
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM: a StoRM testing framework

Elisabetta Ronchieri∗†
INFN CNAF
E-mail: elisabetta.ronchieri@cnaf.infn.it

Michele Dibenedetto
INFN CNAF
E-mail: michele.dibenedetto@cnaf.infn.it

Riccardo Zappi
INFN CNAF
E-mail: riccardo.zappi@cnaf.infn.it

Cristina Aiftimiei
INFN, Sezione di Padova
E-mail: cristina.aiftimiei@pd.infn.it

Vincenzo Vagnoni
INFN, Sezione di Bologna
E-mail: vincenzo.vagnoni@bo.infn.it

Valerio Venturi
INFN CNAF
E-mail: valerio.venturi@cnaf.infn.it

StoRM, an implementation of the SRM interface, is a multi-service software subject to intense
testing, validation and verification activities in order to guarantee high-quality services. Its charac-
teristics of being usable on different file systems and of supporting several transfer protocols raise
the need of StoRM to be validated on a variety of deployment scenarios with multiple machines.
With this purpose in mind, T-StoRM is a StoRM testing framework that aims at improving and
automating the service evaluation. It provides several abstract support classes that can simplify
writing test suites, which are logically put into group of similar test cases amongst installation,
configuration, conformance, system, regression and stress categories. This solution addresses
the need of improving software development life cycle and optimizing the deployment of a new
software release. In this paper, we describe T-StoRM and the supported tests. Furthermore, we
present its current and near future usage.

EGI Community Forum 2012 / EMI Second Technical Conference,
26-30 March, 2012
Munich, Germany

∗Speaker.
†Correspondent author.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:elisabetta.ronchieri@cnaf.infn.it
mailto:michele.dibenedetto@cnaf.infn.it
mailto:riccardo.zappi@cnaf.infn.it
mailto:cristina.aiftimiei@pd.infn.it
mailto:vincenzo.vagnoni@bo.infn.it
mailto:valerio.venturi@cnaf.infn.it

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

1. Introduction

StoRM is used as a Storage Resource Manager (SRM) endpoint in the context of the Large
Hardon Collider (LHC) at European Centre for Nuclear Research (CERN) for the major High
Energy Physics (HEP) experiments such as Alice, ATLAS, CMS and LHCb; in the context of
non-LHC experiments including Babar, CDF, and SuperB, and astrophysics and space physics
experiments namely VIRGO, ARGO, AMS, PAMELA and MAGIC. StoRM, implementing the
SRM interface version 2.2, offers standard protocols to receive data and store them in different
Tiers of Worldwide LHC Computing Grid (WLCG)1. It is a collaboration between INFN CNAF2

and IGI3 (the Italian Grid Infrastructure), and part of the European Middleware Initiative (EMI)
project4.

StoRM is a SRM solution designed to leverage the advantages of cluster file systems, such as
GPFS from IBM [1] and Lustre from SUN5, and standard POSIX systems in a grid environment. It
is characterized by being a SRM service for different disk-based storage systems, easy-to-configure
after an initial effort, efficient and secure. The latest stable version of StoRM (v1.8.x) enables the
management of hierarchical storage resources through a generic interface that is based on GPFS and
TSM6: this configuration is used at the Italian INFN Tier-1 in Bologna. StoRM is also characterized
by supporting several transfer protocols, such as gsiftp, file, https and http, publishing information
by using the GLUE standard and supporting VOMS and GSI for authentication and authorization.

The increasing complexity of the StoRM services makes necessary to ensure software quality,
especially in the HEP domain where a fault in the software may lead to lose data. It is important to
determine if the StoRM services meet the SRM specifications and if their outputs are correct. The
growing demand of the StoRM communities in terms of service level conveys the message that a
more effective testing framework is essential in the life cycle of StoRM in order to quickly and
reliably validate new StoRM software releases.

StoRM has a multi-layer architecture composed by two main stateless components, called
FrontEnd and BackEnd, and one DataBase as described in Table 1.

The StoRM deployments, the examples of which are shown in the following Figures, can range
from the simplest one to the most complex according to users’ requirements. Figure 1 shows the
standalone StoRM deployment where the main components are deployed on the same machine.
Figure 2 shows the common StoRM deployment where multiple FrontEnd instances are deployed
on separate machines. All these FrontEnds are configured to work on the same Database and with
the same BackEnd service form the StoRM FrontEnd pool. In addition, another StoRM compo-
nent, that is called Dynamic Info Provider and is responsible for collecting and publishing status
information on the Information Service, is installed and configured in the same machine where
the BackEnd and DataBase are. On the left side of the Figure a list of the GridFTP [2] instances
forming the GridFTP pool is shown. The files transfers performed via gsiftp protocol are handled

1The Worldwide LHC Computing Grid (WLCG), http://lcg.web.cern.ch/LCG/
2INFN CNAF, http://www.cnaf.infn.it/en
3Welcome to IGI, the Italian Grid Infrastructure, http://www.italiangrid.it/
4European Middleware Initiative, http://www.eu-emi.eu/
5Lustre, High Performance and Scalability, http://wiki.lustre.org/index.php/Main_Page
6IBM, Overview - Tivoli Storage Manager Supported Operating Systems, http://www-01.ibm.com/

support/docview.wss?uid=swg21243309

2

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

Components Descriptions
FrontEnd exposes the SRM Web service interface, manages user authentication, stores

SRM requests data into DataBase, retrieves the status of ongoing requests from
DataBase, and interacts with BackEnd

BackEnd is the core of StoRM service since it executes all synchronous and asyn-
chronous SRM functionalities. It processes the SRM requests managing files
and space, it enforces the authorization permissions and it can interact with
other Grid services, such as the external authorization service and the mapping
service. Moreover, BackEnd is able to use advanced functionalities provided
by some file systems to accomplish the space reservation requests. BackEnd
uses a plug-in mechanism to easily extend new support for different file sys-
tems.

DataBase is used to only store SRM requests data and space metadata. It does not hold
any crucial information but only transient data. An accidental loss of the full
database simply leads to failing the ongoing SRM requests; space metadata
will be recreated at the next restart.

Table 1: Some of the SRM operations with the supported SRM clients.

by those GridFTP servers that are able to calculate file checksum on the fly. Figure 3 shows the
most complex deployment of StoRM. In addition to Figure 2, on the left side of the Figure a list
of the GridHTTP instances that forms the GridHTTP pool are shown: they handle file transfers
performed via the http or https protocols.

StoRM is a multi-service software subject to intense testing, validation and verification activ-
ities. T-StoRM is a StoRM testing framework that is able to optimize the deployment of a new
StoRM software release to be certified; to simplify the reproduction of environments where the
error events raised to react as quick as possible; to provide users that experience criticalities with
suitable support in reasonable time; to delegate validation and verification of remote sites to their
administrators; to reduce time and effort spent on users’ support; and to improve its software devel-
opment life cycle. It has been designed considering the need of the StoRM team in order to simplify
the integration of new test suites and the verification of the performed tests. T-StoRM performs au-
tomating SRM testing and discourages manual testing that are time consuming, inconsistent to be
effective, error prone, and inaccurate to cover all cases.

The rest of the paper is organized as follows. Section 2 details T-StoRM, whilst Section 3
provides the list of testing levels that T-StoRM supports. Section 4 details how to manage a test
in T-StoRM. Section 5 describes the current and near future usage of T-StoRM. Finally, Section 6
provides future work, while Section 7 concludes.

3

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

Figure 1: Standalone StoRM deployment.

Figure 2: Common StoRM deployment.

4

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

Figure 3: Complex StoRM deployment.

2. T-StoRM

T-StoRM is a StoRM testing framework that orchestrates tests by using a proper deployment
and a test engine fed with a pre-built configuration file. During the validation and verification
activities of StoRM, T-StoRM supports various levels of types of testing that are found in a software
development life cycle:

atomic testing that verifies any SRM operation;

functional testing that verifies any SRM functional specification;

sanity testing, a StoRM specific testing level, that verifies the correctness of the installation
and configuration of StoRM;

regression testing, a StoRM specific testing level, that verifies the correctness of each bugfix
in StoRM;

integration testing that verifies the behaviour between different SRM implementations;

performance testing that determines how StoRM performs in terms of responsiveness and
stability under a particular workload. This is correlated with a set of sensors such as the
usage of memory and cpu, the StoRM logging file size, the usage of memory of the StoRM
processes to better understand the behaviour of the StoRM services;

conformance testing that determines whether the SRM implementation agrees with the
SRM specification and the SRM memorandum of understanding.

5

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

For each StoRM release T-StoRM verifies the StoRM implementation of the SRM interface by
using all the SRM clients, such as arc*, lcg-*, srm*, clientSRM that are provided by all the
storage elements providers involved in the EMI project (i.g., DPM, dCache, StoRM). Furthermore,
it tests the SRM calls one by one, providing a set of atomic tests that can be arbitrarily arranged
to build more complex tests. T-StoRM produces a nicely formatted report file for all the executed
tests. This development is ongoing in collaboration with IGI. T-StoRM contains especially SRM
tests, however its design can be reused for other types of software just including other tests.

T-StoRM is written in Python and runs implemented tests by using the unittest Python package.
T-StoRM is composed of three components, called tstorm-common, tstorm-sanity and
tstorm.

tstorm-common contains common utilities and the pre-built configuration file of the whole
testing framework based on JSON. It is a software dependency of the tstorm-sanity and
tstorm components;

tstorm-sanity contains sanity testing level and the configuration file of the SRM end-
point to be tested. It verifies the correctness of the installation and configuration of a given
StoRM component in relation with Figures 1, 2 and 3. It must be installed where the StoRM
components are installed;

tstorm contains atomic, functional, regression, integration, performance and conformance
testing levels and the configuration file of the SRM endpoint to be tested. It verifies the
StoRM functionalities, the StoRM’s compliance with its specified requirements, the system
whenever program changes and new bugs are fixed, the correct interaction of StoRM with
other SRM implementations, the StoRM stability. It is typically installed on a user interface
machine.

Figure 4 shows the execution of the two components against a StoRM instance, while Figure 5
shows the execution of the tstorm component against any SRM implementations.

Figure 4: The T-StoRM deployment against StoRM.

Each test is structured as a (key, value) pair, where key is the name of the test, whilst
the value is a list containing the following information: the name of the test; a basic test description;
the unique test identifier as specified in the Test Plan; the rfc information as specified in the Test
Plan; the StoRM release range in which the test is valid (i.g., the superior extreme of the range

6

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

Figure 5: The T-StoRM deployment against any SRM implementations.

can be] or), whilst the inferior extreme of the range can be [or (. The inferior and superior
values can be * or a StoRM release in the form x.y.z-w); the testing level amongst atomic, load,
system, and deployment; a boolean value to express if the test is a regression one; a boolean value
to express if the test is an idempotent one; the test signing to be called to execute the test. The range
element of the list allows T-StoRM to exclude tests that are not valid for a given StoRM release.

3. Testing Levels

3.1 Atomic Testing Level

The atomic testing level verifies any SRM operation. This level contains a set of tests that are
also used in functional, performance, regression, and integration levels. Table 2 details the SRM
clients that are included in T-StoRM for some of the SRM operations.

3.2 Functional Testing Level

The functional testing level verifies any SRM functional specification by reproducing a certain
use case. Each use case can be implemented by using different SRM clients, such as dCache client,
lcg-utils, and StoRM client. Some examples are: move a file from the local node to the storage
element by using the gsiftp protocol or the https protocol; move a file between the local node and
the storage element by using the gsiftp protocol.

3.3 Sanity Testing Level

The sanity testing level verifies the correctness of the StoRM installation and configuration. It
contains tests that are specific to StoRM. It is recommended to execute these tests before those of
the other levels.

7

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

SRM operations SRM clients
Ping clientSRM, srmping
PtP clientSRM, lcg-cp
PtG clientSRM, lcg-cp
Rf clientSRM
Gsm clientSRM
GtP clientSRM
Rm clientSRM, srmrm
Ls clientSRM, lcg-ls
RmDir clientSRM, srmrmdir
MkDir clientSRM, srmmkdir

Table 2: Some of the SRM operations with the supported SRM clients.

3.4 Regression Testing Level

The regression testing level verifies the correctness of each StoRM bugfix. It contains tests that
are specific to StoRM. Each test verifies bugfixes for the current X.Y.Z-W and previous versions. If
the StoRM version under verification is lower than X.Y.Z-W, the test should show the issue. Some
tests can be only executed in a given version range. The test is executed on top of a test environment
similar to the one that showed the bug. These tests cover atomic, functional, and sanity levels.

3.5 Integration Testing Level

A new testing level has been added to satisfy a request coming from the EMI JRA1. The inte-
gration testing level verifies the transfer functionality between different storage element providers
such as DPM, dCache, StoRM and ARC-SE included in the EMI project, three of which are man-
aged via the SRM interface. They handle the operations of putting and getting a file by using the
GridFTP service after having interacted with the SRM service through calls srmPtP-srmPutDone
and srmPtG-srmReleaseFile respectively. ARC-SE works without SRM and must be configured
in order to allow requests that come from users belonging to the "testers.eu-emi.eu" Virtual Orga-
nization to be read and written. Even if it is out of the T-StoRM original scope, it well fits in its
architecture.

Figure 6 and Figure 7 show two interesting use cases: in the first one T-StoRM will test the file
transfers between 16 combinations of the specified storage elements; in the second one T-StoRM
will test the file transfer functionality between the StoRM storage element and the other storage
elements that are supported in EMI.

3.6 Performance Testing Level

The performance testing level determines how StoRM performs in terms of responsiveness
and stability under a particular workload. The tests are not specific to StoRM. Load and stress tests
are currently supported:

8

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

Figure 6: Use Case 1.

Figure 7: Use Case 2.

Load Tests are executed to understand the behaviour of the system under a specific load. Metrics
to be gathered are for example: response time of the service by using an SRM client on a
user interface and service resource usage such as CPU and memory.

Stress Tests are executed to understand the upper limits within the StoRM system, and its robust-
ness in terms of load. They are also useful in production deployment to determine if the
system satisfies expected bust load.

3.7 Conformance Testing Level

The conformance testing level determines if the SRM implementation agrees with the SRM

9

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

specification (https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html) the SRM Mem-
orandum of Understanding. Up to now, the more significant tests have been developed, such as
srmPing, srmPtP, and srmPtG. One of the examples consists of verifying the srmPing behaviour:
having authorizationID as input and returning the versionInfo of the SRM specification that is im-
plemented and extraInfo of the SRM implementation such as the StoRM version as output.

4. Managing Tests

The production of a new T-StoRM test follows the five steps described below as schematized
in Figure 8:

1. the test is identified with the pair (id, name), where id is a unique identifier of 6 characters;

2. it is defined and described in the Test Plan document where test id is included

3. it is developed in the correct test level

4. it is included in the test suite

5. finally, it is released in T-StoRM

Figure 8: Test Production Procedure.

5. T-StoRM Usage

Currently T-StoRM has used by the StoRM team and the IGI-RTC (Release, Testing, Certifica-
tion) group in order to certify the StoRM release, to verify the correctness of a StoRM installation
and configuration in the StoRM testbed, to check new functionalities and fixed bugs, and to verify
the StoRM stability. In the near future T-StoRM will be used by site-administrators, SRM certifiers
in order to validate a StoRM installation and configuration, to certify SRM software products, to
certify other software products containing tests suitable for other software, and to monitor SRM
instances

Up to now all the detailed testing levels have been implemented with the exclusion of the stress
tests. The results of sensors activated on the StoRM nodes during the execution of load tests are
hand manipulated by users.

10

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
8

T-StoRM Elisabetta Ronchieri

6. T-StoRM Future Plan

The scheduled activities on T-StoRM are related to the performance and conformance testing
levels: the former will be correlated with a web-based monitoring to simplify the understanding
of the whole system by publishing measures of the supported metrics, and generating suitable
charts; the latter will be extended to other SRM operations. Furthermore, the commands python
module, becoming obsolete and not being very safe, will be substituted with the subprocess python
module. A T-StoRM integration with a Continuos Integration Framework will be also considered
to automate tests execution, to immediate tests results reporting, taking advantage from virtual
technologies, to automate deployment and configuration of StoRM.

7. Conclusions

T-StoRM is making faster and simpler the StoRM certification process. It has shown to be
able to cover several test levels even not considered at the design time. It is designed to be easily
extendible in order to be used for the certification of other software.

8. Acknowledgements

This work was performed as part of the EMI project and partially funded by the European
Commission under Grant Agreement INFSO-RI-261611.

References

[1] Schmuck F and Haskin R 2002 Gpfs: A shared-disk file system for large computing clusters USENIX
FAST 2002 Conference on File and Storage Technologies URL
http://www.usenix.org/events/fast02/full_papers/schmuck/schmuck.pdf

[2] Allcock W 2003 Gridftp: Protocol extensions to ftp for the grid Global Grid Forum GFD-RP vol 020
URL http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf

11

