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1. Introduction

In order to study the chiral limit in lattice QCD with WilsoreFmions, it is essential to un-
derstand the phase structure at nonzero lattice spacinge 8ie continuum limita — 0, and the
chiral limit, m— 0, do not commute, lattice spacing effects can induce neweptransitions which
have no analogue in the continuum. These new phase stractgeknown as the Aoki phase [1]
and the Sharpe-Singleton scenario [2]. The presence of hasegstructures due to the lattice arti-
facts may at first appear to be a severe drawback for the afiplicof Wilson fermions, however,
these lattice artifacts can be turned to one’s favor: TheiAblase is reached through a second
order phase transition and just outside the Aoki phase thesphave dispersion relations which
resemble those of almost massless quarks in the continuum.

Because the Wilson term breaks chiral symmetry the effddtsedattice spacing lead to new
terms in chiral perturbation theory. This extended low gpeheory is know as Wilson chiral
perturbation theory. The precise form of the terms was wibiiet in [2, 3, 4] and at ordea?
involves three new low energy constants, which encode therige of chiral symmetry breaking
by the lattice artifacts. Recently a large number of newyditalesults concerning chiral dynamics
with Wilson fermions have been obtained from Wilson chiritprbation theory by working from
the perspective of the Wilson Dirac eigenvalues [5, 6, 7, 80911, 12, 13, 14, 15, 16]. The aim in
this review is to give an introduction to the new understagdihich the results has brought about
rather than on the technical details.

We will focus on three of the most important new insights wahfollow from the results
namely, 1) that the Sharpe-Singleton scenario is only realized in engoed simulations?) that
thea/\/V scaling of the smallest eigenvalues of the Hermitian WilBmac operator, observed on
the lattice [17, 18, 19], is a good sign, and finadjthat the results offer a new way to measure the
additional low energy constants of Wilson chiral pertuidnatheory.

Two new results are also included in this reviefairst we determine the meta-stable region
around the Sharpe-Singleton 1st order phase transitishs@sondve show that the sampling of
the individual sectors is essential in order to determimevidicuum structure in the Aoki phase.

2. Wilson Chiral Perturbation Theory in the e-regime

The Wilson term in the Wilson Dirac operator
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A}y (2.1)
breaks chiral symmetry. Therefore, the shortest lengtle gcalso affects the physics of longest
length scale Imj;. This effect is captured by Wilson chiral perturbation thel@, 3, 4], for which
we now give a focused review.

As always in chiral perturbation theory it is essential tbigea counting scheme. Here we
will work in the e-regime where th¥ — oo limit is tied to the chiral and continuum limit such that

mV, ¢V, and a?V (2.2)
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are kept fixed and of order unity (is the axial mass). The partition function of Wilson chiral
perturbation theory at leading order then reduces to a graagral [20, 21]

Zy(mGa)= [ du el (2.3)
SU(Ny)
where the action is
_m tyy ¢ f
S= SIVTIU +U") +23VTr(U —UT) (2.4)

—a2VW[Tr (U +UT) 2 — 2w [Tr (U —U )2 — @V WeTr(U2 + U ™).

The convention for the low energy constawg W, and\W is that of [5, 7]. In [4] these constants
are denoted respectively byWs', —W," and—Wg'.

As in the continuum [22] it is most useful to consider Wilsdmiral perturbation theory in
sectors with fixed index, such that [5, 7]

z!, (m.Z;a) = /U 4 detU =ul (2.5)
f

where we obviously have
Zn (M ga) =3 Zy,(m.a). (2.6)
v

The index defined in the above decomposition of the partitiorction is the index of the
Wilson Dirac operator [5, 7]

V= ZSign((kWs\kM (2.7)

where|k) is the eigenvector associated with #i real mode of the Wilson Dirac operator in the
physical branch. We will make explicit use of this index ictsgn 7 where we discuss the micro-
scopic spectral density. In the first sections we will worknatan field level where the dependence
on the index is suppressed.

From the action in Eq. (2.4) it is clear that the partition dtion in thee-regime of Wilson
chiral perturbation theory only depends on the dimensgmgealing variables

m=mVZ, (=¢VI and & =a’VW. (2.8)

The mean field limit corresponds to the saddle point appration to the group integral in the limit
where these dimensionless numbers are all much larger ttign u

3. Aoki phase and Sharpe-Singleton scenario

The form of the ordes? terms in Wilson chiral perturbation theory are uniquelyedetined
by the way in which the Wilson term breaks chiral symmetryctcaf the three new terms comes
with a new low energy constant, the value of which is not fixedhe flavor symmetries. The sign
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Figure 1. The mean field potential for the orientation of the vacuum. eWlgo$6) = +1 the lattice
simulation is in the normal phase with the standard chirademsateL eft Wg + 2Ws > 0: The Aoki phase
develops when the minimum of the potential is between -1 anRight Wg + 2Ws < 0: For the Sharpe-
Singleton scenario the minimum is always at -1 or 1. The @it meta-stable minimum at od@) =
—1 (red curve) becomes degenerate with the minimum &t6gos 1 for m= 0 (blue curve) resulting in
the 1st order Sharpe-Singleton phase transition. The paesisnchosen for the plots ame="10,5,0 and
8(a%+283) = 4.

of these three additional low energy constants, howevdetsrmined by thes-Hermiticity of the
Wilson Dirac operator

YsDw s = Djy. (3.2)
Only for
Ws <O, W, <0 and Wg>0 (3.2)

does the Wilson chiral Lagrangian describe lattice QCD wighHermitian Wislon Dirac operator
[5, 7, 23, 13]. As we shall now demonstrate these signs gitz wiformation on how the Aoki
phase and the Sharpe-Singleton scenario are realized.oWothrs let us first work out the phase
structure of lattice QCD with Wilson fermions at smaillanda using Wilson chiral perturbation
theory at mean field level. With the mean field ansatz for thentation of the Goldstone field [2]
(here and below we focus on the case of two mass degeneraissjlav

U =cog6)+isin(0)os (3.3)
we find the mean field action
Svr = 2rficog 0) — 442(2cog(0) — 1) — 1682 cos(H). (3.4)

This effective potential for cd®) is plotted in figure 1 for the two cas¥é + 2Ws > 0 (l.h.s.) and
Ws + 2Ws < O (r.h.s.). In the first case the orientation, as given by @pscontinuously moves
from 1 to -1 as a function of the quark mass. This is the Aokisgt{d]. In the second case, where
Ws + 2Ws < 0, the orientation jumps from 1 to -1 at= 0. This is the first order Sharpe-Singleton
phase transition [2].
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Figure 2: The phase diagram for lattice QCD with Wilson fermions in {B&/\g + 2Ws)a?, m)-plane.
For positive values of & (Ws + 2Ws) the Aoki phase dominates with the 2nd order phase transition
Im| = 8a%(Ws + 2Ws) and associated Goldstone modes for smaller valuésijofWith negative values of
8a%(Wg + 2Wg) the Sharpe-Singleton scenario dominates with the 1st qiaase transition an= 0 and
spinodal lines afm| = |8a%(Ws + 2Ws)|. The meta-stable region is hence between the dashed bae lin

The pion masses fgm|= > 8(Ws + 2Ws)a? are given by the ordea? corrected GOR-relation

(2]

2
m%ZF" = |m|Z — 8(Wg + 2Wg )&2. (3.5)
Approaching the Aoki-phase (whews + 2Ws > 0) the squared mass of the pions goes to zero
linearly with the quark mass. If we absorb the ord&correction into the quark mass this behavior
of the pion masses is just like in the continuum. On the coptrathe Sharpe-Singleton scenario
(whereWs + 2Ws < 0) the pion mass is always positive. See the rightmost parid¢igure 3 and
figure 5 respectively.

Since the Sharpe-Singleton scenario involves a first ordasgtransition it is natural to ask:
What is the meta-stable region? The answer is readily seen Eq. (3.4) or graphically from
the r.h.s. of figure 1. The spinodal line occurs whenrtaximumof the effective potential enters
between—1 and 1. That is, at exactly the same quark mass as the Aoke pitadd have occurred
for the opposite sign ofg + 2. This is illustrated in figure 2.

4. A puzzle

The above analysis shows that either the Aoki phase or thep&t&ingleton scenario will
dominate if we take the chiral limit prior to the continuunmit. Which of the two is realized,
depends on wheth&vs is more positive than\®; is negative and hence on the details of the specific
lattice simulation in question. This analysis was extertdg¢tie quenched case in [24] where it was
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Figure 3: The physical branch of the spectral density of the WilsoraBwperator (left) the chiral conden-
sate (middle) and the pion mass (right). The vertical dathed mark the support of the eigenvalue density
of the Wilson Dirac operator. The location is|®€Z||Z~ = 8(\Ws + 2Ws)a?. The Aoki phase occours when
the quark mass is between the two dashed ligs{2Ws > 0). In addition there is one massive mode inside
the Aoki phase.

argued that the Aoki phase and the Sharpe-Singleton soguatentially both should be realizable
also in quenched simulations. On the lattice, however, cjuet lattice simulations consistently
observe the Aoki phase [25, 27, 26, 28], while in unquenchealations both the Aoki and the
Sharpe-Singleton scenario are observed [29, 30, 31, 129182, 33, 34, 35, 36, 37, 38, 39]. As
we now show this puzzle has a natural solution when we consiidgoroblem from the perspective
of the Wilson Dirac eigenvalues.

5. Spectrum of the Wilson Dirac operator for Wg =W, =0

We now derive the spectral density of the Wilson Dirac oferaket us start with the case
whereWs =W, = 0. In this casé\g + 2Ws > 0, sinceWs > 0 by theys-Hermiticity of the Wilson
Dirac operator, and we have the Aoki phase.

Because of thgs-Hermiticity the eigenvalues of the Wilson Dirac operatoe aither purely
real or come in complex conjugate pairs [40]. For a scattargdlthe eigenvalues, see for example
[41]. In order to derive the spectral density of the Wilsomdgioperator in the complex plane

PeN; (Zaik) = <Z52(Aiw_z)>Nf (5.1)

from Wilson chiral perturbation theory we therefore neecsttend the partition function into a
replicated generating functional withadditional pairs of conjugate quarks with massesdZ,

ZX120(2 2 &) = ([ = m) [TAY = 2P(AY)* = 2)P). (5.2)

The eigenvalue density of the Wilson Dirac operator in th@glex plane is then obtained as

PN (22, 4) = 0 .L'L“oa?f) 1097y, 1 2p(2.2°, 0 &). (5.3)
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Figure4: Left: The microscopic eigenvalue density of the Wilson Dirac apmrin the complex plane (in
the sector withv = 0 for Ny = 0 anda,/WgV = 0.75,Ws = W = 0) andRight: the microscopic eigenvalue
density of the real eigenvalues of the Wilson Dirac operéitoithe sectors withv = 1,2,3 for Ny =0
anday/WgV = 0.2, W5 = W, = 0). The exponential fall-off of the eigenvalue density isergial to avoid
exceptional configurations.

The trick is now to use the low energy effective theory, ie.Iséf chiral perturbation theory, to
compute the replicated generating functional and therélgit the density. For an introduction to
the use of the replica method in chiral perturbation theseg [42].

The low energy limit of the replicated generating functioisagiven by Wilson chiral pertur-
bation theory with the mass matrix

M = diag(fi,, 25, 25), (5.4)

where the subscript on the quark masses refers to the nuritiraes the specific mass appears. In
the mean field limit the dependence on the numpgeaf replica flavors is trivial fokVg =W, = 0,
and one simply obtains (we use the notatica X+ iV)

PeNy—2(%, 1T 8g) = 6/(845 — [X]). (5.5)

Note that the eigenvalue density is independent of the in@agipart of the eigenvalue, hence it
forms a strip along the imaginary axis of Width§8 The Aoki-phase sets in when the quark mass
enters the eigenvalue strip, as in figure 3.

The microscopic limit of both the eigenvalue densityDgf in the complex plane and on the
real axis was worked out in [5, 7, 10, 13], see figure 4. Thetexag in which the real eigenvalues
are distributed shows at which value of the quark mass thalations are safe from exceptional
configurations.

6. Therealization of the Sharpe-Singleton scenario: The solution to the puzzle
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Figure5: The realization of the Sharpe-Singleton scenanp-{ 2Ws < 0). The red cross marks the size
of the quark massop: the mass is positive arfatlow: the mass is negative. As the quark mass changes
sign the strip of eigenvalues jumps across the origin andexurently the chiral condensate has a first order
discontinuity atm= 0, cf. the middle panels. Since the quark mass never redcbesgenvalue density the
pions remain massive evenrat= 0. See the rightmost figures. Clearly this scenario is onBsjixde in the
unquenched theory where the eigenvalue density can depethe guark mass.

Let us now compute the effect W on the spectral density @y in the mean field limit. To
do so it is useful first to linearize the square in Ygterm of the replicated generating functional
with a Gaussian integral over a fluctuating mgssThis leads to [13]

: = ;/[d%] Zy, (— Ye; 88) Pe, (2— Y6, 2" — Yo, M~ Ye: 8g)
23, (v as, 3) NSRRI S IR T e
(6.1)

where we used the notatiddys] = dys/(4/T186|) exp(—y2/(16|43|)). This expresses the eigen-
value density oDy in the complex plane &k # 0 in terms of the eigenvalue density witlg = 0.
At the mean field level foN; = 2, using Eg. (5.5), we get

1 ' 42
MF A 8.A A —y2/ 6‘86| MF /.2 A ~2 ~
p — X|||,ae,ag = CSNE  ~ ~ =~ < d e ’s Z m— ,dg 98&8_ X— s 6.2

Zy¥ (1 86, 8g) = €M 1OKIHE 4 g 210K 4G (6.3)
+6(8(82 -+ 282) — |i]) ™ /8(8 28] +4%
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This saddle point structure of the two flavor partition fuoctleads to

1
MF X M &z 4
p = X7m1a67a8 = IMF(&r A. Au) (6-4)
eN; =2 ) = (e %
x [ @168 40 (85 — (2 + 160
| o2 16/aF 43 0(84% — |x— 16/ag)?|)

52 o0&\ | 2 |o, 28|’
+6(8(85 +243) — |rh e<82— Rt —

) /028144

Since we seek to understand the realization of the Shargge®in scenario let us considég +
205 < 0. The density in this case is shown in figure 5. As the quarksrohanges sign the strip of
eigenvalues jump from one side of the origin to the opposite and this causes the 1st order jump
of the chiral condensate. This explains how the Sharpel&ony scenario is realized in terms of
the strong mass dependence of the unquenched eigenvakityden

In the quenched casa the contrary the eigenvalue density is independent ofjtlagk mass
since the fermion determinant is absent in the measure. Wh&gnass in the quenched case,
therefore, necessarily passes through the eigenvaluetydens this leads to the standard Aoki
phase,independent of the sign &g+ 2Ws. This explains why the Aoki phase is observed con-
sistently in quenched simulations and thus solves the puxzéection 4. One can also compute
the quenched chiral condensate directly from the gradesioreof the partition function in Wilson
chiral perturbation theory and reach the same conclusibis i$ illustrated in figure 6. The anal-
ysis of [24] reached the conclusion that the Sharpe-Sh@ipgleton scenario could be realized
in quenched simulations because the bound on the signs @ thdue toys-Hermiticity had not
been understood at the time.

The meta-stable region surrounding the 1st order Shamge®on phase transition (see figure
2) can also be observed in the eigenvalue density. FomI < |V\/8+2VV6|a2 andWg + 2Ws < 0 the
meta-stable minimum &' introduces a local minimum of thg integral in Eq. (6.4). This local
minimum offers the possibility for the strip of eigenvaluegemporarily jump to the opposite side
of the origin thus inducing a fluctuating sign of the chirahdensate. Such fluctuations become
more frequent as the meta-stable and global minimurzfz"k‘ffbecome almost degenerate, ie.nas
approaches zero. Thus the meta-stability of the eigenwddunsity is completely consistent with
the meta-stability of the chiral condensate obtained tyrdémom Eq. (3.4).

It is also instructive to consider the distance from the Rumass to the edge of the strip of
eigenvalues oby,. From Eg. (6.4) we see that this distance is given by

Im| — 8(W + 2Ws)a? /. (6.5)

This is exactly the combination which enters the right haide sf the orde? corrected GOR
relation, cf. Eqg. (3.5). The distance from the quark mass&ecetdge of the strip of eigenvalues of
Dw can therefore be thought of as the effective quark mass wdritdrs the standard continuum
form of the GOR relation.

In the Sharpe-Singleton scenario, ie. Wy+ 2Ws < 0, the quark mass never reaches the strip
of eigenvalues oDy. The minimal distance between the quark mass and the eigesvia given
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Figure 6: The Sharpe-Singleton first order phase transition is ordjized in the unquenched theory.
Here we show the mass dependence of the microscopic chitdkosate foag = 1 andas = 0,0.5i andi
corresponding to\g + 2Wg > 0, W + 2W = 0 andWs + 2Ws < 0, respectivelyL eft Ny = 2: The 1st order
Sharpe-Singleton phase transition develops with the @singly negative value ofs. Right Ns = 0: The
smooth behavior of the chiral condensate as a function oftiagk mass characteristic of the Aoki phase is
present in the quenched theory even wign- 2Ws < 0.

by —8(Ws + 2Ws)a? and hence the smallest value which the pion mass can reach is

M = /16 + 2W)a?/F2. 6.6)

This is of course exactly the same minimal value of the piossriaund in [2]. We now understand
how this minimum is linked to the behavior of the eigenvaleasgity in the unquenched theory.

7. Spectrum of the Her mitian Wilson Dirac operator

The ys-Hermiticity of the Wilson Dirac operator makes it naturalihtroduce the Hermitian
Wilson Dirac operatorDs, defined by

Ds = y5(Dw + M) . (7.1)

There is a close analogue of the Banks Casher relation [43h&spectrum oDs: The lattice
artifacts induce eigenvalues b§ with magnitude less thajm| and when these build up a density
at zero the Aoki phase is reached [44]. It is therefore eidetat understand analytically the
dependence of the smallest eigenvalues of the HermitiasowiDirac operator in order to study
chiral dynamics in simulations with Wilson fermions.

The first to consider the spectral densitydaf from the perspective of Wilson chiral perturba-
tion theory was Sharpe [45]. By now a detailed analytic usiderding of the effects the discretiza-
tion errors have on the spectrum @ have been obtained [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
A plot of the spectral density is shown in figure 7. The plotvwefidhe density in the sector with
v = 1 and the index peak at is clearly visible. Also the precise way the eigenvaluesuui¢ into
the region betweer-mandm can be observed.

10
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Figure 7. Red histogram: The spectral density of the Hermitian Wilson Dirac operainorquenched
20* lattices in the sector witly = 1. The eigenvalues have been rescaled Witha = 220. See [48] for
details about the simulation®lue curve: The microscopic spectral density obtained from Wilsonahir
perturbation theory wittNs = 0, v = 1, m = 2.3 andag = 0.06. Also shown is thélack curve obtained
from ordinary chiral perturbation theory with= 0. The prime effect of the lattice artifacts fog < 1

is to smear the index-peak. This leads to #i&/V scaling of the width of the smallest eigenvalue of the
Hermitian Wilson Dirac operator reported in [17, 18].
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Figure 8: The accumulated single eigenvalue distributions of theekiveigenvalues of the Hermitian
Wilson Dirac operator. Plot adopted from [47].

The predictions also offer a new way to measure the low eneoggtants of Wilson chiral
perturbation theory [16, 46, 47, 48]: The histogram in fighir@isplays lattice data and the match
of the analytic prediction to the lattice data fixes the valokthe low energy constants. We refer
to [48] for details.

One can also obtain the low energy constants from a fit of tladyan predictions for the
spectral density oDy to lattice data. However, sind®s is Hermitian it is somewhat easier to
determine this spectrum numerically in lattice simulagioBee also [49] for an alternative way to
measure th&\'s.

8. Scalingwith a//V

In the simulations of [17, 18, 19] it was found that the widftlee distribution of the smallest
eigenvalue oDs scales witha/\/V. At first sight this may sound disturbing, since the Banks-
Casher relations [43, 44] suggests that the smallest eajeew should scale with/¥. Hence one

11
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Figure9: The accumulated eigenvalue density the Hermitian Wilsaad®operator including all sectors.
Left: quenched lattice simulation from [50Right: example of the analytic prediction from Wilson chiral
perturbation theory in the regime withN; = 0. The parameters chosen for this examplera@¥ = 3,
ag = 0.2 andWs =W, = 0.

might fear that the/+/V-scaling is a sign of uncontrolled lattice artifacts, sustazal defects not
described by Wilson chiral perturbation theory. On the Gyt thea/+/V scaling is a good sign
In the limit wherea < 1 the smallest eigenvalues Bf should in fact scale precisely wity/V

[5, 7]. Forg < 1 the primary influence of the lattice artifacts is to smear tihpological mode
into a peak aroundh of width a/\/\7, as shown in figure 7. This fact, obtained from Wilson chiral
perturbation theory, has been demonstrated explicitlatiice quenched simulations [46, 47, 48].
See figures 7 and 8. Note that these lattice simulations weparated into sectors with fixed
index. The effect of the discretization error on the speuntaf Ds can also be studied without
the separation into sectors. In figure 9 the accumulatedveadyge density including all sectors is
shown. The left hand plot is lattice data obtained in [50]levthe right hand plot gives an example
of the analytic results. It would be most interesting to pref a systematic fit to the data including
the leading order corrections to the slope at lax§@btained in [16].

9. Alternative vacuum in the Aoki phasefor N = 2

In [51] it was proposed that the additional condensatssu + id_ygd> will take a nonzero
expectation value inside the Aoki phase along with the stethédoki condensatéuysu — id_ygd>.
This suggestion is particularly interesting since the @nes of the additional condensate is in direct
contradiction with the results of Wilson chiral perturloatitheory [52]. The additional condensate
(iuysu + id_y5d> is zero in thee-regime of Wilson chiral perturbation theory, Eq. (2.3)chese
it is the v.e.v. of TfU —UT) which vanishes irSU(2) where TtJ = TrUT. With fixed index,
however, the group average is extendedJi{@) and T(U —UT) does not vanish trivially. The
behavior of(iuysu -+ id_ygd> at fixed index can be examined by explicit evaluatiot¢®) integral
Eq. (2.5) and differentiation w.r.f. One can also evaluate the squared condengaigsu +
id_ygd)2> at zero external sources as suggested in [53]. Again thiers in SU(2) and nonzero
at fixed index. As should of course be true, one recovers theshiag value of the additional
condensates within Wilson chiral perturbation theoryeraél careful summation over all sectors

12
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with the appropriate partition functions as weights. Inwimtions, however, it can be very tricky
to control this sum over the sectors. Even a small error instimapling of the sectors can lead
to a substantial error in the value of the additional condtssafter summation over the sectors.
The summation over the sectors become particularly delicathe Aoki region if the low energy
constant\; is non-vanishing. The reason is that the term proportion&l/t is tantamount to a
Gaussian fluctuating source farysu + id_ygd. In other words, Wilson chiral perturbation theory
predicts that it is essential to sample all the sectors Wighcorrect weight in order to determine if
the additional condensate is present.

10. Conclusion

The approach to chiral dynamics with Wilsons fermions frdma perspective of the eigen-
values of the Wilson Dirac operator has lead to several neighits. On the macroscopic level
it becomes clear that the Sharpe-Singleton scenario canbentealized in unquenched theories
and on the microscopic scale we learn that aig/V scaling of the smallest eigenvalues of the
Hermitian Wilson Dirac operator is a sign that the simulati® very close to the continuum. On a
more technical but equally important level we now undedtdnat the signs of the additional low
energy constants in Wilson chiral perturbation theory awdfi Moreover, the new analytic results
offers a practical way to measure the additional low eneapstants in lattice simulations. These
combined new insights can be most useful when we seek to nzmigiscretization errors in lattice
simulations with Wilson fermions. For example, to minimi&g+ 2W it is useful to know that the
two contributions have opposite signs.

A control of the lattice artifacts becomes particularly mngant in studies of QCD with a larger
number of flavors: In a mean field approach the coefficientantfof W andW; scales WitH\lf2
compared to the linear scaling of tkig term. This suggest that simulations with a larger number
of flavors should be more likely to end up in the Sharpe-Sioglscenario. Hence one is less likely
to be able to exploit the massless modes at the boundary éftkigghase to mimic the chiral limit
for larger number of flavors.

Many aspects discussed in this review of chiral dynamick Witlson fermions has a direct
analogue for staggered fermions. It would be interestinmuisue this further. The necessary tools
are already available [54] and first results have appeargd [5
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