PROCEEDINGS

OF SCIENCE

Common Framework for Extracting Information and
Metrics from Multiple Change Trackers

Eamonn Kenny*,Duarte Meneses’
Trinity College Dublin
E-mail: ekenny@css.tcd.i g

An important aspect of EMI is the delivery of ‘quality softma For this reason the quality assur-
ance (QA) group was introduced. There are a key number offisearees of this work in several
work packages. These EMI development and support act\atie required to produce key per-
formance indicators (KPIs) and metrics for milestone, tprr and yearly deliverables based on
the information provided by the QA group. However, EMI hasugé number of varying sized
products, different and existing middlewares and varioug/fleature request for change (RfC)
trackers used by each product team. The only way to reliatolgiyre KPIs and metrics related to
change management in such a varied project is to introdugglifying, common environments
that are readily accessible by all the different custométheproject. For this reason an exten-
sible XML-based framework was defined for storing, plottiqgerying and tabulating change
tracker information for all its customers.

EGI Community Forum 2012 / EMI Second Technical Conference,
26-30 March, 2012
Munich, Germany

“Speaker.
TThanks to Duarte Meneses for his work on providing much of the impléatien.

(© Copyright owned by the author(s) under the terms of the Cre@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ekenny@scss.tcd.ie

Metrics Framework for Multiple Trackers Eamonn Kenny

1. Introduction

Quiality Assurance is a very important aspect of a large projects lifesgancially when de-
veloping and troubleshooting software products originating from many itistit) each producing
many components using various bug/feature trackers. Acquiring reliable@nsistent data sets
across multiple institutions provides the only mechanism to produce meaningiutsrend key
perform indicators (KPIs) (see Linda WestfgII[1]).

There currently exists many issue trackers such as Bugkilla[2] anBJ@mtaining report
generation tools to correlate or query data, producing specified tréhdse also exists many static
analyser suites such as the Sonar Prdject[4] allowing the user to proddeédased metrics from
their source code using Eclipse and Hudson. However, it is difficult toditabl that produces
multiple issue tracker reports and static analysis metrics for a wide varietyftafase languages
and bug-trackers. The aim of the common metric framework is to make this [@ssib

The analysis leading to the choice of metrics/KPIs is not within the scope ofgp&rplnstead,
the mechanisms for obtaining the inputs, framework for storing the metrics @pdte will be
discussed, to keep the concepts as generalisable as possible.

There is little work in this area, however Rex Blagk[5] does present tirk efoEntomology
by Matt Barringer describing a tracker client that supports Mantis, Bagmd Trac. However, in
EMI there are far more than three bug-trackers to be integrated. Fonaestéere are 6 trackers
alone from UNICORE that must be integrated to separately manage bagsgefeand testing.

The key to producing a uniform framewaork for dealing with metrics and K$tise production
of a set of policies that every party adheres to. Firstly, there was adddaition of the common
parameters that was then successfully exported by each middlewarse pameters form the
inputs for any metric engine. It was imperative that metrics receive exaetlgaime form of data
from multiple institutions and produce outputs in a form that is relevant to edehdnal customer.

The metric outputs in the EMI project are used by the release managemenboteaoduce
key performance indicators (KPIs), by the quality control group to moniterobjectives of the
project and internally by the quality assurance group to assess thetamref the values/outputs.
The metrics and KPIs should assist in governing and streamlining the prdelelopment and
release process.

2. Policy and Architecture

Figure[] shows a diagrammatic overview of the different aspects of the corinamework for
producing metrics. The product development teams are responsiblethrging an export/dump
of their request for change (RfC) tracker in a form that is specifietthbynetrics group complying
to policies set down by the project. Each of the product teams is respofmilpeoducing any
and all of the information necessary to product the output format whictersuked by the metrics
group.

One of the main advantages of such an export is that it creates an impawabfvthe data
that is not easy to manipulate at a future date. It is human nature to try togaertitel best metrics
one can by doctoring data so that a better view of the data is obtained. irkatcacheme avoids
this possibility.

Metrics Framework for Multiple Trackers Eamonn Kenny

Bug/Feature Trackers Commonformats Tabulated Formats

dashboard

A 4
A 4

QA Metrics
Dump/Export of Exported filesin
RfCTracker Common Format Other formats
Multiple Builds A 4 J’
IMetric Calculation & Visualisation Verification & Tests

Per Pror Releases Dashboard

QA Metrics & Tools

Trend Graphs

QATools
Dated
Builds Results with

AT ARyAFTS QA Policy & Testing
y =SAl Release Manager

v

Product information

-

Qutputs

Release Manager,
l QA, QC

Figure 1. Architecture of the Framework

Next the exported data is passed to the metrics group where it can be \éfataterrectness.
At this point some clarifications are needed to ensure that policies areeddioe and that any
missing data is added. The data is now in a raw form, where it can be comlziniygiato one
larger view. This allows it to be passed to the metrics generation engine obtioased dashboards,
where it can be used to product tabular output or charts/plots.

The metrics generation at this point only includes the bug-tracker relaturiafion, so there
is also the requirement to include software build and test related metricse Tdlesthe form of
static analysers and testing verification dashboard inputs respectively.

Once all information is obtained the metrics generation engine can calculate srietsed
on data from requests for change (RfC), static analysers perfortradi@ time and the quality
controls testing/verification dashboard.

3. The XML based | mplementation

It became apparent early on in the EMI project that a uniformly extensibledwork for
dealing with inputs from each middleware product teams change trackeug/feature tracker)
could easily be achieved using an XML based format starting with a lightly @instt XML
schema and progressing to a very tightly controlled schema.

The defining of a common schema means that some trackers must combineahgi afan-
agement states into one common sttehilst other trackers are required to introduce new states.

Metrics Framework for Multiple Trackers Eamonn Kenny

%I‘J“lp
A

-
= L

[] w S—
REDMINE 4% trac B

source,:

Manual
Validation

%Quality ?Heleaﬁe
/ \Cuntml .fi.lllh'lanagn-:-r

Figure 2: Framework Implementation (Year 1)

An example of this is expressed by the following:

Sreject = {Sduplicate U SNon’tfix U SunreproducibIeU S()bsoleteU Snvalid} (3-1)

The union in eqd 3}1 was applied to a number of, but not all of the trackelise with the
management policies of the project. The mapping was defined within an XMirigésn and
adhered to the management policy by conforming to an XML schema.

Once all input data was defined for the QA group, it was highlighted thaé tivas a fun-
damental issue of mapping multiple middleware change tracker category naesnividual
product. This required a specific XML mapping description to allow the QAIgrm ascertain
how each tracker maps its changes to each individual product. This ngaigprery tightly con-
trolled by an XML schema (XSD). For example, suppose a core compahaoftware has bug
tracking categonCeore. It is conceivable that fixes in software described in the cate@agy
will eventually appear in multiple products each consisting of many packadesllimith various
bug/feature category.

With the tracker to product mapping XML and change tracker XML in placegéngd the way
for defining a Java based framework for producing automated dailyrardie charts, producing
metrics and KPIs for each of the customers within EMI.

One very useful requirement for customers was a dashboard (l§yshewing tabulated data
obtained from the change tracker XML. This was built with a back-endyggregine giving various
views of the data to many customers. It also produces data sets that tleansasily plot. The

simplest format of choice for such output was comma separated versi(@8¥) to be used in
Excel.

Metrics Framework for Multiple Trackers Eamonn Kenny

RfC items Show Confined Search Columns to display

immediate
high
All
Bugzilla/aRC “
RT/dCache | |
All 1 f this kind (atus Open: = Closed: £
open
all [- Request for Change
&ll EURCPEAN MID! DLWAEE INITIATIVE
Product Tracker Category Priority Tracker/Family uiD SubmittedOn EndedOn GGUSTicket
1 ARC A-REX [ifimediately| Bugzilla/Nordugrid | 2905 2012-08-24T14:55:30
2 ARG Batch system back-ends [{icoiteNl Bugzila/Nordigrid | 2039 2012-09-14T12:36:42
3 L&B & glite-gsoap/gss LB R SEGE 97255 2012-09-04T14:24:41 [l GGUS: #85562
4 UNICORE TSI TSI SFIUN 3555638 2012-08-09T03:45:00
5 [legacy UNICORE] Installer 3540404 2012-07-05T02:17:00
5 [legacy UNICORE] Rich Client 3547853 2012-07-24T03:49:00
7 [legacy UNICORE] Server 3025969 2010-07-06T42:26:00
& [legacy UNIGORE] Server 3390502 2011-08-12T04:19:00
¢ [legacy UNICORE] Workflow System 3167206 2011-01-26T08:58:00
10 [legacy UNIGORE] Workfiow System F/UNICOR 3386709 2011-08-05T04:14:00
11 [legacy gLite] Information providers (SR SEVGEEN 96306 2012-07-25T08:42:12 GGUS: #84508
12 [legacy glite] Information providers SR SSUGEE 95310 2012-07-25T11:34:05 Rl b Edl GGUS: #84509
S ————————————————————— S ————————————————————

Figure 3: RfC Dashboard using Google Apps Engine (Charts)

3.1 Revised Implementation

In year one of the EMI project, a complete Report Generator framewask pwoduced for
producing PDF and Word Documents as well as the much needed chartskbotsver, in year
two of the project, it was decided to strip the Java plotting framework back to enairset of
operations (see Figufg 4), so that specially tailored charts could beageméor any customer that
requests them. This has proved invaluable from the point of view of béilegta corroborate the
KPIs of customers and to give quick turnaround times on producing néistiss

In Figure[}# there are four main points to consider when producing new mietrievising the
schema'’s that govern the XML mappings:

1. When a schema is modified such as the bug-tracking/RfC schema, bpjamaphema,
verification dashboard schema or tracker-to-product mapping sclieena js an easy mech-
anism to expose the elements of the XML to the Java implementation. This is ach&rugd
JAXB stubs which automatically generates the methods to manipulate XML elements. F
instance, the text value of newly introduced XML elements sudkssaciatedTest can be ac-
cessed using functiomggtAssociateTest() andsetAssociatedTest() within the Chart Generator
Framework.

2. Producing new metrics even if they are not that similar to the existing metnieglyigust
requires cloning of existing metrics and changing their functionality.

3. Producing new plotting tools uses an abstract class object meaningothabg clone an
existing component and produce a new type of plotting mechanism much nioké/qu

4. In the case of item 2 above, there is always the requirement to defmdiglration file to
expose the new metric(s). There are a number of predefined varialoless the main title,

Metrics Framework for Multiple Trackers Eamonn Kenny

Chart Chart Chart
Generator Configuration Framework

Data EMI Plot

Provider Mapping Provider

Existing Existing
o Edit Configuration Metric Abstract
Details: X titles, Description Plotting
Title, special settings Class
Flottype, etc

New
Abstract

Description Plotting

Class

Clone existing
Flotting method

JAXEB 5tubs

Figure 4: Framework Implementation (Year 2)

Add schema changes

x-axis title, y-axis title and metric name. However, there is also the possibility tadaaser
defined internal variables to be used by specific metrics making the catfang extensible.

4. Current Status

In all, so far, six different bug-trackers (Savannah, Sourced;dRg, Bugzilla, Trac and Red-
mine) have been integrated into the common XML based format. This does notthaahere
are only six trackers sets of data. For instance, there are six UNIC@&&&ré and defect related
tracker streams integrated into the common XML format. It is possible that thetidRker will
be integrated in the future.

Currently the RfC dashboard (Figure 3) is used to verify the correstobthe RfC report
produced by the tools group for the executive management team (EM8Rlyvmeeting. The
release management group use it to export data which is then used asadteta groduce their
quarterly reports. The metrics group use it internally to verify whethdn elmment of an RfC has
valid values. The Quality Control team use it to corroborate which prodygsterate valid tests at
the time of each release update and major release.

In year one of EMI, the development of the Java based framework madgsible to automate
the production of a weekly PDF report of all immediate and high priority ticketsaich of their
transition states, for given time periods, for varying defect/feature cae=gand ascertain whether
they arose from production, development or testing.

In year two of EMI, it became increasingly important for the Quality Cont@C] team to see
which requests for change (RfCs) due for release included régnetests in the case of defects

Metrics Framework for Multiple Trackers Eamonn Kenny

and functional tests in the case of feature requests. This feature wayg Bitegrated into the
change management XML format using a lightly constrained schema, withgulisruption to
existing customers. Once fully integrated, the XML relating to testing had tooontfo a much
more heavily constrained schema.

Visually speaking (see Figuf¢ 3), the RfC dashboard produces colahdata such as pri-
orities, severities and detection areas for each RfC, details about eficidual ticket and links
back to the originating GGUS ticket if it exists. The output of the dashboaadable of subsets,
presented as Google Apps based tables or data sets that can be impartestbinyers into Excel
so that they can produce their own plots.

5. Conclusions

The production of a common XML format for change management avoidqubinéul migra-
tion of each bug/feature tracker to a new system where each middlewdligleaor no expertise.

All middlewares were able to produce and export the common XML format. eSinwas
simple in structure, it was relatively straightforward to wrap with a quenyirentp produce a
dynamic dashboard.

The Chart Generator Framework uses the common change tracker Xiimapping XML
to produce many different KPIs in the context of a product. Without thesepings this would be
next to impossible, requiring manual queries on each bug-trackeelaton of data, and manual
plotting of KPIs for every milestone or deliverable.

Without a general framework in place, consulting the change trackersdce than 50 Prod-
ucts would have resulted in time-consuming and error-prone activitiessaaqmproximately 30
Product Teams while the proposed approach results in a much more agééiarmht control of
the information flow.

6. Acknowledgements

Special thanks due to Gabriele Pierantoni and Alberto Aimar for reviewiisgotper. This
work was performed as part of the EMI project and partially funded byBhropean Commission
under Grant Agreement INFSO-RI-261611.

References

[1] L.Westfall, 12 Seps to Useful Software Metrics, Proceedings of the Seventeenth Annual Pacific
Northwest Software Quality Conference, Volume: 57 Suppédiie: May 2006.

[2] Bugzilla, http://bugzilla.org.
[3] Trac,http://trac.edgewall.org.
[4] Sonar,http://sonarsource.org.

[5] Rex Black,Managing the Testing Process: Practical Tools and Techniques for Managing Hardware
and Software Testing, John Wiley & Sons, Chapter: 4, August 2009.

