
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
2

Common Framework for Extracting Information and
Metrics from Multiple Change Trackers

Eamonn Kenny∗,Duarte Meneses†

Trinity College Dublin
E-mail: ekenny@scss.tcd.ie

An important aspect of EMI is the delivery of ‘quality software’. For this reason the quality assur-

ance (QA) group was introduced. There are a key number of beneficiaries of this work in several

work packages. These EMI development and support activities are required to produce key per-

formance indicators (KPIs) and metrics for milestone, quarterly and yearly deliverables based on

the information provided by the QA group. However, EMI has a large number of varying sized

products, different and existing middlewares and various bug/feature request for change (RfC)

trackers used by each product team. The only way to reliably produce KPIs and metrics related to

change management in such a varied project is to introduce simplifying, common environments

that are readily accessible by all the different customers of the project. For this reason an exten-

sible XML-based framework was defined for storing, plotting, querying and tabulating change

tracker information for all its customers.

EGI Community Forum 2012 / EMI Second Technical Conference,
26-30 March, 2012
Munich, Germany

∗Speaker.
†Thanks to Duarte Meneses for his work on providing much of the implementation.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ekenny@scss.tcd.ie


P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
2

Metrics Framework for Multiple Trackers Eamonn Kenny

1. Introduction

Quality Assurance is a very important aspect of a large projects lifespan,especially when de-
veloping and troubleshooting software products originating from many institutions, each producing
many components using various bug/feature trackers. Acquiring reliable and consistent data sets
across multiple institutions provides the only mechanism to produce meaningful metrics and key
perform indicators (KPIs) (see Linda Westfall[1]).

There currently exists many issue trackers such as Bugzilla[2] and Trac[3] containing report
generation tools to correlate or query data, producing specified trends.There also exists many static
analyser suites such as the Sonar Project[4] allowing the user to producecode based metrics from
their source code using Eclipse and Hudson. However, it is difficult to finda tool that produces
multiple issue tracker reports and static analysis metrics for a wide variety of software languages
and bug-trackers. The aim of the common metric framework is to make this possible.

The analysis leading to the choice of metrics/KPIs is not within the scope of this paper. Instead,
the mechanisms for obtaining the inputs, framework for storing the metrics and outputs will be
discussed, to keep the concepts as generalisable as possible.

There is little work in this area, however Rex Black[5] does present the work of Entomology
by Matt Barringer describing a tracker client that supports Mantis, Bugzilla and Trac. However, in
EMI there are far more than three bug-trackers to be integrated. For instance, there are 6 trackers
alone from UNICORE that must be integrated to separately manage bugs, features and testing.

The key to producing a uniform framework for dealing with metrics and KPIsis the production
of a set of policies that every party adheres to. Firstly, there was a cleardefinition of the common
parameters that was then successfully exported by each middleware. These parameters form the
inputs for any metric engine. It was imperative that metrics receive exactly the same form of data
from multiple institutions and produce outputs in a form that is relevant to each individual customer.

The metric outputs in the EMI project are used by the release management teamto produce
key performance indicators (KPIs), by the quality control group to monitorthe objectives of the
project and internally by the quality assurance group to assess the correction of the values/outputs.
The metrics and KPIs should assist in governing and streamlining the product development and
release process.

2. Policy and Architecture

Figure 1 shows a diagrammatic overview of the different aspects of the common framework for
producing metrics. The product development teams are responsible for producing an export/dump
of their request for change (RfC) tracker in a form that is specified bythe metrics group complying
to policies set down by the project. Each of the product teams is responsiblefor producing any
and all of the information necessary to product the output format which is then used by the metrics
group.

One of the main advantages of such an export is that it creates an impartial view of the data
that is not easy to manipulate at a future date. It is human nature to try to produce the best metrics
one can by doctoring data so that a better view of the data is obtained. The current scheme avoids
this possibility.

2



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
2

Metrics Framework for Multiple Trackers Eamonn Kenny

Figure 1: Architecture of the Framework

Next the exported data is passed to the metrics group where it can be validated for correctness.
At this point some clarifications are needed to ensure that policies are adhered to, and that any
missing data is added. The data is now in a raw form, where it can be combined easily into one
larger view. This allows it to be passed to the metrics generation engine or to web based dashboards,
where it can be used to product tabular output or charts/plots.

The metrics generation at this point only includes the bug-tracker related information, so there
is also the requirement to include software build and test related metrics. These take the form of
static analysers and testing verification dashboard inputs respectively.

Once all information is obtained the metrics generation engine can calculate metrics based
on data from requests for change (RfC), static analysers performed at build time and the quality
controls testing/verification dashboard.

3. The XML based Implementation

It became apparent early on in the EMI project that a uniformly extensible framework for
dealing with inputs from each middleware product teams change tracker (i.e bug/feature tracker)
could easily be achieved using an XML based format starting with a lightly constrained XML
schema and progressing to a very tightly controlled schema.

The defining of a common schema means that some trackers must combine their change man-
agement states into one common stateS whilst other trackers are required to introduce new states.

3



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
2

Metrics Framework for Multiple Trackers Eamonn Kenny

Figure 2: Framework Implementation (Year 1)

An example of this is expressed by the following:

Sre ject = {Sduplicate ∪Swon′t f ix ∪Sunreproducible ∪Sobsolete ∪Sinvalid} (3.1)

The union in eqn 3.1 was applied to a number of, but not all of the trackers,in line with the
management policies of the project. The mapping was defined within an XML description and
adhered to the management policy by conforming to an XML schema.

Once all input data was defined for the QA group, it was highlighted that there was a fun-
damental issue of mapping multiple middleware change tracker category names toan individual
product. This required a specific XML mapping description to allow the QA group to ascertain
how each tracker maps its changes to each individual product. This mapping is very tightly con-
trolled by an XML schema (XSD). For example, suppose a core componentof software has bug
tracking categoryCcore. It is conceivable that fixes in software described in the categoryCcore

will eventually appear in multiple products each consisting of many packages linked with various
bug/feature category.

With the tracker to product mapping XML and change tracker XML in place thispaved the way
for defining a Java based framework for producing automated daily or periodic charts, producing
metrics and KPIs for each of the customers within EMI.

One very useful requirement for customers was a dashboard (Figure3) showing tabulated data
obtained from the change tracker XML. This was built with a back-end query engine giving various
views of the data to many customers. It also produces data sets that the usercan easily plot. The
simplest format of choice for such output was comma separated versioning(CSV) to be used in
Excel.

4



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
2

Metrics Framework for Multiple Trackers Eamonn Kenny

Figure 3: RfC Dashboard using Google Apps Engine (Charts)

3.1 Revised Implementation

In year one of the EMI project, a complete Report Generator framework was produced for
producing PDF and Word Documents as well as the much needed charts/plots. However, in year
two of the project, it was decided to strip the Java plotting framework back to a minimal set of
operations (see Figure 4), so that specially tailored charts could be generated for any customer that
requests them. This has proved invaluable from the point of view of being able to corroborate the
KPIs of customers and to give quick turnaround times on producing new statistics.

In Figure 4 there are four main points to consider when producing new metrics or revising the
schema’s that govern the XML mappings:

1. When a schema is modified such as the bug-tracking/RfC schema, bug-mapping schema,
verification dashboard schema or tracker-to-product mapping schema,there is an easy mech-
anism to expose the elements of the XML to the Java implementation. This is achievedusing
JAXB stubs which automatically generates the methods to manipulate XML elements. For
instance, the text value of newly introduced XML elements such asAssociatedTest can be ac-
cessed using functionsgetAssociateTest() andsetAssociatedTest() within the Chart Generator
Framework.

2. Producing new metrics even if they are not that similar to the existing metrics usually just
requires cloning of existing metrics and changing their functionality.

3. Producing new plotting tools uses an abstract class object meaning that you can clone an
existing component and produce a new type of plotting mechanism much more quickly.

4. In the case of item 2 above, there is always the requirement to define a configuration file to
expose the new metric(s). There are a number of predefined variables such as the main title,

5



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
2

Metrics Framework for Multiple Trackers Eamonn Kenny

Figure 4: Framework Implementation (Year 2)

x-axis title, y-axis title and metric name. However, there is also the possibility to provide user
defined internal variables to be used by specific metrics making the configurations extensible.

4. Current Status

In all, so far, six different bug-trackers (Savannah, SourceForge, RT, Bugzilla, Trac and Red-
mine) have been integrated into the common XML based format. This does not mean that there
are only six trackers sets of data. For instance, there are six UNICORE feature and defect related
tracker streams integrated into the common XML format. It is possible that the JIRA tracker will
be integrated in the future.

Currently the RfC dashboard (Figure 3) is used to verify the correctness of the RfC report
produced by the tools group for the executive management team (EMT) weekly meeting. The
release management group use it to export data which is then used as input data to produce their
quarterly reports. The metrics group use it internally to verify whether each element of an RfC has
valid values. The Quality Control team use it to corroborate which productsgenerate valid tests at
the time of each release update and major release.

In year one of EMI, the development of the Java based framework made itpossible to automate
the production of a weekly PDF report of all immediate and high priority tickets ineach of their
transition states, for given time periods, for varying defect/feature categories and ascertain whether
they arose from production, development or testing.

In year two of EMI, it became increasingly important for the Quality Control (QC) team to see
which requests for change (RfCs) due for release included regression tests in the case of defects

6



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
2

Metrics Framework for Multiple Trackers Eamonn Kenny

and functional tests in the case of feature requests. This feature was slowly integrated into the
change management XML format using a lightly constrained schema, without any disruption to
existing customers. Once fully integrated, the XML relating to testing had to conform to a much
more heavily constrained schema.

Visually speaking (see Figure 3), the RfC dashboard produces columnsof data such as pri-
orities, severities and detection areas for each RfC, details about each individual ticket and links
back to the originating GGUS ticket if it exists. The output of the dashboard isa table of subsets,
presented as Google Apps based tables or data sets that can be imported bycustomers into Excel
so that they can produce their own plots.

5. Conclusions

The production of a common XML format for change management avoided thepainful migra-
tion of each bug/feature tracker to a new system where each middleware had little or no expertise.

All middlewares were able to produce and export the common XML format. Since it was
simple in structure, it was relatively straightforward to wrap with a query engine to produce a
dynamic dashboard.

The Chart Generator Framework uses the common change tracker XML and mapping XML
to produce many different KPIs in the context of a product. Without thesemappings this would be
next to impossible, requiring manual queries on each bug-tracker, correlation of data, and manual
plotting of KPIs for every milestone or deliverable.

Without a general framework in place, consulting the change trackers for more than 50 Prod-
ucts would have resulted in time-consuming and error-prone activities across approximately 30
Product Teams while the proposed approach results in a much more agile andefficient control of
the information flow.

6. Acknowledgements

Special thanks due to Gabriele Pierantoni and Alberto Aimar for reviewing this paper. This
work was performed as part of the EMI project and partially funded by the European Commission
under Grant Agreement INFSO-RI-261611.

References

[1] L.Westfall, 12 Steps to Useful Software Metrics, Proceedings of the Seventeenth Annual Pacific
Northwest Software Quality Conference, Volume: 57 Suppl 1,Issue: May 2006.

[2] Bugzilla, http://bugzilla.org.

[3] Trac,http://trac.edgewall.org.

[4] Sonar,http://sonarsource.org.

[5] Rex Black,Managing the Testing Process: Practical Tools and Techniques for Managing Hardware
and Software Testing, John Wiley & Sons, Chapter: 4, August 2009.

7


