can be found in Olabarriaga et al. [6] and Shahand et al. [13].

The workflow components are implemented using the Generic Application Service Wrapper
(GASW) [14]. Command-line data analysis tools (executables and dependencies) and their in-
and output parameters are described in an XML description file that is used by the workflow sys-
tem to automatically generate grid jobs. The components are combined in workflows using the
graphical user interface of MOTEUR [15]. Originally the SCUFL language [16] was used, but
currently the workflows are defined in the GWENDIA language [17]. This is a rich, data-oriented
language with sophisticated constructions such as multi-dimensional arrays, condition, loop, merge
and filter operations. In addition, embedded Java code can be incorporated into the workflow using

4http://picard.sourceforge.net/

3



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
3
9

Challenges in DNA sequence analysis on a production grid Barbera D. C. VAN SCHAIK

beanshells and executed on the workflow engine host. The workflow description also defines
how data and parameter sweeps should be performed on the input parameters. Workflow descrip-
tions are shared between bioinformaticians and biomedical researchers by making them accessible
on the Virtual Organization’s (VO) shared storage space on the LCG File Catalogue (LFC).

When a workflow is instantiated with input data and parameters, the MOTEUR workflow man-
agement system coordinates data and parameter sweeps and translates the workflow components
into jobs that run on grid resources or as local beanshell executions. In 2008 the gLite WMS5

was used by MOTEUR for direct job submission, but currently the DIANE6 pilot framework [18]
is used instead. The user who analyses the data can choose to run an existing workflow with a
command-line client, desktop client (VBrowser with MOTEUR plug-in) or web-based interface
(e-BioInfra gateway) [13].

The progress of the workflow runs can be examined from the e-BioInfra monitoring pages,
which provide status updates and error information when jobs or workflows fail. Improvements to
the e-BioInfra monitoring have been made to detect errors and distinguish their type [19]. Initially,
information was stored in unstructured log files, therefore it was difficult to track events that occur
in several layers of the platform. Currently, events are collected from every level of the workflow
execution, stored in a provenance database, and presented in a user interface.

2.2 Pilot phase

The general approach used for development of workflows for DNA experiments is described
in detail in Luyf et al. [7].

During the pilot phase most actions were operated via the Virtual Resource Browser, or
VBrowser7 [20]. The VBrowser is a Java program that provides the user with a graphical user
interface and explorer look-and-feel to manipulate files on various types of storage resources (FTP,
gridFTP, LFC). For example, it was used to transfer the data from the sequencing server, where the
data became available after acquisition, to grid storage, where it was processed by the workflows.
It was also used to fetch results from grid storage to a local analysis server for further processing.
The VBrowser was used from the user’s laptop, where the user could select files from the sequenc-
ing server and copy them to grid storage with a drag-and-drop action. By default only one replica
is created on grid storage for each transferred file.

The VBrowser also has a plug-in to submit MOTEUR workflows. Bioinformaticians operated
the workflow execution and shared the analysis results with biomedical researchers via a data anal-
ysis server located at the AMC. Workflows were submitted interactively by selecting a workflow
file from a central repository, after which the input parameters could be filled in one-by-one via a
form. Alternatively an XML file could be generated by the user and uploaded to avoid typing many
input parameters interactively. At the time the data size per experiment did not exceed 1 GB, and
the frequency of new sequence experiments was around one every three or four weeks.

2.3 Production phase

Since the successful pilot experiments in 2010, the e-BioInfra has been increasingly adopted
5http://web.infn.it/gLiteWMS/
6http://cern.ch/diane
7http://www.vl-e.nl/vbrowser
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for DNA sequencing data analysis. Between January 2011 and February 2012 alone, a total of
9600 workflows were executed, including production data analysis, workflow development and
troubleshooting. With the increasing adoption of the workflows in production, we faced various
problems due to the increasing number and size of the files containing data and analysis results.
The most important problems can be categorized as follows:

Data transfer to grid storage Originally the VBrowser was executed on the user’s own machine
to transfer data from the sequencing server to grid storage. However, when the VBrowser runs on
the laptop of the user, the files are first transferred to the laptop and then to the target resource,
which means that the data is transferred twice and the network connection of the user becomes
the limiting factor. The VBrowser is also capable of doing third-party transfers, so that the users
laptop would not become the bottleneck, but the transfer protocol of the sequencing server does not
support third-party transfers. This is not a problem for smaller files, but for large datasets with
file sizes up to 70 GB the data transfer takes too long to complete.

Sharing of results After the analysis the results are made available to the biomedical researcher
for further analysis. In the production phase the number of sequence experiments increased, as
well as the size of the individual files, and there were more users to share the results with. Biomed-
ical researchers usually do not posses a grid certificate, with a few exceptions. Moreover, not all
researchers are keen on installing grid-enabled utilities, such as the VBrowser, on their laptops.
Therefore we had to find alternatives to more easily share large result files without requiring all
researchers to obtain grid credentials or install additional clients on their workstations.

Data access bottlenecks We observed data transfer timeouts when many jobs were submitted
at the same time. Some files are used by all jobs, such as the reference database for sequence
alignment (e.g. Human Genome) and the workflow component executables. Since by default only
one replica was created, too many jobs were trying to access the same file and therefore created a
bottleneck.

Insufficient resources on the worker node Another cause of job failures was related to insuffi-
cient disk space for temporary files and crashes due to lack of memory. The sequence files became
larger and used up all local disk space for temporary files. Memory shortage occurred since jobs
run on shared hardware and in some cases need more memory than normally can be assigned to a
job. In the Dutch grid a job typically runs on a worker node with a multicore CPU using shared
memory. We observed that memory-heavy jobs either compete for memory leading to significant
degrading performance, "out-of-memory" exceptions or even get killed by a resource monitoring
system.

Long run time of jobs The processing time for computations such as sequence alignment in-
creases linearly with the input data size. So with the growth of data size, the processing time also
increased and sometimes took longer than the time slot available on the worker nodes, thus leading
to jobs getting aborted.

Workflow submission and monitoring for large numbers of files The MOTEUR workflow
engine has a built-in retry mechanism for failed jobs, but frequently workflows were only partly

5
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Figure 1: Data flow from data generation to sharing of results. The DNA sequencer stores sequence data on
a sequencing server (1), from where it is transferred to a data analysis server (2a) and/or to grid storage (2b).
During workflow execution data is transferred to/from worker nodes (3). The result files are transferred to a
data analysis server (4a) or WebDAV server (4b) from where they can be accessed by biomedical researchers.

finished, even after retries. Job failures occurred because of too large input files, too memory-
intensive jobs, application failures and grid related errors, e.g. data transfer errors. As the run time
of analysis steps is relatively long (in the order of 2-24 hours per step), it is important to be able
to resume a workflow run, skipping datasets that already have been analyzed. This functionality is
not offered by MOTEUR.

3. Improvements

After the pilot phase we have implemented several improvements to deal with the problems
identified in section 2.3: to facilitate data transfer to/from grid storage (section 3.1); handling
of results (section 3.2); to reduce data bottlenecks (section 3.3); to split the work into smaller
chunks (section 3.4); and to manage more files and fault handling in workflow submission section
3.5).

3.1 Data transfer to and from grid storage

Fig. 1 illustrates the set-up that is currently adopted for data transfers. To avoid an overload
of the sequencing server, only a very limited number of people have access to it. Downstream data
analysis takes place on a separate data analysis server (Fig. 1, 2a). The biomedical researchers
interact with the data analysis servers.

Initially the transfer between the servers and grid storage was operated remotely from the
user’s laptop. Currently the VBrowser is installed on the sequencing server and the data analysis
servers, enabling direct transfer between these servers and grid storage (Fig. 1, 2b, 4a). The
VBrowser is an application that runs in user space, so no administrator rights are needed to install
the software, and its installation does not have a big impact on the server.

6
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In addition to avoiding double transfer to/from the user’s laptop, this approach is more efficient
because the sequencing server has a faster network connection to the outside world than a regular
laptop on the slower intranet or wifi connection.

3.2 Handling of results

When the analysis is completed, results are transferred to a data analysis server and that can
be accessed locally by users who do not have a grid certificate. This was initially done using the
VBrowser from a laptop, but currently either the graphical user interface or the command-line tools
of the VBrowser from the data analysis server (Fig. 1, 4a) are used.

Recently, we explored WebDAV for making the results available for collaborators (Fig. 1, 4b)
using a system8 deployed at BiG Grid9. We publish the URLs, which point to the result files. The
benefits of using this system are easy file sharing and access from other programs running on the
user’s workstation. For example, the URLs can be used by a Genome Viewer application used by
the researchers to view and further analyse alignment results. Moreover, this server can be reached
from outside the AMC firewall, which allows data to be shared with external collaborators to our
institute.

3.3 File replication

The grid files are manually replicated with the VBrowser or with the gLite command-line
tools to avoid bottlenecks and to prevent failure when a particular storage element is unreachable.
Files that are needed by many jobs, e.g. the human genome reference database [21], are repli-
cated on each storage site of the Dutch e-science grid where the data analysis will take place to
reduce data transfer time during the analysis. At the time of writing the Dutch e-science grid had
storage resources located at 15 sites. During workflow execution the nearest storage site is chosen
automatically by the GASW wrapper.

3.4 Adaptation of workflows for larger datasets

Since we observed several job failures due to the large data size of sequencing experiments,
we decided to reduce the processing chunks by splitting the sequencing data.

At first we focused on the most common task in DNA sequence analysis, which is the align-
ment of the DNA sequences to a reference database. In this task the data is processed sequentially
and independently, so parallelization can be achieved by splitting the data [22]. Data and reference
database splitting has been successfully done for various sequence alignment programs, such as
BLAST [23] and BFAST [24]. Here we use the Burrows-Wheeler Transform Alignment program
(BWA) [9] as an example of our strategy, but this approach can be applied to several other types of
tools as well.

BWA builds an index of the reference database and stores it in memory. The sequences of
the experiment are then read from disk and aligned to the reference. The run time for aligning the
sequences to the genome scales almost linearly with the amount of sequences (and file size). Since

8http://www.beehub.nl/
9http://www.biggrid.nl/
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Bam                      Bai

ParametersTxt                       ReferenceTarGz

gridSplitDirectory1                         FastqGz1                   linesPerFile                   FastqGz2                       gridSplitDirectory2

A

B

bwa
short
paired

bwa
short
paired

split
fastq1

split
fastq2

split
bean1

split
bean2

griddir
bam
files

picard
merge
bam

ParametersTxt

Bam         Bai

ParametersTxt                     FastqGz1                  FastqGz2                    ReferenceTarGz                       Directory

Figure 2: BWA workflows. A) Original workflow where the complete dataset is processed by one com-
ponent. B) Modified workflow where the input dataset is split, processed in parallel, and the results are
merged.

the sequences are aligned independently to the reference, they can processed in parallel without
changing the analysis outcome.

The original workflow is depicted in Fig. 2A. It contains one component for BWA and takes
a complete dataset as input (FastqGz1 and FastqGz2) to align against a reference database
(ReferenceTarGz) with the BWA parameters supplied via ParametersTxt. The directory
for final results is specified via the Directory parameter.

The adapted workflow implementing the split-and-merge strategy is depicted in Fig. 2B. It
has an additional parameter where the size of chunks can be defined in terms of lines per file
(linesPerFile). A workflow component was developed for splitting the dataset (compo-
nentssplit-fastq1,2), after which all smaller datasets are processed in parallel
(bwa-short-paired-reads). When all the alignments are ready, the results are merged by
the picard-merge-bam workflow component.

The split and merge components themselves need to process the complete dataset, demanding
unusual amounts of memory or local disk space. For these type of analyses with large datasets
we currently make a (manual) selection of resources with sufficient free disk space for the job.
The target resource to run these components is defined in the workflow component description
(GASW descriptor), being used by DIANE to create the job. Currently there are no automatic

8
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means to select the site based on the amount of free disk because the resources do not publish this
type of information. The selection is currently made based on personal communication with grid
administrators.

3.5 Workflow submission and fault handling for numerous datasets

Workflows are submitted interactively in the e-BioInfra platform. However this becomes in-
convenient when too many files need to be indicated. We have automated the workflow submission
by 1) listing the names of the files and parameters to be processed (comma-separated file); 2) con-
verting this list into valid XML input descriptors for the MOTEUR web service; and 3) submitting
the workflows using a command-line interface utility.

For one specific experiment a database was used to keep track of input files and the expected
output files generated by successful workflow execution. Output files are written in subdirectories
at the location where the input files are stored using well-defined rules, so one knows beforehand
which output files to expect by the execution of each workflow component on each input. A tool
(workflow-results-verifier) was developed to check the results generated on the LFC,
storing in the database the successful ones. After this, a new list of inputs was generated for the
missing files by comparing the expected and the generated output file names. An input XML file
for MOTEUR was generated with this information, and a new workflow was started with this subset
of inputs. When steps further down the workflow failed, another workflow was started without the
earlier succeeded steps.

This process could be automated by executing the workflow-results-verifier tool
via, e.g., a cron job. However, to avoid endless resubmissions in case of permanent failures, the
tool was started manually after inspection of an earlier workflow run. Note that this strategy was
meant to reduce the manual steps needed to verify the output generated by the workflow, and
resulted in a considerable reduction of time to start and resume partially failed workflows. The
described solution was specific for one experiment, but such functionality would be interesting for
the execution of large workflows that process many inputs.

4. Results

In this section we demonstrate how the improvements presented in section 3.3 and section 3.4
affected the performance of workflow execution. Controlled experiments were performed where
the BWA workflow was executed repetitively using various settings.

The experiments used a dataset where the exome was sequenced and which represents about
1% of the complete human genome. These types of experiments are conducted to identify mu-
tations involved in rare disorders and are regularly performed in our institute. We chose a recent
representative dataset. The input dataset for the workflow consists of two compressed files contain-
ing the sequence fragments and base quality scores (3.5 and 4.8 GB). The human reference genome
is a compressed archive containing the genome sequence and index files for the BWA program (5.2
GB).

Three different workflows were executed twice per day on this dataset between 6 and 20 July
2012 under different conditions. In total we have performed 180 workflow runs, i.e. 30 repeated
runs with six different settings to explore three types of variations:

9
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Table 1: Results for workflow executions under varying settings: experiment identifier (Id; see text), dataset
(complete or split), number of replicas of the reference database, site selection for the split-merge process,
number of successful/failed workflows, success rate (successful/total), and workflow duration (time to com-
plete): mean, standard deviation, minimum and maximum.

Id Dataset Replicas Site # Success Mean ± Std.Dev. Min, Max
selection (ok/failed) (%) (hrs) (hrs)

A complete one 3/27 10.0 55.3 ± 28.2 35.1, 95.3
B complete multiple 6/24 20.0 55.5 ± 15.0 34.1, 69.7
C split one no 14/16 46.7 19.1 ± 10.2 9.7, 54.3
D split one yes 17/13 56.7 24.0 ± 10.8 12.2, 51.4
E split multiple no 18/12 60.0 18.5 ± 10.6 8.1, 58.6
F split multiple yes 21/9 70.0 22.7 ± 11.1 14.3, 59.0

• complete or split dataset, where in the second case the dataset was split into 10 smaller files
and processed in parallel;

• with single or thirteen replicas of the reference database (replicas on each site); and

• with or without site selection to run the split and merge components. The site was manually
selected based on the available space for temporary files.

We measured workflow execution time of the successful workflows as the elapsed time from
the submission of the first job to the completion of the last one, including data transfer of result
files. We assessed the success rate as the percentage of successfull workflows compared to the total
number of workflows.

Three different workflow implementations were used in the experiments, see also Fig. 2. The
first is the original BWA workflow with one component that processes the input data as a complete
set (table 1, runs A and B). The second workflow splits the input data and runs every job on a
random site (table 1, runs C and E). The third workflow is essentially the same as the second,
except that the split and merge steps are configured to run on a selected site (table 1, runs D and F)
by defining a Job Requirement on the GASW descriptor. Each workflow was executed twice; once
using a single replica reference database (table 1, runs A, C and D) and once with the reference
database replicated on every site of the Dutch e-science grid (table 1, runs B, E and F).

With these experiments we were able to assess the effect on workflow execution time and
success rate of the following strategies: (a) splitting the input data; (b) replication of the reference
database and with replicas on all available sites; and (c) site selection for the split and merge steps.

Table 1 summarizes the results. Splitting the input dataset results in workflows that run faster:
from 55 hours on average (runs A and B) to an average of 20 hours for the other runs. More
importantly, a much larger success rate is observed for the runs using split datasets: from 10 and
20% for runs A and B, up to 46% and 60% for runs C and E. When a particular site is selected for
the split and merge steps, the total run time of the workflow is slightly longer on average (from 18.5
to 24 hours), possibly because it takes longer to obtain the selected resource. However the success
rate is clearly higher, from 46% and 60% in runs C and E to 56% and 70% for D and F. Therefore
the proposed improvements enabled us to go from a situation where only 10% of the workflows

10
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Figure 3: Completed and failed jobs in BWA workflows for runs A-F, showing error distribution. See also
table 2.

ran successfully with an average run time of 55.3 hours, to an average of 22 hours with a success
rate of 70%.

To get insight in the type and amount of errors, we have filtered the standard error log files
for a list of terms that were frequently observed in error messages. Errors were due to application
faults (application-error, segmentation-fault), timeouts (bwa-time-out, connection-time-out, user-
time-out), problems with connection to systems (connection-error), related to data transfers back
to grid storage (lcg-cr-*), full disk (no-space-left), insufficient memory (out-of-memory). In some
cases the error could not be identified (unknown). The distribution of error types in the various
runs are shown in Fig. 3 and presented in more detail in table 2. For BWA workflows where the
complete dataset was processed as a whole the most observed errors were job timeouts. Although
the BWA workflows where the alignment was parallelized perform much better, there were still
several failing jobs. The most observed reason for failure were out-of-memory issues. Fig. 3
clearly shows that the percentage of errors decreased drastically after implementing the improved
workflow.

5. Discussion

The e-BioInfra platform provides generic services, such as workflow submission, monitoring,
and provenance services, which are used on a daily basis via easy-to-use interfaces by a grow-
ing number of users. At the end of 2008 we started a pilot for using this infrastructure for DNA
sequence analysis. Since then around 40 studies have been performed using the e-BioInfra plat-
form and around 80 workflows have been developed for sequence analysis alone. The number
of implemented workflow components from existing and newly developed software for DNA se-
quence analysis has grown and the components are now used by bioinformatics and biomedical
researchers. New discoveries were done in these areas and are verified with complementary lab-
oratory experiments, such as virus discovery [25], (partial) human genome re-sequencing [26],
whole transcriptome sequencing [27] and small RNA expression profiling [28].
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Table 2: Job status and observed error types in BWA workflows for runs A-F: number of jobs (percentage
of jobs)

Job status A B C D E F
COMPLETED 3 (2.7) 6 (5.2) 258 (44.9) 264 (50.7) 259 (51.4) 295 (58.0)
ERROR unknown 4 (3.6) 6 (1.0) 4 (0.8) 7 (1.4) 4 (0.8)
ERROR application-error 26 (23.6) 29 (25.2) 79 (13.7) 58 (11.1) 69 (13.7) 69 (13.6)
ERROR bwa-time-out 43 (39.1) 47 (40.9) 4 (0.7) 5 (1.0) 4 (0.8) 3 (0.6)
ERROR connection-error 6 (5.5) 3 (2.6) 57 (9.9) 50 (9.6) 30 (6.0) 1 (0.2)
ERROR connection-timeout 3 (2.7) 4 (3.5) 46 (8.0) 39 (7.5) 17 (3.4) 11 (2.2)
ERROR lcg-cr-file-exists
ERROR lcg-cr-invalid-argument 8 (7.3) 12 (10.4) 5 (0.9) 1 (0.2) 4 (0.8)
ERROR lcg-cr-no-such-file 3 (2.7) 3 (2.6) 25 (4.3) 24 (4.6) 32 (6.3) 37 (7.3)
ERROR no-space-left 1 (0.2) 1 (0.2) 4 (0.8)
ERROR out-of-memory 13 (11.8) 10 (8.7) 94 (16.3) 75 (14.4) 82 (16.3) 79 (15.5)
ERROR segmentation-fault 1 (0.2) 3 (0.6) 2 (0.4)
ERROR user-timeout 1 (0.9)
RUNNING bwa-time-out 1 (0.9)

We observed that the setup used by the pilot did not scale well with the increasing amount
of data files and data size, so we have implemented various improvements to address challenges.
These include a procedure for data transfer to and from grid, modifications to a workflow for the
most common task in sequence analysis and implementation of tools to manage larger datasets.

5.1 Data transfer and results sharing

Although the data is now more rapidly transferred, the procedure still includes manual steps
like selecting files to transfer and performing the data transfer. Ideally, the data transfer to and from
distributed resources should be completely automated and there are several options to accomplish
this. For example, the data can be automatically pushed to grid storage, such as done by the e-Bio-
Infra platform for workflows that are provided via the web portal [13]. In the portal users upload
their data via sFTP to a data staging server which is then synchronized with grid storage. DNA
sequencing datasets are too large to upload from the user’s laptop, but in a similar way the data
could be uploaded directly from the sequencing server to the grid storage. Another possibility is to
coordinate the data transfer in the workflow itself by addition of data transfer components before
and after the analysis steps.

5.2 Data splitting

So far the split-and-merge approach has only been implemented for the most commonly used
analysis step: sequence alignment with BWA. This resulted in a higher success rate of the work-
flow executions and speed-up for the complete analysis of a dataset. We have not yet investigated
whether further gain can be obtained by optimizing the split size of the data. We hypothesize that
the split size should be determined dynamically, depending on the availability of resources and
their workload.

Not all errors were solved by splitting the data, and several jobs still fail due to insufficient
memory. Next to splitting the experiment dataset, there are possibilities for splitting the reference
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database, but extra processing is needed to merge results. For example, the human genome ref-
erence database can be split for processing multiple chromosomes in parallel. However when the
human genome is split, information gets lost about sequences that align to multiple chromosomes,
and this needs to be recovered or corrected in the merge procedure.

We have noticed in the experiments of section 4 that there was one site where jobs failed more
often than on others (Additional file 1). Excluding these sites could reduce the number of failures
even more.

Other analysis steps after the alignment can be parallelized as well, to improve on run time and
success rate, as long as these steps operate on genomic intervals (e.g. per chromosome) and do not
need the complete dataset. Examples are sequence realignment [12], marking duplicate reads10,
base score recalibration [12] and variant calling [11, 12]. In these cases the files could be split per
chromosome, processed in parallel, and merged afterwards using similar workflow components as
for the alignment workflow.

5.3 Automatic workflow submission and monitoring

A drawback of the implemented tool to resume failed workflows is that there are still manual
steps involved, which slow down the analysis. First the user who analyzes the data needs to wait
until the workflow is finished, then check if all analysis results are complete, and manually start new
workflow(s) for the missing result files. These steps can now be performed with one command that
checks what is complete and what is still missing, but human intervention is still needed. Moreover,
the implemented solution is specific for a given experiment, therefore we are investigating ways to
generalize it. One of the alternatives is to implement a resume functionality at the workflow level.
At the moment the workflows are being extended to implement a fault recovery mechanism, which
has already been successfully implemented in other workflows for medical imaging. At the end
of a workflow a component will check whether all output files were produced, and then restart the
analysis for unprocessed files. The workflow will iterate until all results are complete or until a
given maximum number of iterations is reached.

6. Related work

Various bioinformatics tools, including tools for DNA sequence analysis, have been imple-
mented, and sometimes optimized for grid infrastructures. We discuss below three selected exam-
ples from directly related work, but many others exist.

Aparicio and co-workers [29] implemented BLAST for metagenomics experiments on the
EGEE grid within the Biomed virtual organization. They implemented customized tools for job
submission, job monitoring, and for re-submission of failed jobs. They point out that careful plan-
ning is needed to select suitable resources, distribute data, and create replicas, to make optimal use
of the available resources. This is in accordance with our experience described in this paper.

Mirto et al. have optimized BLAST on grid by splitting experiment data as well as the ref-
erence database. They have modified the BLAST source code to account for recalculation of the
statistics of alignments and avoid post processing at the merging phase [23].

10http://picard.sourceforge.net/
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Kim and colleagues have investigated how BFAST could be optimized with the DARE frame-
work on grid, cloud and local infrastructures [24]. Since the execution time scales almost linearly
with the amount of sequences, speed-up can be achieved by splitting the experiment sequences.
Splitting the reference database (splitting the genome per chromosome) only showed a two-fold
speed-up, but still has advantages because the disk space and memory used per job is reduced.
BWA has similarities to BFAST, therefore it is worth to investigate whether we can increase the
success rate by splitting the reference database in addition to the experiment sequences.

In contrast to the three examples above, we have made improvements on the workflow level
without changing the application itself. This has been our approach because we focussed on porting
many different tools as workflow components to create complete pipelines for various sequence
analysis experiments, without touching the original code of these tools. For other applications it
might be necessary to change the code, but since applications are updated very frequent (often
multiple updates per year) it will be time-consuming to synchronize all updates.

In addition to distributed execution of specific tools, also several generic platforms and tools
have been developed and used to integrate and run sequence data analysis pipelines on distributed
resources, some of which are mentioned below.

A notable example is Galaxy [30], which presents bioinformatics tools in a uniform user inter-
face and can be installed on a local cluster or accessed via a public server. Galaxy does not support
grid infrastructures, but several Cloud implementations of Galaxy exist now. Although pipelines
can be constructed in Galaxy, it has limited possibilities for parameter sweeps. Another popular
platform for bioinformatics is Taverna [16], however this does not have facilities for distributing
computing.

MOTEUR, on the other hand, supports grid infrastructures and offers rich constructs to per-
form data and parameter sweeps without additional programming. Other comparable workflow
systems that intrinsically support computing on distributed systems are Pegasus [31] and WS-
PGRADE [32] (see Deelman et al. for a review [33]). We use MOTEUR in the e-BioInfra platform
because it is a mature environment, that is used in production at other institutes, and because we
have a close working relationship with the developers.

Ferreira da Silva and colleagues [34] use a comparable approach to ours to run large scale
computations on the EGI infrastructure. Although the application area is mostly medical imaging,
their framework is similar, and also based on MOTEUR. They recently performed a thorough error
analysis and implemented mechanisms that can blacklist sites when jobs show an increased error
rate on these systems and resubmit failed jobs. It would be interesting to explore how these or
similar solutions could be integrated in the e-BioInfra platform.

7. Conclusion

The characteristics of implemented tools for DNA sequence analysis on the e-BioInfra plat-
form vary between tools with short and long run times, few or several dependencies, low or high
memory usage, and different sizes of the input data. Especially the larger datasets raised challenges
for data transfer to and from the grid, as well as successfully executing alignments and performing
other analysis steps. A procedure to transfer data from the DNA sequencer to grid storage is now in
place, which speeds up the data transfer. We have also invested in a procedure to share the results
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with researchers that do not have a grid certificate, and to keep track of all analysis steps for a
particular experiment. The run times of individual jobs are relatively long (in the order of hours),
which can cause jobs to fail due to wall clock timeouts.

The BWA application is used the most in our institute for DNA sequence analysis and we
have made improvements on the workflow level without changing the code of the application.
It is important to reduce failures to avoid an increase of the total run time of a workflow due
to resubmission of failed jobs. We have implemented a split-and-merge procedure for the most
common task (sequence alignment) to decrease the total run time of a workflow and to reduce
failures due to the large file size. The procedure resulted in a 2-3 fold speed-up for the analysis
of an exome sequencing experiment and the success rate of the workflows increased from 10% to
70%. Steps are taken to be able to resume workflows from the point where jobs failed.

Although the improvements already resulted in increased performance both in time-to-complete
and success rate, further improvements are still required, such as automatic data transfer before and
after a workflow run, optimization of the split size for paralellization, paralellization of other tools,
and a generic approach for fault recovery.

Since the developments in next generation sequencing are progressing fast, we use generic
solutions to keep up with the field. We have to search for a balance between including new applica-
tions in our analysis workflows and optimization of the most frequently used ones. Improvements
and optimization of current strategies, from data generation till interpretation of results, are needed
to prepare for the many and larger DNA experiments that will be performed in the near future.

Acknowledgments

We thank the members of the e-bioscience team who contribute to the development, operation
and support of the e-BioInfra. The sequence data used in the reported experiments was provided
by the laboratory division of the Academic Medical Center (Frank Baas, Raoul Hennekam). We
thank Kyriacos Neocleous for feedback on the manuscript. This work is financially supported by
BiG Grid and SHIWA EU FP7. The work uses BiG Grid resources, the Dutch e-Science Grid,
which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(Netherlands Organisation for Scientific Research, NWO).

References

[1] J. McPherson, Next-generation gap, Nature methods, 2009, vol. 6(11s), pp. S2-S5.

[2] M. Baker, Next-generation sequencing: adjusting to data overload, Nature methods, 2010, vol. 7(7),
pp. 495-499.

[3] M. Hsi-Yang Fritz, R. Leinonen, G. Cochrane and E. Birney, Efficient storage of high throughput DNA
sequencing data using reference-based compression, Genome research, 2011, vol. 21(5), pp. 734-740.

[4] L. Stein, The case for cloud computing in genome informatics, Genome Biology, 2010, vol. 11(5),
207.

[5] E. Schadt, M. Linderman, J. Sorenson, L. Lee, G. Nolan, Computational solutions to large-scale data
management and analysis, Nature Review Genetics, 2010, vol. 11(9), pp. 647-657.

15



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
3
9

Challenges in DNA sequence analysis on a production grid Barbera D. C. VAN SCHAIK

[6] S. Olabarriaga, T. Glatard and P. de Boer, A Virtual Laboratory for Medical Image Analysis, IEEE
Transactions on Information Technology In Biomedicine (TITB), 2010, vol. 14(4), 979-985.

[7] A. Luyf, B. van Schaik, M. de Vries, F. Baas, A. van Kampen, S. Olabarriaga, Initial steps towards a
production platform for DNA sequence analysis on the grid, BMC Bioinformatics, 2010, vol. 11, 598.

[8] S. Coelho, Hunting for viruses: finding a needle in a haystack, ISGTW, January 2012.

[9] H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler Transform,
Bioinformatics, 2009, vol. 25, pp. 1754-1760.

[10] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin
and 1000 Genome Project Data Processing Subgroup, The Sequence alignment/map (SAM) format
and SAMtools, Bioinformatics, 2009, vol. 25, pp. 2078-2079.

[11] D. Koboldt, K. Chen, T. Wylie, D. Larson, M. McLellan, E. Mardis, G. Weinstock, R. Wilson and
L. Ding, VarScan: variant detection in massively parallel sequencing of individual and pooled
samples, Bioinformatics, 2009, vol. 25(17), pp. 2283-2285.

[12] M. DePristo, E. Banks, R. Poplin, K. Garimella, J. Maguire, C. Hartl, A. Philippakis, G. del Angel,
M. Rivas, M. Hanna, A. McKenna, T. Fennell, A. Kernytsky, A. Sivachenko, K. Cibulskis, S. Gabriel,
D. Altshuler and M. Daly, A framework for variation discovery and genotyping using next-generation
DNA sequencing data, Nature Genetics, 2011, vol. 43(5), pp. 491-498.

[13] S. Shahand, M. Santcroos, Y. Mohammed, V. Korkhov, A. Luyf, A. van Kampen and S. Olabarriaga,
Front-ends to Biomedical Data Analysis on Grids, Proceedings of HealthGrid, June 2011, Bristol. UK.

[14] T. Glatard, J. Montagnat, D. Emsellem and D. Lingrand, A Service-Oriented Architecture enabling
dynamic services grouping for optimizing distributed workflows execution, Future Generation
Computer Systems, 2008, vol. 24(7), pp. 720-730.

[15] T. Glatard, J. Montagnat, D. Lingrand and X. Pennec, Flexible and Efficient Workflow Deployment of
Data-Intensive Applications On Grids With MOTEUR, International Journal of High Performance
Computing Applications, 2008, vol. 22(3), pp. 347-360.

[16] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. Pocock,
A. Wipat and P. Li, Taverna: A tool for the composition and enactment of bioinformatics workflows,
Bioinformatics, 2004, vol. 20(17), pp. 3045-3054.

[17] J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari and M. Fornarino, A data-driven workflow
language for grids based on array programming principles, WORKS ’09: Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science, 2009.

[18] J. Moscicki, M. Lamanna, M. Bubak and P. Sloot, Processing moldable tasks on the grid: Late job
binding with lightweight user-level overlay, Future Generation Computer Systems, 2011, vol. 27(6),
pp. 725-736.

[19] S. Madougou, M. Santcroos, A. Benabdelkader, B. van Schaik, S. Shahand, V. Korkhov, A. van
Kampen and S. Olabarriaga, Provenance for distributed biomedical workflow execution, Proceedings
of HealthGrid, June 2012, Amsterdam, NL.

[20] S. Olabarriaga, P. de Boer, K. Maheshwari, A. Belloum, J. Snel, A. Nederveen, M. Bouwhuis, Virtual
Lab for fMRI: Bridging the Usability Gap, Proceedings of Second IEEE International Conference on
e-Science and Grid Computing, 2006.

[21] International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human
genome, Nature, 2001, vol. 409, pp. 860-921.

16



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
3
9

Challenges in DNA sequence analysis on a production grid Barbera D. C. VAN SCHAIK

[22] Y. Mohammed, S. Shahand, V. Korkhov, A. Luyf, B. van Schaik, M. Caan, A. van Kampen,
M. Palmblad and S. Olabarriaga, Data Decomposition in Biomedical e-Science Applications, IEEE
eScience conference Workshop on Computing Advances in Life Sciences (CALS), 2011, Stockholm,
Sweden.

[23] M. Mirto, S. Fiore, I. Epicoco, M. Cafaro, S. Mocavero, E. Blasi and G. Aloisio, A bioinformatics
grid alignment toolkit, Future Generation Computer Systems, 2008, vol. 24, pp. 752-762.

[24] J. Kim, S. Maddineni and S. Jha, Characterizing Deep Sequencing Analytics Using BFAST: Towards a
Scalable Distributed Architecture for Next-Generation Sequencing Data, ACM Proceedings of the
second international workshop on Emerging computational methods for the life sciences (ECMLS),
2011.

[25] M. de Vries, M. Deijs, M. Canuti, B. van Schaik, N. Faria, M. van de Garde, L. Jachimowski,
M. Jebbink, M. Jakobs, A. Luyf, F. Coenjaerts, E. Claas, R. Molenkamp, S. Koekkoek, C. Lammens,
F. Leus, H. Goossens, M. Ieven, F. Baas and L. van der Hoek, A sensitive assay for virus discovery in
respiratory clinical samples, PLoS One, 2011, vol. 24 6(1), e16118.

[26] J. Van Houdt, B. Nowakowska, S. Sousa, B. van Schaik, E. Seuntjens, N. Avonce, A. Sifrim,
O. Abdul-Rahman, M-J. van den Boogaard, A. Bottani, M. Castori, V. Cormier-Daire, M. Deardorff,
I. Filges, A. Fryer, J-P. Fryns, S. Gana, L. Garavelli, G. Gillessen-Kaesbach, B. Hall, D. Horn,
D. Huylebroeck, J. Klapecki, M. Krajewska-Walasek, A. Kuechler, M. Lines, S. Maas,
K. Macdermot, S. McKee, A. Magee, S. de Man, Y. Moreau, F. Morice-Picard, E. Obersztyn, J. Pilch,
E. Rosser, N. Shannon, I. Stolte-Dijkstra, P. Van Dijck, C. Vilain, A. Vogels, E. Wakeling,
D. Wieczorek, L. Wilson, O. Zuffardi, A. van Kampen, K. Devriendt, R. Hennekam and J. Vermeesch,
Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome, Nature
Genetics, 2012, vol. 44(4), pp. 445-449

[27] R. Huis In ’t Veld, M. Willemsen, A. van Kampen, T. Bradley, F. Baas, Y. Pannekoek and A. van der
Ende, Deep Sequencing Whole Transcriptome Exploration of the s Regulon in Neisseria meningitidis,
PLoS One, 2011, vol. 6(12), e29002.

[28] N. Schopman, M. Willemsen, Y. Liu, T. Bradley, A. van Kampen, F. Baas, B. Berkhout and
J. Haasnoot, Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs, Nucleic Acids
Research, 2011, vol. 40(1), pp. 414-427.

[29] G. Aparicio, I. Blanquer, V. Hernandez, A Highly Optimized Grid Deployment: the Metagenomic
Analysis Example, Proceedings of HealthGrid, Studies in Health Technology and Informatics, 2008,
vol. 138.

[30] J. Goecks, A. Nekrutenko, J. Taylor and The Galaxy Team, Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the life sciences,
Genome Biology, 2010, vol. 11, R86.

[31] S. Callaghan, E. Deelman, D. Gunter, G. Juve, P. Maechling, C. Brooks, K. Vahi, K. Milner,
R. Graves, E. Field, D. Okaya, T. Jordan, Scaling up workflow-based applications, J Comput System
Sci, 2010, vol. 76(6), pp. 428-446.

[32] P. Kacsuk, P-GRADE portal family for Grid infrastructures, Concurrency and Computation: Practice
and Experience journal, 2011, vol. 23(3), pp. 235-245.

[33] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-Science: An overview of workflow
system features and capabilities, Future Generation Computer Systems, 2009, vol. 25, pp. 528-540.

17



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
3
9

Challenges in DNA sequence analysis on a production grid Barbera D. C. VAN SCHAIK

[34] R. Ferreira da Silva, T. Glatard, F. Desprez, Self-Healing of Operational Workflow Incidents on
Distributed Computing Infrastructures 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID 2012) (pp. 318-325).

18


