
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Advancements in EMI Testing Infrastructure

Implementation

Danilo Dongiovanni1

INFN-CNAF

Viale Berti Pichat 6/2 40100 - Bologna, Italy

E-mail: danilo.dongiovanni@cnaf.infn.it

Tomasz Wolak

CERN

Geneve, Switzerland

E-mail: twolak@cern.ch

Bjorn Hagemeier

Forshungszentrum Julich GmbH

52425 Juelich, Germany

E-mail: b.hagemeier@fz-juelich.de

Marek Kokan

Faculty of Sciences, UPJS

Jasenna 5 040 01 KOSICE - Slovakia

E-mail: marek.kocan@upjs.sk

Christian Bernardt

DESY

Notkestraße 85 D-22607 Hamburg, Germany

E-mail: christian.bernardt@desy.de

Frantisek Dvorak

CESNET

University of West Bohemia, Univerzitni 20, 306 14 Plzen, Czech Republic

E-mail: valtri@civ.zcu.cz

1 Speaker

mailto:twolak@cern.ch
mailto:b.hagemeier@fz-juelich.de
mailto:marek.kocan@upjs.sk
mailto:christian.bernardt@desy.de
mailto:valtri@civ.zcu.cz

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

ABSTRACT

The European Middleware Initiative (EMI) Project has succeeded in merging into a single

release (EMI 1 Kebnekaise) more than fifty software products from four major European

technology providers (ARC, gLite, UNICORE and dCache). To satisfy end user expectation in

terms of functionality and performance, release process implements several steps of certification

and verification. The final phases of certification are aimed at harmonizing the strongly inter-

dependent products coming from various development teams through parallel certification

paths. The role of the EMI Testing Infrastructure is to provide operational and infrastructural

resources to implement inter-component certification phases and involve EMI end users in early

testing or preview activity. Moving from a brief introduction to challenges faced during the first

EMI project year, the work presents operational and infrastructural solutions put in place to

setup the EMI Testing Infrastructure and maximize EMI product exposure to different testing

scenarios and EMI products user communities.

EGI Community Forum 2012 / EMI Second Technical Conference,
Munich, Germany

26-30 March, 2012

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

3

1. Introduction

The European Middleware Initiative (EMI) [1] project merges into a single release more

than fifty software products from four major European technology providers (ARC [2], gLite

[3], UNICORE [4] and dCache [5]). The release process is designed to allow independent and

parallel work across more than thirty product teams. Periodically, software products resulting

from this parallel work become part of a single harmonized EMI release update. Therefore a

centralized phase of integration certification must take place. The place where this

harmonization and certification happens is the EMI inter-component testing infrastructure.

Section 2 will frame this activity within EMIs quality assurance work package.

Inter-component testing infrastructure is meant to be the first central point of contact

among different EMI products, i.e. the place where each products functionalities and expected

behaviour are tested against other related EMI products. This is implemented by permanently

deploying instances of both production and release candidate versions of all product

components for every EMI release. Hence an evolving snapshot of all released and upcoming

versions of all EMI products is provided to product team developers. Configurable central

information system instances, publishing resources in the testbed, assure flexible and dynamic

creation of testbed subset views. Section 3 presents recent evolution in the implementation of

this infrastructure and relative operational facilities/procedures, with a focus on integration

testing approach implemented and automation testing. Additionally Section 4 will describe the

collection of activities put in place to let EMI partners and user communities preview EMI

products. In particular, the evolution of a large scale acceptance testing infrastructure model in

order to provide user communities and developers with more flexible opportunities to setup

specific scenarios. Also, the chance for user communities to test EMI products were increased

through preview campaigns, involving user community contribution in testing effort rather than

just hardware contribution, and hosting demo and training events on the testing infrastructure.

These activities implied the implementation of flexible operational solutions for infrastructure

provisioning.

Section 5 summarizes the work providing some remarks and lessons learnt during the first

two years of the EMI project activity and outlines planned future developments.

2. Role of central testing facilities as part of EMI release cycle and quality assurance

activities

The evolution of EMI software products in order to fix software errors or implement new

features follows a defined release cycle, resulting in both monthly release updates (minor

releases whilst not breaking backward compatibility) and yearly major releases. To these

periodical releases we add revision (fixing defeats without introducing new features) and

emergency updates (fixing problems with top priority, generally related to security).

The release process periodically cycles over five macro phases:

 phase 1-) Requirements analysis phase: inputs collected from EMI user communities

representatives (EGI [6], WLCG [7]) are translated into accepted technical

requirements;

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

4

 phase 2-) Development and test planning phase: technical requirements from phase 1

bring to new development and test plans;

 phase 3-) Development, testing and certification phase: new products versions are

developed according to test plans and tested by product teams;

 phase 4-) Release certification and validation phase of new products candidates;

 phase 5-) Release and maintenance;

All EMI software products undergo this release cycle many times per year. Minor release cycles

are asynchronous for different products, meaning that each product is independent from other

products in its development and certification provided that it does not break backward

compatibility. The project structure reflects this approach with more than thirty product teams

working in parallel according to agreed policies.

The EMI quality assurance work package is in charge of those activities aimed at

harmonizing the parallel work of the developer product teams to obtain as output a single

homogeneous EMI release. Therefore, among quality assurance duties we have the definition

and monitoring policies, definition and collection of metrics and keys performance indicators

(KPIs), quality control verification and reporting, the provision of common tools for products

building and the implementation of common and shared infrastructural and operational

resources for product inter-component and large scale testing. The present work focuses on this

last working area in EMI quality assurance, which is strictly related to the phase 4 and 5 of

release cycle. Given the framework described above, we can summarize the role of central

testing infrastructure team as a provider of all facilities and certification activities assuring that

the sum of components certified in isolation constitutes an EMI release of products deployable

from single repository and consistently interoperating.

2.1 Overview of EMI Products certification testing

Before presenting the EMI central testing facilities and operations in details, it is worth to

clarify how each EMI software component life cycle maps into EMI release life cycle. Each

EMI component follows an independent path from other components life cycle during the

definition of requirements, development/test planning, source coding, build until the component

certification in isolation. Then, after certification in isolation has been accomplished, the various

component release paths must intersect in order to verify that all components can consistently

interoperate. This means that the logically unitary phase of component certification, aimed at

verifying the expected functioning under production environment, is actually split in two

separate steps across EMI release cycle phases 3 and 4. Moreover, component certification in

isolation during phase 3 is performed on product team resources while inter-component testing

performed during release phase 4 occurs on central testbed resources.

To give an overview of the types of tests performed in each phase we mention:

 Release phase 3: static code analysis, installation tests during repackaging phase in

the mock image to verify run time dependencies, deployment tests on product

teams local resources, unit tests, functionality and regression tests of the

component in isolation;

 Release phase 4: deployment tests on central resources, functionality tests

validating EMI components mutual interaction;

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

5

 Performance and scalability tests are not mandatory and may occur both in phase 3

and 4 of EMI release cycle. Scalability tests are partly implemented through

activities described in Section 4.

The results of all tests are finally gathered into a unique test report.

Concerning the way these tests are performed, it should be noted that the level of

automation in testing tend to quickly decrease when passing from static code analysis to

scalability tests and it is not homogeneous across EMI products. The subject is treated in

Section 3.3 in full details, but we can anticipate that only static code analysis and mock

installation tests are fully automated as a post-build step in the EMI central build system tool

[30]. Unit and functional tests are mostly automated but implemented with different

technologies depending on the product considered. Deployment tests on the central testbed are

manually performed as well as inter-component tests, except those implemented by SAM-

Nagios [11] probes. Performance and scalability tests are mostly not automated.

3. EMI Infrastructure and facilities for internal release testing

Two main categories of tests derive from the goal of ensuring that all EMI components are

deployable from single repository and consistently interoperating: release deployment tests and

inter-component tests.

3.1 Release deployment testing

After a quality check verification step, formally controlling product compliancy with

agreed release policies and guidelines, the release components candidate for the considered

update are deployed on the inter-component testing infrastructure. This deployment test is

independent from the one performed by a product team during certification and provides the

Release Manager with information on the actual status of a release, which is particularly needed

when preparing a major release and having no stable components.

Most common product deployment scenarios are adopted to reproduce production

environment conditions and also updates from previous production versions are tested. These

deployment tests require the cross-configuration of product instances geographically distributed

across seven partner sites with different farming solutions. For this reason, a common

centralized system for automated deployment is not implementable. Nonetheless some solutions

for automated deployment based on bash scripting or puppet farming administration tool [49]

are under development.

Quality verification and testbed deployment results are mandatory ingredients for the

release manager decision on accepting each candidate product in the next EMI update. Fig.1

illustrates details of these specific release cycle steps.

3.2 Inter-component testing infrastructure

As shown in Fig.1, all component release candidates must pass an inter-component testing

certification step to enter the next EMI update. This inter-component testing is performed on

EMI central inter-component testing infrastructure instances.

In this context, we recall the definition of inter-component testing as the part of

certification of an EMI software product where the product functionalities and expected

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

6

behaviour is tested against other EMI software products interacting with the product considered.

Integration testing takes place after the certification testing of the product in isolation has been

successfully carried out and reported in a public test report.

To understand the solution implemented for the central testing infrastructure we enumerate

the required categories of inter-component tests:

1. Integration testing within a minor release (i.e. no backward compatibility broken), so

that a Release Candidate (RC) component can be tested against other services in

production. This test implies a distributed testbed of production services available for

each middleware stack (Arc, dCache, gLite, Unicore), with possibly multiple instances

for central services. This could also (rarely) imply cases of RC versus other RC or RC

versus (RC + production).

2. Integration testing for a major release (where it is allowed to have new features or

backward compatibility broken for many services). This implies a testbed of RC

components versions deployed for each middleware stack.

3. Integration testing among middleware stacks (ARC/dCache/gLite/Unicore). This testing

scenario is normally covered by testbeds defined in points 1 and 2 above, but could also

imply specific testbed setup for experimental service versions.

The implemented infrastructural solution for the testing scenarios identified above is

represented in Fig.2.

Figure 1: EMI release components successfully passing the phase of certification in isolation are verified

for congruency to process policy and deployed on the inter-component testing infrastructure. On the

resulting testbed integration testing certification can be performed by all product teams concurrently.

Finally, all component passing release quality criteria enter new release update.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

7

The current implementation of inter-component infrastructure counts for more than 180

instances providing a snapshot of: i) pre-EMI products from the four partner middleware

converging into EMI (to test backward compatibility with user interface, batch systems and

worker nodes still existing in communities sites); ii) EMI-1 Keiknekaise [8] production version

release; iii) EMI-2 Component Release candidate versions other than some instances for tool

testing or platform testing.

Figure 2: Inter-component testing infrastructure. Release Candidates components are tested for

integration both with production and release candidate versions of other integrated EMI

components. Additional information services or registry services instances aggregate testbed

instances into testbed views which can be modularly combined.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

8

These instances are geographically distributed across 7 EMI participant institutes (CERN,

CESNET, INFN-CNAF, DESY, JUELICH, KOSICE, NIIF). A flexible grouping strategy of

product instances in modular testbed views is implemented by information system services for

production and RC versions for different middleware
2
. Building custom testbed views including

both EMI central resources and product team local resources is also possible by composing

testbed views as for example by republishing resources in cascade across multiple information

system services. This approach is used also in preview activities where we generally create ad

hoc testbed views merging EMI testing infrastructure resources with production resources.

As operational facilities we also provide two Virtual Organizations (testers.eu-emi.eu and

testers2.eu-emi.eu) and a support unit through GGUS [9] support portal. Detailed

documentation on both infrastructural and operational resources can be found at [10].

3.2.1 Advancements on infrastructure implementation and activities

The first relevant advancement since EMI-1 is the increased dimension of testbed which

doubled between EMI-1 and EMI-2. This was mainly due to both the cumulative effect of

assuring a coverage for all supported and candidate EMI releases and to the increased number

of platforms supported from EMI-2 on. In fact, while EMI-1 release was delivered on Scientific

Linux 5 x86/64 platform only, EMI-2 will support Scientific Linux 5 x86/64, Scientific Linux 6

x86/64 and Debian 6.01 platforms. To reduce the impact of multiplatform deployment on the

testbed dimension, whenever possible we opted for a serialization of components testing on

each platform. The release cycle was accordingly extended to have a three weeks (1 platform

per week) deployment and inter-component testing cycle. This allows for virtual machine disks

replacements each week without changing services endpoints and cross configuration. Cross

platform testing is performed only when expressly required by product teams.

During EMI project second year also the scope of activities related to release testing has

significantly increased. In fact, in addition to deployment/inter-component tests for the 17 EMI-

1 Updates delivered and the EMI2 Release Candidate testing, the testbed infrastructure staff was

involved in bridge activities between product teams and release management or between EMI

developers units and EMI external partners or user community representatives. Among these

activities it is worth to mention: i) feedback provisioning on product documentation; ii) support

to WLCG user community to plan migration to EMI middleware from pre EMI middleware

stack by testing and documenting this migration; iii) release level bug fix and or workaround

verification; iv) planning of test modalities for SAM-Nagios [11] product probes (released by

EMI) on new SAM-NAGIOS service framework (released by EGI).

3.2.2 Advancements on inter-component testing approach

One of the main challenges faced during EMI-1 major release certification was the

definition and implementation of an efficient inter-component integration testing approach.

The following main criticalities were identified:

1. Time Coordination in component release certification. According to EMI

release model (see Section 2) software components follow independent and

2 Note that a single registry or information system service for all EMI components is currently under

development.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

9

asynchronous update paths (except for major releases). For mutually integrated

products (ex. X,Y) this implies either component X to continuously check the

integration with product Y at each new build or product teams Px and Py to coordinate

the delivery and certification in the same time window.

2. Definition of Integration test perspective and accountable product team. In fact

very different integration tests can be conceived between two given products X and Y

depending on how representative is the considered "testing perspective”. As an

example a team producing CREAM compute element could test integration with

ARGUS authorization just with a direct submission. But the end user testing

perspective would be testing that the whole job management works when having a site

with WMS, ARGUS, CREAM, glexec-WN, mpi, DPM and STORM services

consistently cross-configured. The ultimate goal is clearly to have a reasonable

coverage of production environment perspectives. But a side effect of widening the

client perspective for the integration test is the proportionally increasing difficulty in

defining a policy to determine which product team should be then considered

accountable (in charge of performing the test and filling the test report with results) for

that integration test.

A continuous integration approach on a separated testbed deploying only release candidate

versions of products had been initially identified as a project objective to solve the time

coordination criticality. In our context continuous integration would mean: i) to deploy on the

central testbed any successfully built new version of all EMI component and ii) to test them for

integration. But this approach was finally deemed to be not implementable in practise without

automating the full build-deployment-testing process. The reasons preventing for process full

automation resides in the actual poor level of EMI cross product integration and harmonization

especially when concerning technologies chosen for testing automation (see section 3.3).

Moreover it should be noted that cross product integration tests are generally difficult to

automate as an extension of a single component/products test-suite, mainly because a distributed

environment setup involving several services is required by definition. On the other hand the

convergence of all products on a single testing technology was not a development priority for

EMI project.

Therefore the solution adopted for EMI 2 major release was to implement an inter-

component testing approach called Integration Tests campaigns. By Integration test campaigns

we mean the definition of a specific set of integration tests to be run between the release

candidate version of the components deployed on the central testing infrastructure within a

predefined time window in the release cycle. This approach assures time coordination in the

inter-component testing activities across product teams. An Integration Testing Task Force was

created with the purpose of defining a list of integration tests covering most common end-user

perspective use cases. Inter-component testing campaigns follow the deployment of release

components for each platforms in a 3 week cycle with 1 week per supported platform.

Table.1 summarizes the inter-component integration tests already implemented. All

planned test are reported at [12]. Other than the products/software-area involved in each

integration test, Table.1 also reports whether the test is automated or not. Only data

management integration tests have been implemented exploiting the specific test-suite of one of

the component to test (ex. T-StORM [31] for testing data management components inter-

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

10

operation). . More details about automated testing and monitoring solutions are provided in next

section.

Table 1: Integration tests in place and products involved in

tests

A
u

th
en

ti
ca

ti
o

n
/

A
u

th
o

ri
za

ti
o

n

Jo
b

 M
an

ag
em

en
t

D
at

a

M
an

ag
em

en
t

In
fr

as
tr

u
ct

u
re

A
u

to
m

at
ed

(CEMON,Argus), X -

(Argus,VOMS, CREAM); (glExec-WN,CREAM) X X X

(EMIR, UNICORE/X, A-REX); X X -

(gLite MPI,WMS,CREAM,WN); (gLiteWMS, gLiteLB) X X

(A-REX,CREAM, WMS, BDII); (ARC compute

CLI,UNICORE/X,CREAM CE,A-REX)

 X X -

(dCache,DPM,StoRM,FTS) X X

(A-REX,DPM,dCache,StoRM,LFC) X X -

(StoRM,DPM,dCache,ARC gridftp server) X -

(lcg_util,DPM,dCache,StoRM) X X -

(ARC data clients, LFC, dCache, DPM, StoRM, VOMS) X X -

(Apel,CREAM); X X -

(VOMS,BDII); X X -

(ARIS, Top BDII) X -

3.3 Automation: test-suites and monitoring tools

In this section, we describe the monitoring solutions adopted for the testing infrastructure

and the perspective to increase the level of automated testing coverage of product deployed in

the testbed.

3.3.1 Automated testing approach survey for EMI products

As mentioned in section 3.2.1, the main obstacle to efficiently implement the continuous

integration approach in EMI products inter-component testing certification is the lack of a

common framework for automated testing.

Table 2 reports the results of an internal survey on automated testing implementation

status. The approach to testing automation varies across EMI products, with some sub-group

homogeneity due to legacy reasons. By far, gLite represents the most fragmented reality across

products (Table.2 reports a not exhaustive sample for EMI gLite products, details available at

[36]). The reason for this persistent heterogeneity resides in the fact that EMI project focus in

first two years was on forcing products to have a common build system and adding some key

functionalities/products to increase integration across middlewares (EMI Execution Service or

EMI Registry service are an example).

https://twiki.cern.ch/twiki/bin/view/EMI/StoRM
https://twiki.cern.ch/twiki/bin/view/EMI/StoRM
https://twiki.cern.ch/twiki/bin/view/EMI/StoRM
https://twiki.cern.ch/twiki/bin/view/EMI/StoRM
https://twiki.cern.ch/twiki/bin/view/EMI/StoRM
https://twiki.cern.ch/twiki/bin/view/EMI/VOMS

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

11

It should be noted that the ETICS build and integration tool [30] exploited for EMI

middleware build, implements static analysis of the code or packages. For example, the

following plugins do static checks as counting number of lines of code for each language,

verifying compliance of the packages with Fedora guidelines and checks compliance with IPV6

or presence of tests, results and coverage: SLOCCount, Rpmlint, IPV6, PyUnit, PyCoverage,

PMD [41], JCCN, FindBugs [42], CheckStyle [43], CCCC [44], Pylint [45], CCppCheck [46].

Also ETICS checks build time / run time dependencies Mock [47] or Pbuilder, so that part of

deployment testing is automated at build time with ETICS for the whole EMI project.

3.3.2 SAM-Nagios Monitoring

Concerning EMI Testbed monitoring we can distinguish 2 major levels: i) low-level

monitoring (hardware, networking, operating system); ii) service-level monitoring (checking

availability and validating functionality of Grid middleware services).

The minimum for low-level monitoring is checking network availability of machines

hosting a service, often realised as generic ping (ICMP) probe checking if the host is

responding. Low-level monitoring solution is NAGIOS [13]. Service-level monitoring, much

more important for a Grid Testbed, needs a more complex solution. The reason is that a probe

checking a given Grid service requires relatively complex environment for execution, which

normally can be found e.g. on a User Interface node. This includes environment settings

allowing to find service endpoints, clients and/or libraries providing access to Grid services

(command-line clients or an API) and also Grid user credentials (Grid proxy) for accessing

services which require GSI authentication. In the times of pre-EMI (EGEE project [14]) the

monitoring solution (at least for gLite middleware) was EGEE-NAGIOS, monitoring

framework based on NAGIOS, gLite User Interface and a number of other software

components, including YAIM[15] and NCG[16] configuration tools, which allow semi-

automatically to have the framework operational.

In the era of EMI and EGI, EGEE-NAGIOS has evolved into SAM-Nagios, with a plan to

modify current monitoring framework to cover all services available in the new EMI

middleware. At present time, the SAM-Nagios framework is developed by EGI project, while

EMI product teams are in charge of producing the probes for the middleware services they

develop. Testing integration of service probes and SAM-Nagios framework for EMI is done in

the EMI inter-component testing infrastructure. At the time we write, 25 out of 33 EMI services

probes are ready and the work on SAM-NAGIOS framework is still ongoing to work with the

emi-release metapackage. Details about SAM-NAGIOS instances deployed at partner sites can

be found on the testbed inventory page [17].

It is interesting to notice here that part of the integrations tests reported in Table.1 are

implemented by SAM-Nagios probes, exploiting the command line interface coming with user

interface service. As an example we mention the gLite job management SAM-Nagios probe

which tests the integration between CREAM, BDII, WMS, VOMS, MyPROXY, LB, DPM by

monitoring the full job cycle from selecting resources to submitting a job involving data

management operations. On the other hand, the testing infrastructure team is also involved in

the validation of SAM-Nagios probes. This means that some SAM-Nagios probes failures does

not forcedly imply a failure on monitored services but could reveal problems on the monitoring

system itself.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

12

Table.2 : Survey on

automated testing across

EMI products.

S
ta

ti
c

C
o
d

e

A
n

a
ly

si
s

1
,2

D
e
p

lo
y
m

e
n

t

T
e
st

 1
,2

U
n

it
 T

e
st

 2

F
u

n
c
ti

o
n

a
li

ty

T
e
st

s
2

In
te

g
r
a
ti

o
n

T
e
st

s
2
,3

P
er

fo
rm

a
n

ce

T
e
st

s
2
,3

S
c
a
la

b
il

it
y

T
e
st

s
2
,3

,4

Exploited

Testing

Framework

ARC (A,T)

[18]
(- ,M) (A,T)

(A,T)

[19]
(- ,M)

(- ,M)

[20]
(-,-)

Python

scripting

dCache (A,T) (- ,M) (A,T) (A,T) (- ,M) (- ,M) (-,-) Jenkins [21]

UNICORE
(- ,M) (- ,M)

(A,T)

[22]
(~ ,T) (- ,M) (~ ,M) (-,-)

Atlassian

Bamboo [23]

gLite (DPM,FTS, LFC)
(- ,M) (A,T) (A,T) (A,T) (~ ,M)

(- ,M)

[25]
(- ,M) Saket [24]

gLite Job Computing

(CREAM, WMS) (-,-) (- ,M)
(~ ,M)

[26]

(A,M)

[27]
(~ ,M) (- ,M) (~ ,M)

Robot

Framework

[28]

 Glite (CaNL,gridsite, LB,

proxyrenewal)
(-,-) (A,T) (A,T) (A,T) (- ,M) (~ ,M) (-,-)

Scripts [29],
ETICS [30]

StORM (-,-) (A,M) (-,-) (A,M) (~ ,M) (~ ,M) (-,-) T-StORM[31]

gLiteMPI (-,-) (- ,M) (A,T) (~,T) (- ,M) (-,-) (-,-) Shunit [32]

gLite infosys (-,-) (A,M) (A,M) (A,M) (A,M) (A,M) (A,M) Bash Scripts

ARGUS

(-,-) (- ,M) (A,T) (A,M) (- ,M)
(A,M)

[34]
(A,M)

Bash, Python

Scripts,

Grinder [33]

APEL
(-,-) (- ,M) (A,M) (A,M) (-,-) (-,-) (-,-)

Bash Scripts,

JUnit [35]

VOMS
(-,-) (- ,M) (A,M) (A,M) (-,-) (-,-) (-,-)

Dejagnu [48],

JUnit [35]

Hydra (-,-) (- ,M) (-,M) (-,M) (-,M) (-,-) (-,M) Bash Scripts

Trustmanager (-,-) (A,M) (A,M) (A,M) (-,-) (-,M) (-,-) JUnit [35]

AMGA (-,-) (- ,M) (A,T) (A,T) (-,M) (-,M) (-,-) Bash Scripts

WNodes (-,-) (-,-) (~,-) (A,M) (-,-) (M,-) (-,-) Python Scripts

ETICS – All EMI products (~,T) (~,T)5 ETICS [30]

Legend (A / ~ / -: Automated / Partially / Not Automated || T / M: Automatically / Manually triggered, -

Not Performed)[Reference Link]

Notes:
1. Tests performed on product teams local resources;
2. Tests performed on ETICS build system central resources;
3. Tests performed on EMI Inter-component testing resources;
4. Tests performed on EMI Partner large scale testbed
5. ETICS performs an installation test during repackaging phase in the mock image to verify run time

dependencies. This test does not replace the full deployment test.

Therefore, not to blindly trust SAM-Nagios probes results, a series of functionality tests

reproducing common job/data management operations, authorization/authentication tests,

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

13

information service retrieval and publication checks are also performed at each update testing

cycle. Part of these checks have been automated by scripts running on central testbed User

Interface.

4. Infrastructure and facilities for EMI partners and user community

Being aware of the fact that the production environment is the ultimate realistic test for

product quality assessment, part of our effort is devoted to involving end-user communities in

previews of EMI products or specific scenario testing campaign.

Also preview campaigns were proposed to user communities in proximity of EMI major

release, with the purpose of receiving highly qualified early feedback on EMI products. On the

EMI side we provided deployment expertise and infrastructural facilities such as a common

Virtual Organization and Information system services to collect the network of deployed

products. EMI1 release preview campaign [37] involved 16 EMI partners providing useful

feedback on documentation. The evolution of this activity was twofold: some partners signed a

Memorandum of Understanding with EMI projects as part of works with EMI program [38] to

have access to EMI testing infrastructure, other partners contributed to the EMI large scale

infrastructure for acceptance tests [39].

The goal of large scale infrastructure is to provide a testbed for scalability and

interoperability testing of EMI components. At the present time we have 15 instances deployed

across four sites. Initially we proposed two alternative approaches: 1.pre-deployment across

voluntary sites of product release candidate versions; 2. Demand (from EMI developers to test

specific scenario) and Supply (from volunteers partner sites). The first approach resulted in poor

participation by user communities also involved in similar staged roll-out activities. So we plan

to focus on early testing of specific scenarios but allowing for demand also to come from users

bringing real use cases experience.

The outreach activity consists in the provisioning of a training and dissemination

infrastructure with EMI stable products. We currently have in place a training infrastructure

deploying stable versions of EMI products, configured with fake certificates facilities by the

GILDA certificate authority. The infrastructure has also been successfully exploited for demo

activities from user communities (best demo winning at EGI technical forum 2011, Lyon). As

perspective work we are starting a collaboration with Future Grid [40] to host a EMI product

snapshot to hold training/demo sessions. The feasibility of an “on demand” instantiation

approach for services is under investigation in that context.

5. Conclusion and future plans

The present work reported on the status of the EMI centralized testing infrastructure with

related operational resources with a focus on the last advancements achieved in order to better

support both EMI product integration testing and release quality verification steps.

At the same time we described the criticalities emerging from the challenging goal of

merging in homogeneous release updates the asynchronous and continuous changes occurring

across more than 50 EMI products. The solutions implemented resulted as a drawback between

the efficiency of release process and the necessity of exploiting most of the existing legacy

testing technologies adopted by the various products/middleware merged into EMI. In particular

the great heterogeneity of technologies adopted across products (described in Section 2.4)

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

14

constitutes the main obstacle to achieve full automation in the certification process (deployment,

configuration, testing) as simple extension of products certification cycle. This leaded to the

decision of replacing the continuous integration testing approach with a inter-component tests

campaigns during the EMI projects second year. The release process was also changed

accordingly.

We also presented the preview activities promoted by the testing infrastructure team to

involve EMI external partners into quality testing of EMI products. In the past year the number

of testbed users and contributors increased as well as the differentiation of activities involving

external EMI product users community (large scale testbed, EMI preview campaigns, work with

the EMI program and training and dissemination). These results witness a better fulfilment of

the EMI testing infrastructure ultimate mission, e.g. exposing EMI products to the highest

possible number of usage modalities.

EMI year 3 activity will mainly focus on automating the defined set of integration tests

and consolidating the automate deployment tools which are currently under development. Also

in the next few months new EMI services probes will be integrated in SAM-NAGIOS

framework, implying some validation activity to be performed on the EMI testing infrastructure.

We also plan to increase the central testbed exposure to all possible existing automated testing

facilities (by product teams and/or external user community).

Some new products being released with EMI2 will significantly increase the level of cross-

middleware integration. As an example, the release of EMIR, the common registry to all EMI

services, will allow to merge the current per middleware (ARC, gLite/dCache, UNICORE)

testbed views into a unique cross-middleware view. Also the full deployment of a common

execution service interface (EMI-ES) will simplify the implementation of automated integration

tests for job management. Finally we mention the preview and outreach activity which will

naturally derive from the release of these new products so highly impacting production

environment.

Acknowledgements

This work is partially funded by the European Commission as part of the EMI Project under the

Grant Agreement number INFS0-RI-261611.

We want to thank EMI product teams supplying information about automated testing as well as

Duarte Bacelar De Begonha De Meneses and Andres Abad Rodriguez (CERN IT group) for
providing information about ETICS tool.

References

[1] European Middleware Initiative http://www.eu-emi.eu/

[2] ARC Project http://www.knowarc.eu/

[3] gLite Project http://www.glite.eu/

[4] UNICORE Community http://www.unicore.eu/

[5] dCache Project http://www.dcache.org/

[6] European Grid Initiative http://www.egi.eu/

[7] Worldwide LHC Computing Grid (WLCG) http://lcg.web.cern.ch/lcg/public/

[8] EMI 1 release Kebnekaise http://www.eu-emi.eu/emi-1-kebnekaise

[9] Global Grid User Support http://www.ggus.org/

[10] EMI Inter-component testing Infrastructure https://twiki.cern.ch/twiki/bin/view/EMI/TestBed

[11] SAM-NAGIOS monitoring https://tomtools.cern.ch/confluence/display/SAM/SAM-Nagios

http://www.eu-emi.eu/
http://www.knowarc.eu/
http://www.glite.eu/
http://www.unicore.eu/
http://www.dcache.org/
http://www.egi.eu/
http://lcg.web.cern.ch/lcg/public/
http://www.eu-emi.eu/emi-1-kebnekaise
http://www.ggus.org/
https://twiki.cern.ch/twiki/bin/view/EMI/TestBed
https://tomtools.cern.ch/confluence/display/SAM/SAM-Nagios

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
7

Advancements in EMI testing infrastructure implementation Danilo Dongiovanni

15

[12] Inter-component testing task force
https://twiki.cern.ch/twiki/bin/view/EMI/EmiJra1TaskForceIntegrationTesting

[13] Nagios monitoring framework http://nagios.org/

[14] EGEE Project https://twiki.cern.ch/twiki/bin/view/EGEE/WebHome

[15] YAIM configuration tool https://twiki.cern.ch/twiki/bin/view/EGEE/YAIM

[16] EGEE Nagios https://twiki.cern.ch/twiki/bin/view/EGEE/GridMonitoringNcgOverview

[17] EMI Testbed Inventory monitoring solution
https://twiki.cern.ch/twiki/bin/view/EMI/EMITestbedInventory#Testbed_monitoring

[18] ARC Revision Tests http://arc-emi.grid.upjs.sk/revisionTests.php

[19] ARC Functionality Tests http://arc-emi.grid.upjs.sk/functionalTests.php

[20] ARC Performance Tests http://wiki.nordugrid.org/index.php/Performance_testing

[21] Jenking Integration Testing Framework http://jenkins-ci.org/

[22] Unicore Testing Framework https://unicore-dev.zam.kfa-juelich.de/bamboo/telemetry.action

[23] Atlassian Bamboo Continuous Integration Framework
http://www.atlassian.com/software/bamboo/overview

[24] Swiss Army Knife for ETICS Testing (SAKET) http://svn.cern.ch/guest/saket/trunk/

[25] SAKET performance Test Suite https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Admin/Performance

[26] CreamTesting https://wiki.italiangrid.it/twiki/bin/view/CREAM/CreamTesting

[27] Workload Management System Testsuite https://wiki.italiangrid.it/twiki/bin/view/WMS/WmsTestSuite

[28] Robot Framework EMI Implementation

https://twiki.cern.ch/twiki/bin/view/EMI/RobotFrameworkQuickstartGuide

[29] LB deploy automation http://scientific.zcu.cz/scatter/scripts

[30] eInfrastructure for Testing, Integration and Configuration of Software (ETICS)

http://etics.web.cern.ch/etics/

[31] T-StoRM: a StoRM testing framework EGI Community Forum, Munchen 2012

[32] ShUnit testing http://shunit.sourceforge.net/

[33] Argus Functionality test https://twiki.cern.ch/twiki/bin/view/EMI/ArgusTestPlan

[34] Grinder load testing framework http://grinder.sourceforge.net/

[35] JUnit testing http://www.junit.org/

[36] Survey on Automated Testing in EMI

https://twiki.cern.ch/twiki/bin/view/EMI/EmiTestAvailabilitySurvey

[37] EMI Preview program https://twiki.cern.ch/twiki/bin/view/EMI/EMIReleasePreview

[38] Works with EMI program https://twiki.cern.ch/twiki/bin/view/EMI/EmiCollaborationPrograms

[39] EMI Large Scale acceptance testing https://twiki.cern.ch/twiki/bin/view/EMI/LargeScaleEMITestbed

[40] Future Grid project portal https://portal.futuregrid.org/

[41] PMD http://pmd.sourceforge.net/

[42] FindBugs http://findbugs.sourceforge.net/

[43] CheckStyle http://checkstyle.sourceforge.net/

[44] CCCC http://cccc.sourceforge.net/

[45] Pylint http://www.logilab.org/857

[46] CCppCheck http://cppcheck.sourceforge.net/

[47] Fedora Mock http://fedoraproject.org/wiki/Projects/Mock

[48] DejaGnu project http://www.gnu.org/software/dejagnu/

[49] Puppet http://puppetlabs.com/

https://twiki.cern.ch/twiki/bin/view/EMI/EmiJra1TaskForceIntegrationTesting
http://nagios.org/
https://twiki.cern.ch/twiki/bin/view/EGEE/WebHome
https://twiki.cern.ch/twiki/bin/view/EGEE/YAIM
https://twiki.cern.ch/twiki/bin/view/EGEE/GridMonitoringNcgOverview
https://twiki.cern.ch/twiki/bin/view/EMI/EMITestbedInventory#Testbed_monitoring
http://arc-emi.grid.upjs.sk/revisionTests.php
http://arc-emi.grid.upjs.sk/functionalTests.php
http://wiki.nordugrid.org/index.php/Performance_testing
http://jenkins-ci.org/
https://unicore-dev.zam.kfa-juelich.de/bamboo/telemetry.action
http://www.atlassian.com/software/bamboo/overview
http://svn.cern.ch/guest/saket/trunk/
https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Admin/Performance
https://wiki.italiangrid.it/twiki/bin/view/CREAM/CreamTesting
https://wiki.italiangrid.it/twiki/bin/view/WMS/WmsTestSuite
https://twiki.cern.ch/twiki/bin/view/EMI/RobotFrameworkQuickstartGuide
http://scientific.zcu.cz/scatter/scripts
http://etics.web.cern.ch/etics/
https://www.egi.eu/indico/contributionDisplay.py?sessionId=59&contribId=126&confId=679
http://shunit.sourceforge.net/
https://twiki.cern.ch/twiki/bin/view/EMI/ArgusTestPlan
http://grinder.sourceforge.net/
http://www.junit.org/
https://twiki.cern.ch/twiki/bin/view/EMI/EmiTestAvailabilitySurvey
https://twiki.cern.ch/twiki/bin/view/EMI/EMIReleasePreview
https://twiki.cern.ch/twiki/bin/view/EMI/EmiCollaborationPrograms
https://twiki.cern.ch/twiki/bin/view/EMI/LargeScaleEMITestbed
https://portal.futuregrid.org/
http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://cccc.sourceforge.net/
http://www.logilab.org/857
http://cppcheck.sourceforge.net/
http://fedoraproject.org/wiki/Projects/Mock
http://www.gnu.org/software/dejagnu/

