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We review the recent progress in new lattice fermion setups. We focus on the following three
types which have possibility of improving lattice simulations. (1) Flavored-mass fermions are
a generalization of Wilson fermions with species-splitting mass terms. In particular, staggered-
Wilson fermions initiated by Adams have possibilities of reducing numerical costs in overlap
fermions and the influence of taste-breaking in staggered fermions. (2) Central-branch Wilson
fermions, in which additive mass renormalization is forbidden by extra axial symmetry, could
enable us to perform Wilson-fermion lattice QCD without fine-tuning. (3) Minimally doubled
fermions, which reduce the number of species by species-dependent chemical potential terms,
realizes a ultra-local chiral fermion at the price of hypercubic symmetry. These setups reveal
unknown aspects of lattice fermions, and we obtain a deeper understanding of lattice field theory.
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1. Introduction

Non-perturbative lattice calculations have contributed to a broad range of topics in particle and
nuclear physics. It becomes more and more important in the era of new physics in LHC. However,
practical problems in lattice fermions still prevent us from performing simulations efficiently. By
now several fermion constructions have been developed, although all of them have their individual
shortcomings. To perform more efficient and precise lattice simulations and to make progress in
the frontier of high energy physics, it is of primary importance to develop lattice fermions with less
numerical costs, less discretization errors, less tastes and better chiral property. Although effective
ways of improving have been proposed and are used widely in the calculations, an interesting goal
is to construct new fermion formulations free from the shortcomings. The research in this course
will also give us a new insight into lattice field theory and feedback for the existing simulations.

In this paper we review the recent progress on new fermion setups and discuss their appli-
cations in lattice simulations. In Sec. 2 we discuss generalization of Wilson fermions by using
species-dependent mass terms, which we call “flavored-mass" [1, 2, 3]. In this study we will find
new versions of Wilson, domain-wall and overlap fermions, some of which successfully have bet-
ter dispersion relation and better eigenvalue spectrum [4]. In particular staggered-Wilson (overlap)
fermions [1, 5] have the possibility of reducing overlap computational costs [6, 7] and reducing
staggered taste breaking effectively [8, 9]. We secondly discuss a different use of Wilson-type
fermions. In Sec. 3 we will show that the Wilson fermion without non-hopping terms has an extra
U(1) symmetry, which forbids the additive mass renormalization [7, 10]. This axial symmetry is
spontaneously broken with the associated NG boson emerging. By combining this idea to the fla-
vored mass, we in principle obtain a two-flavor central-branch fermion which could suit two-flavor
lattice QCD. In Sec. 4 we discuss another way of keeping chiral symmetry and reducing the number
of flavors in the lattice fermion. “Minimal-doubling setup" reduces the species to two with keeping
one exact chiral symmetry at the price of hypercubic symmetry [11, 12, 13]. To perform lattice
QCD with this fermion, we need to tune the several parameters to restore Lorentz invariance in the
continuum limit [14, 15]. Recently [16] introduced a new view that this setup can be interpreted as
a lattice fermion with species-dependent chemical potential terms. Application of this fermion to
in-medium QCD is discussed in [17]. In Sec. 5 we discuss the perspective on these formulations.

2. Flavored mass and generalized Wilson fermions

In this section we discuss generalizations of the Wilson fermion from the viewpoint of species-
splitting mass terms, which we call “flavored mass terms". It leads to new types of domain-wall
and overlap fermions. This course is initiated by Adams in [1], and the intensive researches have
been done by now. This topic is roughly classified into two parts: generalization of Wilson fermion
based on naive fermions and its generalization based on staggered fermions. We begin with the
former one and move to the latter.

2.1 Flavored mass for naive fermions

In this subsection we introduce flavored-mass terms for naive fermions as generalizations of
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ 6=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ 6=µ,ν nρ . See [10] for details. Quark condensate

or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)
X . We call Γ(+)

X as
vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)
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Figure 2: (Left) Dirac spectrum for MP [3], where we have two branches with 8 and 8 flavors. (Center)
Dirac spectrum for MT, where we have three branches with 6, 8 and 2 flavors. (Right) Dirac spectrum for
MV +MT +MA +MP [3], where we have two branches with 1 and 15 flavors.

where ∑perm. means summation over permutations of the space-time indices. ∑perm. and ∑sym. are
defined as containing factors, for example 1/4! for MP. The vector type MV is the usual Wilson term
up to the mass shift, and the Wilson term in (2.1) is just given as ∑n ψ̄n(4−MV)ψn. In the momen-
tum space, they are transformed into MV → cos pµ , MT → cos pµ cos pν , MA → cos pµ cos pν cos pρ

and MP → cos p1 cos p2 cos p3 cos p4. As shown in [3], these flavored masses are also expressed in
the spin-flavor representation as MP ∼ (1⊗ (τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3)).

By introducing the flavored-mass terms ψ̄nMFψn (F=V, T, A, P) or their combinations into
the naive action instead of the usual MV, we obtain generalized versions of Wilson fermions. The
species-splitting depends on the types or combinations. MP splits the 16 degenerate modes into two
branches with 8 and 8 flavors. The Dirac spectrum for DNaive +MP is depicted in the left figure of
Fig. 2. MT splits them into three branches with 6, 8 and 2 flavors as depicted in the center figure
of Fig. 2. MA has the same species-splitting as the case of MV (Wilson). Combinations of these
flavored-mass terms are also useful to split the species in a desirable form. For example, the total
sum of the flavored mass terms MV + MT + MA + MP splits the 16 species into two branches with
1 and 15 flavors as shown in the right figure of Fig. 2. We note the hypercubic symmetry remains
as long as we consider a combination of the forms in (2.5). The remaining flavor symmetry also
depends on the types. For example, MP with the mass shift breaks the symmetries of naive fermions
in Eqs.(2.3)(2.4) into the subgroup

Γ(+) →
{

14 , (−1)n1+...+n4γ5 , (−1)nµ,ν
i [γµ ,γν ]

2

}
. (2.6)

Although all the symmetries in Γ(−) are broken as with the usual Wilson, but the remaining group
is larger. This symmetry group is interpreted as the subgroup of eight-flavor symmetry in the
branches. What we showed here are just examples. The notion of flavored-mass gives us a wide
class of Wilson cousins with desirable numbers of flavors. It is obvious that from the flavored-mass
we can also obtain generalized domain-wall and overlap fermions.

Brillouin fermion : In Ref.[4], a way of improving dispersion relation in Wilson fermion was
discussed independently. This is called “Brillouin fermion". Here the Wilson term is replaced by
the other form of the covariant Laplacian, which minimizes the breaking of the rotational symmetry
near the Brillouin boundary. From the viewpoint of the flavored-mass terms, the Brillouin fermion
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corresponds to the case of the total sum of the four flavored-mass terms as

MV +MT +MA +MP, (2.7)

which split the 16 species into 1- and 15-flavor branches. (We note that a similar form was referred
to in the context of improvement of overlap [18]) We can utilize the 1-flavor branch as Wilson
fermion or overlap kernel. [4] argues that the merits of this fermion is that not only the dispersion
relation becomes more continuum-like, but the Dirac spectrum becomes more Ginsparg-Wilson-
like. The calculation in the paper also shows that this setup is more effective as the quark mass
is heavier. It is an interesting course to consider its application to the heavy quark systems. One
concern about this formulation is that the four flavored-mass terms may be renormalized indepen-
dently, and the (1,15) splitting could be broken. The calculation in [4] shows that it is not the case,
and the species-splitting is kept also in the interacting theory.

2.2 Staggered-Wilson fermion

There are also non-trivial flavored-mass terms for staggered fermions, which satisfy γ5 her-
miticity and work as a covariant Laplacian. The staggered fermions with flavored-mass terms was
referred to in the classical paper by Golterman and Smit [5], and recently revisited by Adams in
[1] as extension of Wilson and overlap fermions. This setup has been intensively studied in several
works [2, 6, 7, 9, 19]. One advantage of this formulation is reduction of matrix sizes in the quark
propagator, which would lead to reduction of numerical costs in lattice QCD with overlap fermions.
In this subsection we discuss details of progress and problems in this course.

For staggered fermions we only have two possibilities of flavored-mass terms satisfying ε ∼
γ5 ⊗ξ5-hermiticity: 1⊗ξ5 and 1⊗σµν . The flavored-mass term proposed by Adams has a former
form,

MA = ε ∑
sym

η1η2η3η4C1C2C3C4 = (1⊗ξ5)+O(a), (2.8)

with (ηµ)xy = (−1)x1+...+xµ−1δx,y and (ε)xy = (−1)x1+...+x4δx,y. where the factor 1/24 is hidden in
the symmetric sum ∑sym.. The four tastes fall into ξ5 = +1 subspace with two tastes and ξ5 = −1
subspace with the other two tastes. Indeed, as shown in [1, 6], the degenerate Dirac spectrum is
split into two branches. By introducing proper mass shift, the staggered version of Wilson fermion,
which we call “staggered-Wilson fermion", is written as

SA = ∑
xy

χ̄x(DA )xyχy = ∑
xy

χ̄x[ηµDµ + r(1+MA )+m0]xyχy, (2.9)

We re-derive (2.8) from the flavored-mass terms for naive fermions. As shown in [3], spin diago-
nalization decomposes MP into four equivalent staggered flavored masses as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx. (2.10)

Indeed, the Dirac spectrum of the staggered-Wilson operator shown in [1, 6] is the same as the left
figure of Fig. 2 up to the degeneracy of the eigevalues.

We now investigate symmetry of the staggered-Wilson fermion. We begin with review of the
original staggered symmetry [5], which is given by

{C0, Ξµ , Is, Rµν} × {Uε(1)}m=0, (2.11)

5
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where C0 is lattice charge conjugation, Ξµ is is shift transformation, Is is spatial inversion, Rµν

is hypercubic rotation, and Uε(1) is residual chiral symmetry: χx → eθεx χx. As well-known, the
flavor and rotation symmetries are summarized as Γ4 o SW4,diag. Γ4 is a Clifford group operating
as flavor reflection and SW4,diag is the diagonal hypercubic subgroup of euclidian rotation SO(4)
and flavor SU(4). By looking into its timeslice group [5], it is shown that 15 pseudoscalars of
flavor-SU(4) fall into 7 irreducible representations (irreps) as 1 : ξ4,ξ45,ξ5, 3 : ξi,ξi5,ξi j,ξi4. Now
let us move to the symmetry of the staggered-Wilson, which was intensively studied in [8, 9]. The
flavored-mass (2.8) breaks the staggered symmetry down to

{C0,Ξ′
µ ,Rµν}, (2.12)

where Ξ′
µ ≡ Ξµ Iµ . We take a brief look at this symmetry in terms of physical parity, charge con-

jugation and the hypercubic symmetry. (See [8, 9] for details.) Regarding the parity, the action
is invariant under the transformation Ξ4Is ∼ (γ4 ⊗ 1), which essentially stands for parity transfor-
mation. For charge conjugation, the staggered charge conjugation symmetry C0 remains intact in
this case. Thus, physical charge conjugation for the two-flavor branch can be formed in a similar
way to usual staggered fermions as shown in [5]. For Lorentz symmetry, the action is invariant
under the staggered rotation Rµν and the shifted-axis reversal Ξ′

µ . These two groups are enough
to form the proper hypercubic group SW4 as with the staggered fermion. The staggered-Wilson
action thus possesses charge conjugation, parity and hypercubic symmetry. This result means that
the staggered-Wilson satisfies the minimum conditions for practical use in lattice QCD.

We now need to figure out advantages of staggered-Wilson and staggered-overlap over the
originals. The staggered-Wilson fermion has been studied from several viewpoints, including the
index theorem, Aoki phase, numerical costs and taste-breaking.

Index theorem and overlap kernel : The study on the index theorem in the staggered-Wilson
fermion via the spectral flow of the hernitian Dirac operator, which means the net number of near-
origin eigenvalue crossings counted with signs of slopes, was first done by Adams in [1], and
followed by [3, 6, 19]. In this case the index of the Dirac operator is defined as Index(DA ) =
−Spectral flow(HA ) with HA (m0) = εDA (m0), and it was shown that the index correctly detects
the gauge topology in this setup. The stability of separation of low and high crossings in eigenvalue
flow was also discussed, which indicates applicability of HA (m0 < 0) as overlap kernel. In [3] the
index theorem for the generalized Wilson including the Brillouin fermion was also studied.

Aoki phase : The parity phase structure for the staggered-Wilson fermion was studied by
using the Gross-Neveu model in [7] and strong-coupling lattice QCD [9]. The GN study shows
that the parity-broken phase and the 2nd-order critical line exist as with the case of the usual
Wilson fermion, which implies possible Aoki scenario in this formulation. The strong-coupling
lattice QCD also indicates the existence of the massless pion and the PCAC relation near the parity
phase boundary. We expect the lattice chiral perturbation works to study this topic further.

Numerical costs : One of possible advantages of the staggered-Wilson fermion is that it could
reduce the computation expense of overlap fermions. The computational costs in the staggered-
overlap quark propagator were well studied in [6]. According to this work, there is competition
between an advantage from the 4-times smaller matrix to invert and a disadvantage from 4-link
hopping terms in the flavored mass. Since the smaller matrix size requires fewer matrix-vector mul-
tiplications in calculation of the sign function, the total CPU cost becomes smaller in the staggered-
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overlap at least for the free theory. However, this merit is ruined by large gauge fluctuation due to
the 4-link transporters. The gauge fluctuation reduces the splitting of the two branches, and unitary
projection and inversion get more difficult. As a result, the reduction of the total CPU time is about
O(2) for β = 6. Thus, so far, the numerical advantage of the staggered-overlap over the usual over-
lap is not so significant. We however note that we can improve staggered-Wilson setups in terms
of both staggered [19] and Wilson. The numerical cost would be reduced through the improved
versions of the staggered-Wilson.

Taste breaking : It is obvious that the two flavors in staggered-Wilson suffer SU(2) taste
symmetry breaking. But it does not necessarily mean the mass-splitting of the associated three
pions π0,π±. The pion mass splitting depends on the remaining discrete flavor symmetry: If
this symmetry is large enough, we have degenerate three pions even at the finite lattice spacing.
Recently Ref. [8] has reported that the classification of operators by the timeslice symmetry indi-
cates the three-degenerate pions: For pseudoscalar mesonic operators in staggered-Wilson, the 7
irreps and flavor-singlet operators of the original staggered are mixed in ξ5 pairs. And by focus-
ing on the physical two-flavor branch ` we find the three pion states π0,π± are in the 3d irreps
as ¯̀(γ5 ⊗σi)` (i = 1,2,3). The same work also shows that, in the pion potential of the stggered-
Wilson chiral Lagrangian, the taste breaking starts from O(a4) and O(a2m). This result implies that
the two flavors in the staggered-Wilson fermion suffer relatively small flavor breaking and suits the
two-flavor lattice QCD.

Another type: In [2, 6], the other type of staggered-Wilson fermions were proposed. This
type corresponds to the case with 1⊗σµν , the only other possibility satisfying the staggered γ5-
hermiticity. This flavored mass is given by

MH = i(η12C12 +η34C34) = [1⊗ (σ12 +σ34)]+O(a) , (2.13)

with (ηµν)xy = εµνηµηνδx,y, (εµν)xy = (−1)xµ+xν δx,y, Cµν = (CµCν +CνCµ)/2. We note that
the original flavored mass proposed by Hoelbling in [2] has a different form, but we here discuss
the above form since it has larger discrete symmetry [3, 8]. This flavored mass splits four tastes
into three branches: one with positive mass, two with zero mass and the other one with negative
mass. It thus produces single-flavor staggered-Wilson fermion, which seems to have wider appli-
cability. However, the symmetry of the staggered fermion with this flavored mass term is small
as {CT ,Ξ′

µ ,R12,R34,R24R31} with CT ≡ R21R2
13C0. Breaking of rotation symmetry indicates that

we need to tune parameters to restore Lorentz symmetry. Indeed the recent study on symmetries
of staggered-Wilson fermions by Sharpe [8] reports that recovery of Lorentz symmetry requires
fine-tuning of parameters in the gluonic sector in lattice QCD.

3. Central Branch

In this section we discuss another way of use of flavored-mass or Wilson fermions. We usually
concentrate on the one-flavor edge branch of the Wilson Dirac spectrum. However, the flavored-
mass fermions without on-site terms (or species-singlet mass term) have a larger symmetry in
general. In terms of the flavor-chiral symmetry of naive fermions in (2.2), the on-site term (∼ ψ̄nψn)
breaks the invariance under any transformation of the axial-type group Γ(−)

X in Eq.(2.4). Thus,

7
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dropping on-site terms can restore some invariance under the group, and the action comes to have
a larger symmetry, including axial symmetry.

In [7] and [10], it was shown that the Wilson fermion with the condition m0 + 4r = 0 has an
extra U(1) symmetry besides the usual U(1) baryon symmetry. The condition corresponds to the
six-flavor central branch of the Wilson Dirac spectrum as shown in Fig. 3. We call it “central-branch
fermion". The action in this case is given by

SCB = ∑
n,µ

ψ̄nγµDµψn − r ∑
n,µ

ψ̄nCµψn. (3.1)

In this case the U(4)×U(4) symmetry of naive fermions in (2.3)(2.4) are broken down to

Γ(+) → {14} , Γ(−) →
{
(−1)n1+...+n4

}
. (3.2)

The usual Wilson fermion has only the vector symmetry under 14 ∈ Γ(+). The invariance under
(−1)n1+...+n4 ∈ Γ(−) is restored only with the central-branch condition m0 + 4r = 0. It is notable
that the form (−1)n1+...+n4 is the same as the staggered chiral transformation Uε(1), which works
as the axial rotation as shown in (2.2). It is obvious that the quark mass term ψ̄ψ is not invariant
under this, and the extra symmetry prevents the quark mass term ψ̄ψ from being generated via
loop effects. It means that the additive mass renormalization cannot occur in this case. Although
the central branch of the usual Wilson fermion has six flavors, the symmetry enhancement on the
central branch is generic with the flavored-mass fermions and this fact inspires us to consider new
realizations of chiral fermions.

The one-loop lattice perturbation in [20] shows that the additive quark mass renormalization
becomes zero unlike the usual Wilson. The quark self-energy at one-loop level in a massless case
is in general written as

g2
0

16π2

(
Σ0

a
+ iγµ pµΣ1

)
. (3.3)

We now focus on Σ0, which is composed of the sunset Σ(α)
0 (sun) and tadpole Σα

0 (tad) diagrams.
α = 1,2, ...,6 identifies the six poles of the propagator, which we denote as π(1)

µ = (0,0,π,π),
π(2)

µ = (0,π,0,π), · · ·. For the central-branch fermion (3.1), Σ(α)
0 (sun) is calculated as

Σ(α)
0 (sun) =

g2
0

a
CF

∫ π

−π

d4k
(2π)4 ∑

ρ

(sin2 kρ
2 − cos2 kρ

2 )(−∑λ coskλ )+ sin2 kρ

4(∑λ sin2 kλ
2 )(∑µ sin2 kµ +(−∑µ coskµ)2)

eiπ(α)
ρ = 0, (3.4)

where eiπ(α)
ρ takes ±1 depending on 0 or π locations of the poles in the direction ρ . This sign

difference leads to cancelation between dimensions ρ in the integral for any pole α . The total
contribution from the tadpole diagram, which we denote I(α)(tad), is given by

I(α)(tad) =
∫ π

−π

d4k
(2π)4

−g2
0 ∑a{T a,T a}cc

8a∑λ sin2 kλ /2 ∑
ρ

(
−iγρ sin(apρ +π(α)

ρ )+ cos(apρ +π(α)
ρ )

)
∝ iγµ pµ

(3.5)
where we again have cancelation between dimensions ρ in Σ(α)

0 (tad), which means Σ(α)
0 (tad) = 0

for any of the six poles. In the end the total Σ0 becomes zero for each of the six Dirac poles as
Σ(α)

0 = Σ(α)
0 (sun)+Σ(α)

0 (tad) = 0. This verifies absense of additive renormalization in the setup.

8
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Figure 3: The Wilson Dirac spec-
trum with m0 +4r = 0. The central
branch crosses the origin.

p k p p p

p − k

k

Figure 18: Diagrams for the quark self-energy. On the left the sunset diagram, on the right the

tadpole diagram.

situation one can think of, although it already leads to complicated manipulations, as we will

shortly see. We carry out these manipulations starting from the operator

Oµν
= ψγµDν

ψ, (15.41)

and implement the symmetrization in µ and ν at a later stage. Due to the presence of the link

variable U in the covariant derivative, this operator has an expansion in the coupling,

Oµν
= O(0)

µν
+ g0O

(1)
µν

+ g2
0O

(2)
µν

+ O(g3
0). (15.42)

To evaluate the one-loop Feynman diagrams in momentum space one has to compute the

Fourier transforms of the operators in this expansion including the term of O(g2
0). It turns out

that to work out these momentum-space insertions for our forward matrix element we can use

the operator defined with the right derivative only, instead of the one involving the difference

between the right and the left derivative (which would lead to more complicated manipulations).

We have then that the expansion of a4 ∑

x

(

ψγµ

→

Dν
ψ

)

(x) is

a4 1

2a

∑

x

(

ψ(x)γµUν
(x)ψ(x + aν̂) − ψ(x)γµU †

ν
(x − aν̂)ψ(x − aν̂)

)

= a4

{

1

2a

∑

x

(

ψ(x)γµψ(x + aν̂) − ψ(x)γµψ(x − aν̂)
)

(15.43)

+
1

2
ig0T

a
∑

x

(

ψ(x)γµA
a
ν
(x)ψ(x + aν̂) + ψ(x)γµA

a
ν
(x − aν̂)ψ(x − aν̂)

)

−

1

4
ag2

0T
aT b

∑

x

(

ψ(x)γµA
a
ν
(x)Ab

ν
(x)ψ(x + aν̂) − ψ(x)γµAa

ν
(x − aν̂)Ab

ν
(x − aν̂)ψ(x − aν̂)

)

+O(a2g3
0)

}

.

and Mackenzie, 1997; Mertens, Kronfeld and El-Khadra, 1998) and (Kuramashi, 1998).
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Figure 17: “Proper” diagrams for the 1-loop correction of the matrix element 〈q|ψγ{µD
ν}ψ|q〉. The

black squares indicates the insertion of the operator. Shown is also the choice of momenta used in the

calculations.

ψ(x)
←

Dµ =
1

2a

[

ψ(x + aµ̂)U †
µ(x) − ψ(x − aµ̂)Uµ(x − aµ̂)

]

.

We consider amputated Green’s functions, that is the external propagators are removed.

The tree level of the amputated forward quark matrix element of the operator above is easily

seen to be

〈q|O{µν}|q〉
∣

∣

∣

tree
=

1

2
i(γµpν

+ γ
ν
pµ), (15.39)

and the 1-loop QCD result has, as we will see from the calculation, the form

〈q|O{µν}|q〉
∣

∣

∣

1 loop
=

1

2
i(γµpν

+ γ
ν
pµ) ·

g2

0

16π2
CF

(

c1 log a2p2 + c2), (15.40)

i.e., it is proportional to the tree level and this operator is thus multiplicatively renormalized.

The renormalization constant for the matching to the MS scheme can then be read off from the

above 1-loop result plus the corresponding continuum calculations made in the MS scheme (see

Eq. (3.3) and Section 3). For the computation of the lattice part it is necessary to evaluate six

Feynman diagrams, which are given in Figs. 17 and 18. The two diagrams in Fig. 18 compute

the quark self-energy, and give the renormalization of the wave function. The remaining four

diagrams, in Fig. 17, are specific to the operator considered, and we will call them “proper”

diagrams.

15.4.1 Preliminaries

We work in Feynman gauge (α = 1), where the form of the gluon propagator is simpler, and

we set r = 1. We perform the calculations using massless fermions. 64 This is the simplest
64Calculations in which the quark propagator is massive are more complicated. A few examples of these

calculations, which use simpler operators, can be found in (Kronfeld and Mertens, 1984; El-Khadra, Kronfeld
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p = 0

= 0

Figure 4: The diagrams contribut-
ing to the 1-loop fermion self-
energy. The additive mass renor-
malization from these diagrams be-
comes zero.
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Figure 5: The Aoki phase diagram
with Wilson fermions. The red line
corresponds to the central branch,
where the extra symmetry emerges.

One concern on this setup is how the parity-broken phase affects the central branch. The
central branch (m0 +4r = 0) corresponds to the central cusp in the parity phase diagram in Fig. 5.
It is believed that this point is located within the parity broken phase at strong and middle gauge
couplings, and the six flavors may be mutilated. Not to mention, we do not need to consider this
problem if we take the chiral limit from the parity-symmetric phase to the central branch as shown
in [6]. Nevertheless, we will find an important aspect of the central branch fermion by looking into
the relation with the Aoki phase. The strong-coupling and large-Nc limit of lattice QCD right on
the Wilson central branch was studied in [10]. It shows that the condensates in the strong-coupling
limit of the central branch are given by

σ =
MW

4r2 , π =
1

16r4(1+ r2)
(8r4 −M2

W (1+ r2)), (3.6)

where σ and π essentially stand for chiral 〈ψ̄ψ〉 and pion 〈ψ̄γ5ψ〉 condensates with MW = m0 +4r.
It also shows that one of mesonic excitations has mass in the form as

cosh(mSPA ) = 1+
2M2

W (16+M2
W )

16−15M2
W

. (3.7)

For the central branch MW = m0 +4r = 0, we have σ = 0,π = 1/2(1+r2) and mSPA = 0. This result
means that the extra symmetry is spontaneously broken and it leads to a massless NG meson, which
seems to mimic QCD successfully. However, the symmetry is not broken by the chiral condensate
〈ψ̄ψ〉 but by the parity broken condensate 〈ψ̄γ5ψ〉. Rather, the chiral condensate becomes exactly
zero on the central branch. To summarize, strong-coupling lattice QCD on the central-branch
fermion has the condensate as 〈ψ̄ψ〉= 0, 〈ψ̄γ5ψ〉 6= 0. This is a situation as if the roles of operators
ψ̄ψ and ψ̄γ5ψ are exchanged. In other words, the mass basis in this case is different from the usual
QCD and we need to introduce a quark mass term in a twisted form, e.g. mψ̄γ5ψ . This fact indicates
that the central-branch fermion is deeply related to the twisted-mass Wilson fermion. We note that
the maximally-twisted-mass Wilson fermion is regarded as the average of the two one-flavor edge
branches, and the central branch is located at the center point between these two. It implies that
the central branch fermion can be seen as an automatic realization of the maximally-twisted-mass
Wilson fermion without O(a) discretization errors. If this view is correct, we can expect the parity
breaking disappears in the continuum limit as in the twisted-mass Wilson.
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We have another concern on this case : positivity of determinant. In the case of the maximally-
twisted-mass Wilson QCD, the traceless flavor matrix τ3 in the twisted-mass term iψ̄γ5τ3ψ works to
keep the quark determinant positive and avoid the theta term. Unlike this case, the quark condensate
〈ψ̄γ5ψ〉 in the strong-coupling limit of the central branch has no traceless structure in the 6-species
flavor space. This problem is deeply related to the question how the U(1) problem is incorporated
in this formulation. However, we note the chiral symmetry in this setup is related to the generator
(−1)n1+...+n4 instead of naive γ5. Thus, if the true condensate at the weak coupling has a form
ψ̄(−1)n1+...+n4ψ and it has traceless flavor structure for the six flavors, we may not necessarily
have the issue. We have no consensus on this problem yet, and we hope detailed numerical study
can answer this question. In any case, we can bypass the issue by introducing the pair of the central-
branch fermions with τ3 introduced in the mass term. In this case, the setup contains 12 flavors.
This can be an alternative way for studying 12-flavor SU(3) gauge theory, whose existence of the
infrared fixed point is now controversial. Not to mention, we are free from the problem when we
take the chiral limit from the parity-symmetric phase as we discussed.

So far we have concentrated on the central branch in the usual Wilson fermion. However,
the flavored-mass fermions discussed in the previous section in general enjoy the extra symmetry
restoration when the on-site term is dropped. For example, the fermion action with MP but without
mass shift has larger symmetry than (2.6): the flavor-chiral symmetry of ψ̄n(γµDµ +MP)ψn is

Γ(+) →
{

14 , (−1)n1+...+n4γ5 , (−1)nµ,ν
i [γµ ,γν ]

2

}
, Γ(−) →

{
(−1)nµ γµ , (−1)ňµ iγµγ5

}
. (3.8)

Restoration of the invariance under the axial-type group Γ(−) indicates absence of additive mass
renormalization again. However, in this case, we have no central branch as seen in the left figure
of Fig. 2 and we cannot take advantage of the larger symmetry. The staggered-Wilson fermion in
(2.9) also has the similar property: SA in (2.9) without mass shift has larger symmetry as

{C0, C′
T Ξµ , C′

T Is, Rµν}. (3.9)

where C′
T is given as a special charge conjugation C′

T : χx → χ̄T
x , χ̄x → χT

x , Uµ ,x → U∗
µ,x. Again,

this case is not useful since there is no central branch. However the situation is different for the
other type of the staggered-Wilson fermion in (2.13) [6, 7]: the symmetry of the action (2.13)
without mass shift becomes larger [8] as

{CT , C′
T , Ξ′

µ , R12, R34, R24R31}. (3.10)

The point is that we have a two-flavor central branch in this case. The extra symmetry is special
charge conjugation C′

T , which prohibits the additive mass renormalization. The numerical calcula-
tion for this case was performed in [6]. Although this fermion has possibility of being a two-flavor
setup without necessity of mass parameter fine-tuning, we have necessity of other parameter tun-
ings for Lorentz symmetry for this case as we discussed [8], which compensates the advantage. For
our reference, the discrete symmetry of the staggered kinetic term, the two flavored-mass terms and
the usual mass term are summarized in Table.1.

The interesting goal in this direction is to construct a two-flavor central-branch fermion by
using a proper combination of the four flavored-mass terms shown in (2.5). In principle, it is
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C′
T Ξµ Iµ C′

T Ξµ C′
T Iµ Ξµ Iµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
χ̄xMA χx × × × ◦ ◦ ◦
χ̄xMH χx ◦ × × × × ◦

χ̄xχx × ◦ ◦ × × ◦

Table 1:

possible to find a combination of flavored mass which has a two-flavor central branch. However,
the question is whether hypercubic symmetry holds in such a case. If it is broken as with the single-
flavor staggered-Wilson fermion in (2.13), it is not useful. We need further study to answer this
question.

4. Minimal-doubling

In this section we discuss another formulation with the desirable number of flavors and chiral
symmetry. One drawback in the flavored-mass fermions in Sec. 2 and 3 is that it explicitly breaks
all the axial symmetry except on the central branches. The interesting question is whether we can
reduce species to two with keeping the remnant of chiral symmetry. We now consider free Dirac
operators with the flavored mass MF multiplied by iγ4,

aDfc(p) = iγµ sin pµa + iγ4MF(p), (4.1)

where we assume MF has a hypercubic or cubic symmetric form. Here the degeneracy of 16 species
is not lifted by the flavored-mass term, but by species-dependent imaginary chemical potential
terms which we call “flavored-chemical-potential(FCP)" [16]. Although we can consider a real
type of FCP terms, we concentrate on the imaginary type to avoid the sign problem. (See [16, 17]
for real FCP.) It is notable that this Dirac operator has ultra-locality and exact chiral symmetry,

{γ5,Dfc(p)} = 0. (4.2)

In this setup it is possible to reduce 16 species to two without losing all chiral symmetries, which
is the minimal number allowed by the no-go theorem. On the other hand, the chemical potential
term breaks the lattice discrete symmetry to the subgroup as cubic symmetry, CT and P [14],
which give rise to necessity of fine-tuning several parameters for a correct continuum limit [15]. In
other words, instead of chiral symmetry breaking in Wilson fermion leading to the mass parameter
tuning, FCP fermions have breaking of discrete symmetry leading to necessity of other parameter
tuning. To look into details of this setup, we introduce one concrete example

SKW = ∑
n

[
ψ̄nγµDµψn +m0ψ̄nψn + r

3

∑
j=1

ψ̄niγ4(1−C j)ψn + µ3ψ̄niγ4ψn +d4ψ̄xγ4D4ψn

]
,(4.3)

where we introduce a Wilson-like parameter r. The dimension-3 and dimension-4 counterterms
with parameters µ3 and d4 are also introduced for the later discussion on tuning. The associated
free and massless Dirac operator in momentum space is

aDKW(p) = i
4

∑
µ=1

γµ sinapµ + iγ4(µ3 +3r− r
3

∑
j=1

cosap j +d4 sinap4). (4.4)

11
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Figure 6: Species-splittings in Wilson and Karsten-Wilczek fermions. Circled numbers stand for the number
of massless flavors on each point.[16]

For simplicity we first consider µ3 = 0, d4 = 0 and r = 1. In this case we have only two zeros of
the Dirac operator p = (0,0,0,0) and p = (0,0,0,π/a) while the other 14 species have O(1/a)
imaginary chemical potential (∼ 1

a ψ̄niγ4ψn) and are decoupled in the naive continuum limit. In
Fig. 6 we compare species-splitting of KW fermions in the chemical potential direction to that of
Wilson fermion in the mass direction. For general values of µ3, the number of physical flavors
depends on µ3 as shown in the left of Fig. 7: 0 flavor in µ3 > 1, 2 flavors in −1 < µ3 < 1, 6
flavors in −3 < µ3 < −1, 6 flavors in −5 < µ3 < −3 2 flavors in −7 < µ3 < −5, 0 flavor in
µ3 < −7. The action (4.3) is known as the Karsten-Wilczek (KW) fermion [11], which is the first
type of “minimally doubled fermions" [11, 12, 13]. Although we concentrate on the KW fermion
all through this section, there are other types including Borici-Creutz [12] and Twisted-ordering
[13] fermions. The properties shown in this section are qualitatively common with all types.

The symmetry of minimally doubled fermions was intensively studied in Ref.[14]. As we
have seen in a generic form of the action (4.1), the KW fermion has one exact chiral symmetry,
ultra-locality, spatial cubic symmetry, CT and P. Because of this lower discrete symmetry, we need
to fine-tune parameters to take a correct continuum limit. The process of the tuning was well
discussed in [15]. In the case of KW fermion, it is pointed out that we need to tune parameters
for a dimension-3 (ψ̄iγ4ψ) and two dimension-4 (ψ̄γ4∂4ψ , Fj4Fj4) counterterms. Two of these
counterterms are shown in the action (4.3), and we need one more counterterm for the plaquette
action. The necessity of three-parameter tuning seems to compensate the merits of the minimal-
doubling fermions (chiral, ultra-local and two-flavor), and they have not been used widely.

However, as seen from the generic argument below (4.1), minimal-doubling fermions are seen
as lattice fermions with species-dependent chemical potential terms. It is notable that the discrete
symmetry of minimal-doubling fermions is the same as the usual hypercubic-symmetric lattice
fermions with the chemical potential, e.g. naive fermions with the chemical potential SN(µ) =
∑n(ψ̄nγ jD jψn +ψ̄nγ4 (eµUn,n+4ψn+4 − e−µUn,n−4ψn−4)/2), where the discrete symmetry is broken
down to spatial cubic symmetry, CT and P again. Therefore, from the viewpoint of universality
class, it is likely that both setups belong to the same universality class. We expect the symmetry
of lattice QCD with minimal-doubling fermions will be enhanced to that of the two-flavor in-
medium QCD (spatial rotation, P, CT, SU(2)flavor-chiral) in a continuum limit. Thus it is natural
to regard the minimal-doubling fermion as the finite-density system and consider the application to
the finite-(T ,µ) QCD. When an effective way of bypassing the sign problem is found in the near
future, the two-flavor lattice fermion suitable for the finite-density system with ultra-locality and
chiral symmetry will play an important role.

Nevertheless, the minimal-doubling fermions and naive fermions with chemical potential have
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Figure 7: (Left) The number of flavors in free Karsten-Wilczek fermion as a function of the parameter µ3.
See [16] for details. (Right) Conjecture on µ3-g2 chiral phase diagram for Karsten-Wilczek fermion with
r=1 and d4 = 0 [16].

difference in the way of introducing the chemical potential. As seen from the discussion in the
beginning of this section, the minimal-doubling fermion decouples 14 doublers with O(1/a) imag-
inary chemical potential by introducing the FCP term, which is roughly given by the Wilson term
ψ̄MFψ incorporating iγ4. Thus, instead of the additive mass renormalization in Wilson fermion, the
unphysical O(1/a) chemical potential renormalization occurs in the interacting minimal-doubling
fermion even if we consider it as the in-medium system. Then we need to fine-tune the dimension-3
parameter µ3 to realize physical O(1) chemical potential as we needed to fine-tune the mass pa-
rameter m0 to realize physical quark mass in Wilson fermion. This necessity of µ3 tuning is also
understood from the well-known fact that the naive introduction of chemical potential on the lat-
tice gives rise to the unphysical divergence of energy density and requires a counterterm since the
violation of the abelian gauge invariance takes place [21].

This large renormalization leads to instability of the number of flavors in the interacting theory
since the µ3 dependence of flavor number in the left of Fig. 7 in a free theory changes due to
the renormalization. In Ref. [16], the µ3-g2 chiral phase structure for KW fermion is studied by
using the Gross-Neveu model and strong-coupling lattice QCD (the right figure of Fig. 7). As
seen from this, the µ3 range with physical flavors gets narrower as the gauge-coupling gets larger,
and the minimal-doubling range also moves and gets narrower with non-zero gauge coupling. It
means that we at least need to adjust µ3 within the minimal-doubling range to keep the two-flavor
property irrespective of the way of use. On the other hand, it is not clear whether we need the
dimension-4 parameter tuning in the application to in-medium QCD. As shown in [16], for general
values of µ3 and d4, the dispersion relation in the Dirac operator is modified as D(p) ∼ iγi pi +

iγ4 p4

√
(1+d4)2 −µ2

3 +O(ap2). It indicates that we may need to tune d4 to correct the dispersion
relation for given value of µ3 even if we consider the finite-density system.

So far it is not clear how many parameters should be tuned in the application of minimal-
doubling fermions to the in-medium QCD. However, Ref. [17] shows that the QCD phase diagram
derived from this setup is consistent with the phenomenological predictions. In Ref. [17], the
strong-coupling limit of lattice QCD with KW fermion in the presence of temperature and density
was studied. We depict the results in Figs. 8 and 9. The (T,µB) phase diagram in Fig. 8 is consis-
tent with strong-coupling lattice QCD with staggered fermions, while there are some quantitative
differences. For example, the ratio of the transition baryon chemical potential at T = 0 to the crit-
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Figure 8: Phase diagram for the chiral transition with
r = 1, µ3 =−0.9 and m = 0 for d4 = 0. Green and red
lines show 2nd and 1st transition lines, respectively.
The transition order is changed from 2nd to 1st at the
tricritical point (µ tri

B ,T tri) = (0.804,0.234) [17].
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Figure 9: Chiral condensate σ and the baryon density
ρB for (left) T = 0.3 and (right) T = 0.2 with d4 = 0.
Top and bottom panels show the massless m = 0 case
with 1st and 2nd phase transitions and massive m =
0.1 case the crossover and 1st-order transitions [17].

ical temperature at µB = 0 is given by R0 = µc(T = 0)/Tc(µB = 0) ∼ 2.2 for KW fermion while
R0

st '∼ 1 for staggered. In the real world, this ratio is larger, R0 ∼ 5.5, and larger R0 with KW
fermion in the strong coupling limit may suggest smaller finite coupling corrections. The location
of the tri-critical point in KW fermion is given by Rtri

KW ' 3.4 and while Rtri
st =' 2.0 for staggered

fermion. It is consistent with the recent Monte-Carlo simulations, which implies that the critical
point does not exist in the low baryon chemical potential region, µB/T . 3. These observations
reveal the usefulness of KW fermion for research on QCD phase diagram.

In the end of this section, we comment on the question whether the other 14 flavors are re-
ally decoupled in the continuum limit of minimal-doubling fermions. If fermions with infinitely
large chemical potential are not decoupled, there should be some unphysical influence on the two-
flavor QCD. This problem is discussed in [22], and it is pointed out that the subtraction of the free
energy might be necessary to derive physical thermodynamical quantities. We still need further
investigation in the application of this type of lattice fermions.

5. Summary

In this review paper we discuss the recent progress of lattice fermions and their possibilities
of improving lattice simulations. The formulations not only open a new course of lattice study, but
also give us feedback for the existing simulations.

The flavored-mass terms, which are generalizations of the Wilson term, produce new types of
Wilson, domain-wall and overlap fermions. The proper sum of the flavored-mass terms leads to
the improved Wilson fermions including the Brillouin fermion. By introducing flavored mass into
staggered fermions we obtain staggered-Wilson fermions, which have the possibility of reducing
overlap numerical costs and staggered taste breaking. Although some numerical tests for these se-
tups have not shown remarkable advantages, we expect the further tests with the improved versions
could reveal their significance. The central branch in the flavored-mass fermions including Wilson
fermion have the extra axial-type symmetry. This symmetry implies no necessity of fine-tuning
of the mass parameter in lattice QCD with this type. The lattice perturbation indicates that we
have no additive mass renormalization in the interacting theory. From the strong-coupling lattice
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QCD it is shown that this extra symmetry is spontaneously broken with the associated NG boson
emerging. Although we need further investigation to judge its practical applicability, the interest-
ing goal in this course is a two-flavor central-branch fermion, which can be a two-flavor setup with
keeping chiral and hypercubic symmetry. Although the minimal-doubling fermion is a chiral and
ultra-local setup, we need to tune the several parameters to restore Lorentz and C, P, T invariances
in the continuum limit. This fermion can be seen as a lattice fermion with flavored chemical po-
tential terms. This interpretation gives us new and nonperturbative understanding on the tuning
of the dimension-3 parameter based on the chiral phase structure. Its use in the finite-density and
-temperature systems was investigated and the strong-coupling QCD shows that it produces the
phase diagram consistent to the phenomenological prediction. It requires numerical study to figure
out requisite tuning process for this case.
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