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Radio astronomy and active exploration of space are peers: both began by efforts of enthusiasts 
in the 1930s and got a major technological boost in the 1940’s-50’s. Thus, for the sake of a brief 
review at this very special conference, it is fair to estimate the present age of these human 
endeavours as 10000012 years*. These years saw a lot of challenging and fruitful concerted 
efforts by radio astronomers and space explorers. Among the high points one can mention 
several highly successful space-borne CMB observatories, three orbital VLBI missions, the first 
examples of radio observations at spectral windows hitherto closed for Earth-based observers 
and many yet to be implemented initiatives which are at various stages of their paths toward 
launch-pads of all major world space agencies. In this review I will give a “bird’s-eye” picture 
of the past achievements of space-oriented radio astronomy and zoom into several projects and 
ideas that will further push the presence of radio astronomy into the space agenda of mankind 
over the next 10000012 years. In tune with the main themes of this conference, an emphasis will 
be made on space frontiers of VLBI and the SKA. 
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1  Speaker 
*  The author believes that the readers, devoted “digital” radio astronomers of the modern age, think binary 

almost by definition and recognise instantly the value of 1000012. But this way of thinking is not well understood by 
personnel departments in most European countries. They assign to the otherwise unremarkable number 65 a rather 
special and not necessarily adequate meaning.  
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1. Introduction 

Predictions in science are known to be futile if not completely misleading. But 
extrapolation of the major parameters of experimental facilities and instrumentation is different 
and, if done correctly, can lead to efficient “strategic” decisions, especially under budgetary 
pressure. Just as many other modern natural sciences, radio astronomy feels this pressure quite 
strongly. Among all branches of modern radio astronomy, its space-oriented segment, for 
obvious reasons, is one of the most expensive and therefore requiring utmost strategic prudence. 
In this sense, good predictions literally help save resources. As shown by Freiman (1983), the 
dependence of the final programme cost on its preliminary estimate has a well-defined 
minimum, and this minimum corresponds to the most realistic estimate. In other words, in the 
end, you pay less if your estimate (or prediction) is as exact as possible. Yes, sometimes it is 
beneficial to be wise… 

With this in mind, let us recall the views of space radio astronomy from its early days and 
try to repeat the exercise for the next 1000012 years.  

2. Space radio astronomy: view from the past 

Radio astronomy and active exploration of space are the brainchildren of the twentieth 
century. Their first steps coincided in time almost exactly and in fact were intertwined in a very 
peculiar way. For example, as is well known, one of the very first observations conducted by the 
venerable Lovell 76-m radio telescope at Jodrell Bank was aimed at detection of the second 
stage of the Soviet space launcher R-7 that had placed the first human-made satellite, Sputnik, 
into orbit in October 1957 (Lovell 1990).  Closer to the high resolution theme of this 
conference, the original manuscript of the first paper with the suggestion of a long baseline 
interferometer by Matveenko et al. (1965), according to its co-authors, contained a paragraph on 
the highly attractive prospects of placing one of the interferometer antennas on board a 
spacecraft for achieving baselines longer than the Earth diameter (N.S. Kardashev, 1985, and 
L.I. Matveenko, 2012, private communications). The paragraph was removed from the final 
version of the paper at the request of the state censorship agency: no space-related topics were 
allowed in non-authorised press.  

Another interesting example links the early day space exploration activities and the 
discovery of variability of extragalactic radio sources by Sholomitsky (1965). This discovery is 
often seen as one of the triggers for the practical development of VLBI systems. The 
observations, not properly described in the original publication (again, due to the official 
paranoia for secrecy), had been conducted at a wavelength of 32.5 cm with the phased array of 8 
parabolic antennas called ADU-1000 at the Centre of Deep Space Communications near 
Evpatoria (Crimea, USSR). The ADU-1000 proved to be a rather sensitive radio telescope albeit 
designed for very different applications – to support the “race to the Moon”.  

Space-based radio astronomy has many flavours. It comes with space-borne CMB 
observatories (Relikt, COBE, WMAP, Planck), sub-millimetre telescopes (IRAS, Spitzer, 
Herschel, and many others), and Space-borne VLBI (SVLBI) telescopes (TDRSS, 
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VSOP/HALCA and RadioAstron). The last unexplored window in the electro-magnetic cosmic 
emission at frequencies below 20 MHz (wavelengths longer than 15 m) is soon to be opened 
too. All these flavours have one characteristic in common: at least one important (usually the 
most important) parameter of the observing system can be realised only in space – Earth-based 
radio astronomy facilities cannot achieve that parameter even in principle. In the case of CMB, 
other sub-millimetre telescopes and Ultra-Long-Wavelength Astronomy (ULWA) this 
parameter is the operational wavelength (frequency). For Space VLBI systems, it is the 
interferometer baseline length. However evident is this reason for radio astronomy to go into 
space, it is a typically erroneous and sly argument by some astronomers from non-radio electro-
magnetic domains too say that radio astronomy can all be done from the Earth, thus all “space” 
tickets should be given to high-energy astrophysicists.   

A very interesting prediction of the development of space-based radio astronomy in the 
period 1990 – 2020 is presented in the conference proceedings “Radio Astronomy from Space” 
(Weiler 1987). Being currently somewhere in the second half of that period, we can compare 
those predictions with hard facts. This comparison is very instructive:  of the 17 projects 
envisaged in 1987, only one (!) was launched on schedule (the Nobel–Prize fetching COBE), 
two were launched with 10+ and 20+ years delays (Herschel/FIRST and RadioAstron, 
respectively). The remaining 14 projects are either abandoned or still in the queue, 25 years 
after the publication of the proceedings. Interestingly, the prediction table does not contain three 
highly successful space radio astronomy projects implemented during the 30-year period – 
WMAP, VSOP/HALCA and Planck. I am not criticising the authors of the prediction table for 
being inaccurate: in most cases, it was not their own calculated forecast; they used data supplied 
by the projects themselves. But regardless of the reason for the obvious inaccuracy of the 
prediction, the forecast proved to be either overly optimistic or simply wrong (which is 
practically the same).  

Having this rather discouraging example in front of us, are we brave enough to look into 
the next decades of the space-based radio astronomy? Let us try. Due to the conference focus on 
high–resolution radio astronomy and limited volume of the proceedings, attention will be given 
to Space VLBI, leaving a broader analysis of other radio astronomy disciplines for a discussion 
elsewhere. 

3. Space VLBI in the next decades 

VLBI has kept radio astronomers at the forefront of high resolution studies of the Universe 
for almost half a century. Over this period, several dozens of Space VLBI initiatives and 
proposals have been under development (Schilizzi, these proceedings). So far, only three 
projects have become operational. These three, plus several advanced design studies allow us to 
define as many as three generations of Space VLBI systems (Fig. 1).  The practical history of 
Space VLBI (the zeroth generation) began from a brilliant ad-hoc use of the NASA 
communication satellite TDRSS in 1986 (Levy et al. 1986, 1989). This, by the way, is yet 
another example of deep intrinsic consistency between space and radio astronomy technologies: 
the TDRSS was designed with no radio astronomy applications whatsoever in mind. Then came 
the first dedicated Space VLBI mission VSOP/HALCA (Hirabayashi et al. 1998, and 
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Hirabayashi, these proceedings), marking the first generation of SVLBI. The second and quite 
likely the last mission of the first generation is the RadioAstron, which enters scientific 
operations at the time of this conference (Kardashev et al. 2012, Kovalev, these proceedings). 
The two first–generation missions, VSOP/HALCA and RadioAstron, featured radio telescopes 
of a similar size, 8 and 10 m, respectively, and were designed to operate at frequency bands 22, 
5 and 1.6 GHz (plus 327 MHz for RadioAstron). HALCA was equipped with single circular 
polarisation receivers, while RadioAstron can receive both senses of circular polarisation. For 
both missions, the data downlink operated at the rate of 128 Mbps – the limit, dictated by the 
technological feasibility at the end of the twentieth century. Over the zeroth and first SVLBI 
generations, the maximum interferometric baseline progressed from 2.2 (TDRSS-OVLBI) to ~3 
(VSOP/HALCA) to ~30 (RadioAstron) Earth diameters. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Future developments of SVLBI will be driven by two major observing parameters, the 

sensitivity and angular resolution. And just as in many cases of complex engineering systems, 
these two parameters will be subject to complex trade-offs: one parameter can be improved only 
at the expense of the other one. Moreover, in addition to the engineering dimension of the trade-
off, there is an astrophysical one. Namely, it might turn out to be impractical to push the 
resolution characteristics to the level at which the insufficient sensitivity of the SVLBI system 
would prevent detection of ultra-compact radio sources. So, the question is what is more 
important for the next generation SVLBI, the angular resolution or the sensitivity? 

By the time of this writing, RadioAstron had reported detections of continuum fringes 
from an AGN at 6 cm with a projected baseline of 7.2 Earth diameters and from a pulsar at 92 

 
 

Fig. 1. Three generations of Space VLBI. 



P
o
S
(
R
T
S
2
0
1
2
)
0
4
5

Space Radio Astronomy in the next 1000012 years L.I. Gurvits 

 
     5 

 
 

cm with a projected baseline of 18 Earth diameters (Kardashev et al. 2012). Hopefully, in the 
near future, RadioAstron will provide solid evidence for the astrophysical significance of radio 
structures that require baselines of the order of 30 Earth diameters and longer.  

A sceptical view of the necessity to go for physically long baselines is based on the simple 
fact that shorter wavelengths, even with Earth-based VLBI systems, provide the same high 
angular resolution as SVLBI at longer wavelengths. While this argument is correct formally, its 
astrophysical significance is highly questionable. First of all, as known from basic physical 
arguments, the sensitivity of an intereferometer to the brightness temperature is linearly 
proportional to the physical length of the baseline, not the one denominated in wavelengths (see, 
e.g. Kovalev et al. 2005). Secondly, many types of compact radio sources demonstrate non-
uniform spectral properties across their structure. The most typical example of this non-
uniformity is the difference between flat spectra of “cores” and steep spectra of “jets” in 
archetypal quasars. Thus, two VLBI systems matched in angular resolution, one Earth-based 
operating at a shorter wavelength, and an SVLBI observing at a longer wavelength, will see 
astrophysically meaningful differences in the source structure at different wavelengths and 
maybe even tackle different mechanisms of emission (Gurvits 2000a). These two reasons justify 
the push for longer baselines. 

  The case for a higher sensitivity in the next generation SVLBI systems is obvious. The 
overall VLBI sensitivity depends on three main parameters: the system temperature of 
telescopes, the size of the interferometer antennas and the recorded signal bandwidth (the latter 
for continuum observations only). The first parameter for both the first generation SVLBI 
missions, VSOP/HALCA and RadioAstron, was already close to that of Earth-based VLBI 
systems. Future progress in lowering the system temperature of prospective SVLBI telescopes is 
feasible but limited in its impact on the overall sensitivity. The last parameter, the operational 
bandwidth of SVLBI systems, is defined by the maximum data rate of the down-link channel 
(or, more generally, the communication channel between the telescope and correlator). For both 
VSOP/HALCA and RadioAstron this data-rate was 128 Mbps. This value is considerably lower 
than the “routine” data rate of modern Earth-based VLBI systems, 1 Gbps. It is reasonable to 
expect that by the time the next generation SVLBI system is operational, the Earth-based VLBI 
systems will handle 10 Gbps per station and more. To match this value for a Space VLBI 
system is a big challenge. However, the good news for radio astronomers is that the technology 
developments needed for such the high data rate are likely to be driven (and paid for!) by 
industry, allowing radio astronomers to have an almost free ride. 

 The remaining parameter, the size of a space-borne VLBI telescope, is the subject of main 
concern for SVLBI planners. The fact that both first generation SVLBI missions had similar 10-
m class antennas was not coincidental: it was the feasibility limit dictated by the technological 
and funding limitations. Several SVLBI projects with larger space-borne telescopes investigated 
in 1980s-1990s were not accepted primarily due to prohibitively large and expensive main 
antennas (Quasat, 15 m, Schilizzi et al. 1984; IVS, 25 m, Pilbratt 1991; ARISE, 25 m, Ulvestad 
2000).  

As of 2012, the technological and budgetary limits on the space-borne antennas size are as 
immutable as ever before: a deployable space-borne antenna matching in size a 25-m VLBA 
antenna remains a prohibitively expensive piece of hardware.  Under these circumstances, it 
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might be useful to recall an earlier suggestion to assemble a large aperture in space instead of 
launching it in one go (e.g. Gurvits 2000b). This way, the launch of pieces of a large space-
borne structure would not be a serious challenge. Moreover, assembling large science-oriented 
structures might return credibility to the otherwise rather wasteful International Space Station 
(ISS, Fig. 2). In such the scenario, a radio telescope with a large (30 m and more) antenna can 
be assembled and tested while docked to an inhabitable station, and then gently accelerated 
toward an operational orbit using low-thrust engines. The latter is an important means for 
reducing the inertial load on the large antenna structure. The scenario is also attractive from the 
reliability standpoint: the radio telescope will be sent to its final operational orbit only after 
careful testing and, if necessary, fixing any problems discovered. The story of the Hubble Space 
Telescope that has been seriously overhauled while in orbit demonstrates the efficiency of the 
approach. I note that the idea of assembling a large radio telescope in orbit has been proposed 
more than 30 years ago (Buyakas et al. 1979).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
At the time when the next generation Space VLBI mission will be operational, the 

landscape of the Earth-based radio astronomy will be dominated by large-scale facilities, such 
as ALMA, LOFAR/ILT and SKA. While all potential benefits of synergistic use of Space VLBI 
and these facilities should be addressed with great attention, the immediate impact on the choice 
of operational frequencies of SVLBI is obvious.  

With the phased ALMA as a prospective Earth-based element of SVLBI, the space-borne 
telescope should be able to operate at frequencies no lower than 22 GHz. I note that coupling 
the phased ALMA with a space-borne radio telescope might prove to be an extremely valuable 

 
 

Fig. 2. An artist’s impression of a large parabolic radio telescope assembled while docked 
to the space station. After completion of the assembly and end-to-end in-orbit VLBI tests, 
the radio telescope spacecraft de-docks from the station and accelerates to the operational 
orbit by low-thrust engines. Courtesy Aerospatiale, 1998. 
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extension of the ALMA-based Event Horizon Telescope currently under development (EHT, 
Doeleman et al. 2009). With  increasing operational frequency, the complexity of constructing a 
large space-borne antenna grows rapidly and is likely to limit the antenna diameter to rather 
modest values. For such a high-frequency SVLBI system, a very high down-link data rate might 
become a necessity, requiring a high-gain (and therefore large) on-board communication 
antenna – another difficult component of the on-board instrumentation. A possible engineering 
solution might be found along the lines of the concept adopted for some planetary missions (e.g. 
Cassini) which utilise the same antennas for communication to Earth and other (“local”) tasks. 
Under this scenario, a medium-size high-frequency antenna conducts SVLBI observations with 
data stored on-board the spacecraft, and then points toward an Earth-based data acquisition 
station for downloading the recorded data.  A somewhat similar concept of SVLBI was 
considered for the ad-hoc use of a communication antenna of the Venus mission VOIR (Burke 
1984).  

A different path and science domain might be foreseen for the combination SKA-SVLBI. 
The frequency domain of the early phases of SKA are “simple” for SVLBI. However, with all 
the attractiveness of such the system, the imbalance in size of the VLBI elements will result in 
severe difficulties of imaging due to the weighting problem (Garrett 2000). The remedy for this 
problem is obvious but expensive: the space element must be large, certainly much larger than 
10-m class antennas of the first generation SVLBI. A technological solution for such a 
hypothetical SKA-SVLBI system might come from the SKA itself: flat antenna structures of the 
Aperture Array design adopted as a key technology for the SKA is most consistent with the 
concept of an “extendable” space-borne radio telescope mentioned above (Buyakas et al. 1979).  
 

Table 1. Near-field radii for various Earth-based facilities and hypothetical SVLBI 
systems (columns) for wavelengths of 3 and 30 cm.  The “1 AU” SVLBI would make 
possible precise 3D astrometry of pulsars in nearby galaxies.  

Baseline 100 km 1000 km 104 km 105 km 106 km 107 km 108 km 

Facility MERLIN EVN-we EVN RadioAstron L2 - “1 AU” 

λ = 3 cm 2 AU 200 AU 0.1 pc 10 pc 1 kpc 100 kpc 10 Mpc 

λ=30 cm 3×107 km 20 AU 2×103AU 1 pc 100 pc 10 kpc 1 Mpc 

    
The concepts of the next generation SVLBI discussed so far are centred around 

“structural” applications of VLBI. These applications have been the driving force behind the 
original development of the VLBI technique. But later it has been realised that VLBI is very 
valuable for astrometry. The same might happen to SVLBI. At present, the main difficulty in 
using SVLBI missions like VSOP/HALCA and RadioAstron for astrometry is related to the 
insufficiently accurate orbit determination. If this problem is overcome, the superior angular 
resolution of SVLBI might shift the emphasis of the science goals of SVLBI from structural 
studies to astrometry. Moreover, since the interferometer near-field radius is roughly limited by 
the value B2/λ (where B is the baseline and λ the wavelength), the size of the near-field area 
becomes considerable and might eventually enable ultra-precise 3D astrometry of VLBI-
detectable objects. Table 1 represents radii of near field areas for arbitrary wavelengths of 3 and 
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30 cm and various real Earth-based facilities and hypothetical SVLBI missions. The futuristic 
“1 AU” SVLBI will place several nearby galaxies (e.g. M31, Large and Small Magellanic 
Clouds) in the near-field thus enabling a complete astrometric census of their compact radio 
constituents, e.g. pulsars.  

4. Concluding remarks 

Space VLBI is arguably the most complex technique of modern Space science. No other 
technique requires such a very broad set of space-borne and Earth-based assets. These include 
global networks of Earth-based VLBI radio telescopes, tracking and data acquisition stations, 
precise orbit determination, broad-band data downlink infrastructure and specialised data 
processing facilities. Unlike most other types of space science missions, Space VLBI requires 
serial connection of devices of the on-board science package for a given frequency band. This 
poses a serious challenge for achieving an acceptable level of reliability: the usual remedy, 
redundancy, is hard to apply. This complexity drives the cost of the mission upwards, both at 
the development and operational phases. Not surprisingly, Space VLBI projects must conduct a 
very tough uphill battle while competing with other proposals for space science missions.  

At this point it might be interesting to look at Space VLBI from the socio-demographic 
perspective. As of 2012, according to the IAU census, the total number of professional radio 
astronomers around the world was about 1500. The author estimates that about 400 of them 
have been actively involved in VLBI studies at some point or have participated in at least one 
Earth-based VLBI experiment. Some 50% of the latter group (this is no more than a best guess) 
are willing to invest their time and efforts in Space VLBI. So, the world population of Space 
VLBI “professionals” is no larger than 200 people. Further division into national and 
“territorial” domains leave no more than several dozens of Space VLBI enthusiasts per national 
or “territorial” space agency. Quite understandably, tight-fisted national space agencies should 
be convinced that catering for this rather small community is worth all the euros (dollars, yen, 
etc.) and efforts. Of course, one could argue that the value of science cannot be measured in 
terms of the number people getting their salaries as nominal scientists. True. But this kind of a 
posteriori trivia becomes obvious after a breakthrough discovery is made, not at the stage of 
building an expensive experimental facility. What is clear is that to secure a big budget for an 
expensive scientific endeavour like the next generation SVLBI, it is essential to couple a very 
strong scientific case with definitive proof of technical feasibility. 
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