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We present our result of the many-flavor QCD. Information of the phase structure of many-flavor
SU(3) gauge theory is of great interest, since the gauge theories with the walking behavior near
the infrared fixed point are candidates of new physics for the origin of the dynamical electroweak
symmetry breaking. We study the SU(3) gauge theories with 12 and 16 fundamental fermions.
Utilizing the HISQ type action which is useful to study the continuum physics, we analyze the
lattice data of the mass and the decay constant of the pseudoscalar meson and the mass of the
vector meson as well at several values of lattice spacing and fermion mass. The finite size scaling
test in the conformal hypothesis is also performed. Our data is consistent with the conformal
scenario for N f = 12. We obtain the mass anomalous dimension γm ∼ 0.4− 0.5. An update of
N f = 16 study is also shown.
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1. Introduction

There has been a renewed interest in the study of QCD with large number of the massless
fermions in the fundamental representation (“large N f QCD”) in the context of walking technicolor
having approximate scale invariance in the infrared (IR) region and large anomalous dimension
γm ' 1 [1]. Such an approximate scale-invariant dynamics may in fact be realized in the large
N f QCD: The perturbative two-loop beta function predicts a non-trivial infrared fixed point α∗
(0 < α∗ < ∞) in the range of 9≤N f ≤ 16 in the asymptotically free SU(3) gauge theory [2, 3]. As a
powerful tool of a nonperturbative study, one uses lattice QCD simulations, which can in principle
determine the phase structure of the SU(3) gauge theories with various number of fermions. In
addition to the pioneering works [4, 5, 6], there are many lattice works in the large N f QCD in the
recent years. In particular, the system of the N f = 12 has been widely investigated by the lattice
approach, such as running coupling, lattice phase diagram, low-energy spectra and so on. (See, for
a review, Ref. [7].)

We investigate the 12 and 16-flavor SU(3) gauge theories using a variant of the highly im-
proved staggered quark (HISQ) action [8] to reduce the discretization error. We study several
bound-state masses such as the pseudoscalar meson π and vector meson ρ as well as the decay
constant of π , by varying the fermion bare mass m f . In this work, we introduce a quantity for the
scaling test of the conformal hypothesis with finite volume in the analyses for N f = 12. Using this
quantity, we can analyze the data without any assumption of the fitting form in the scaling test.
We also discuss possible finite size and mass corrections in the scaling. We find that our results of
N f = 12 are consistent with hyperscaling with γ = 0.4−0.5. These results of N f = 12 have already
been published in Ref. [9].

Besides the N f = 12 theory, we also simulate the N f = 16 theory with the same setup. Since
this theory is expected to deeply reside in the conformal phase, it is helpful to understand conformal
signals from numerical simulations. The preliminary results of this theory are also shown.

2. N f = 12

We use a version of the HISQ [8] action for many-flavor simulations but without the tadpole
improvement and the mass correction term for heavy fermions. Gauge configurations are generated
by HMC algorithm using MILC code ver.7 with various parameter sets for the fermion mass m f ,
volume and the bare coupling β = 6/g2. We calculate several bound-state masses, such as the
pseudoscalar meson π and vector meson ρ , and the decay constant of π . If the theory is in the
conformal window, the hadron mass MH and π decay constant Fπ obey the conformal hyperscaling

MH ∝ m
1

γ∗+1
f , Fπ ∝ m

1
γ∗+1
f , (2.1)

where γ∗ denotes the mass anomalous dimension at the IR fixed point. On the other hand, if the
theory is in the phase of chiral symmetry breaking, the leading fermion mass dependence of π is

M2
π ∝ m f , Fπ = c0 + c1m f , (2.2)

with c0 6= 0, and the vector meson mass does not vanish in the chiral limit.
The spectra obtained in our lattice simulation will be tested against these two hypotheses in

this work.
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2.1 Primary analysis

For a primary analysis dimensionless ratios, Fπ/Mπ and Mρ/Mπ , are plotted against aMπ in
Fig. 1. The left panel plots Fπ/Mπ on the largest two volumes at the two bare gauge couplings
β = 3.7 and 4. If we look at the results for β = 3.7 (filled symbols), Fπ/Mπ tends to be flat for
smaller π masses, which shows clear contrast to ordinary QCD case. The behavior is consistent
with the hyperscaling in Eq. (2.1). The Mπ dependence of the ratio at the larger mass can be
realized by the correction to the hyperscaling which may be different from one quantity to another.
For β = 4 (open symbols) there is no flat range without volume dependence. Similar observation
can be made for the other ratio Mρ/Mπ shown in the right panel of Fig. 1. The flattening is observed
for β = 3.7 again, but the range is wider than Fπ/Mπ . In this case β = 4 shows the flattening, too.
The difference of the constant in the flat region could be caused by a discretization effect.

Existence of the scaling for Fπ at β = 3.7 and absence at β = 4 at the same aMπ can be made
possible if the Mπ in the physical unit is larger (thus the correction is no longer negligible) for
β = 4, i.e., the lattice spacing decreases as β increases. In that case the physical volume is smaller
for β = 4, which gives a reason for the volume effect observed only for β = 4. Actually a crude
analysis of two lattice spacing matching shows the result a(β = 3.7) > a(β = 4) which is consistent
with being in the asymptotically free domain.
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Figure 1: Dimension-less ratios Fπ/Mπ and Mρ/Mπ as functions of aMπ for N f = 12 at β = 3.7 (filled
symbol) and 4.0 (open symbol) for two largest volumes.

2.2 Finite-size hyperscaling

In the conformal window with finite masses and volume, the renormalization group analysis
tells us that the scaling behavior for low-energy spectra which should obey the universal scaling
relations 1 as

ξp ≡ LMp = fp(x), ξF ≡ LFπ = fF(x), (2.3)

where the subscript p distinguishes the bound state, p = π or ρ in this study. The product of
bound state mass or decay constant and linear system size falls into a function of a single scaling

variable x = L ·m
1

1+γ∗
f , where γ∗ is the mass anomalous dimension at the IR fixed point. We shall call

the scaling relation the finite-size hyperscaling (FSHS). While the forms of the scaling functions

1For reviews, see e.g. [10, 11].
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Figure 2: ξπ is plotted as a function of the scaling variable x for γ = 0.1, 0.4, and 0.7 from left to right for
N f = 12 at β = 3.7. An alignment is seen for γ ∼ 0.4.

fp(x) are unknown in general, the asymptotic form should be f (x) ∼ x at large x because it must
reproduce the hyperscaling relation Eq. (2.1) in large volumes.

Now we examine whether our data for the bound state masses and decay constant obey FSHS.
To visualize how the scaling works we show ξπ as functions of x = L ·m1/(1+γ)

f for several values of
γ in Fig. 2. It is observed that the data align well with around γ = 0.4, while they become scattered
for γ away from that value. This indicates the existence of possible FSHS with γ ∼ 0.4. A similar
alignment is observed for ξF as well. In this case one finds the optimal scaling at around γ ∼ 0.5.

To quantify the “alignment” we introduce an evaluation function P(γ) for an observable p as
follows. Suppose ξ j be a data point of the measured observable p at x j = L j ·m1/(1+γ)

j and δξ j

be the error of ξ j. j labels distinction of parameters L and m f . Let K be a subset of data points
{(xk,ξk)} from which we construct a function f (K)(x) that represents the subset of data. Then the
evaluation function is defined as

P(γ) =
1

N ∑
L

∑
j 6∈KL

∣∣ξ j − f (KL)(x j)
∣∣2

|δξ j|2
, (2.4)

where L runs through the lattice sizes we have, the sum over j is taken for a set of data points that
do not belong to KL which includes all the data obtained on the lattice with size L. N denotes
the total number of summation. Here we choose for the function f (KL) a linear interpolation of
the data points of the fixed lattice size L for simplicity, which should be a good approximation of
ξ for large x. In the evaluation function Eq. (2.4), the data points need to be taken for a range
of x = L ·m1/(1+γ)

f in which there is an overlap of available data for all volumes, L = 18, 24, and
30 within the range [xmin,xmax]. We take the value of xmin (xmax) as the smallest (largest) m f for
the largest (smallest) volume L in our simulation parameters. Note, however, we may need to
incorporate some neighboring data outside this range to obtain the interpolated value f (K)(x) by
the spline functions.

The evaluation function for all the quantities, Mπ , Mρ and Fπ , is plotted in the left panel of
Fig. 3. A clear minimum is observed at which the optimal alignment of the data is achieved. It is
noted that the value of P(γ) is O(1) at the minimum. The systematic error due to the ambiguity of
the interpolation is estimated by the difference of the optimal γ’s obtained with linear and quadratic
spline interpolations. The comparison of these P(γ)’s is also shown in the left panel of Fig. 3. The
minima for the quadratic spline interpolation appear approximately at the same place as those for
the linear one. It is found that this systematic error is always smaller than the statistical error. The
other uncertainties due to the finite size and mass effects are estimated by the variations of optimal
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Figure 3: (Left) The γ dependence of the evaluation function P for Mπ , Fπ , and Mρ at β = 3.7 is plotted.
The vertical axis shows the values of P at each of γ where the three volumes and full range of x for the data
are considered. The solid and dashed curves show the results of P(γ) with the interpolation functions f (x) by
the linear and quadratic functions, respectively. (Right) The results of the values of γ for three observables
at two β are summarized, where the statistical and systematic errors are added in quadrature.

γ with respect to the change of both the x-range and L used in the analyses. The results with all the
errors added in quadrature are summarised in the right panel of Fig. 3. The details of the analysis
are shown in Ref. [9]. All the results are consistent with each other within 2σ level, except for γ
from Fπ at β = 4 for which the scaling region was suspected to be outside of the parameter range
we have examined in the previous subsection. From these analyses, we conclude that our data
for the N f = 12 theory are reasonably consistent with the FSHS. The resulting mass anomalous
dimensions is 0.4 ≤ γ∗ ≤ 0.5.

In the test of the chiral broken scenario, it turns out that the natural chiral expansion param-

eter χ = N f

(
Mπ

4πFπ/
√

2

)2
is very large in the region we simulated, which is evaluated as χ ∼ 39 at

the smallest Mπ using the value of Fπ in the chiral limit. With this large χ , we could not consis-
tently analyze the data based on the ChPT. Further efforts would be required to arrive at a decisive
conclusion.

3. N f = 16

In the previous report [12] we presented that the result of the ξπ is consistent with the FSHS,
but the optimal γ decreases as β increases in β ≤ 3.5. Furthermore the results of the γ is much
larger than the perturbative result, γ ∼ 0.025. In this theory the perturbation would be reliable
because of the small coupling constant at the IR fixed point, so that we considered that our result
contains large systematic errors. Thus, we investigate the β dependence of γ in larger β region
than the ones we simulated in the previous report.

Using the same simulation setup as in N f = 12, we perform simulations at several values of
β adding to the previous work, such as 5 and 12, on various spatial volumes, L = 8,12,16,24 and
30. The range of the fermion mass is 0.03 ≤ m f ≤ 0.2, and the typical length of the trajectory is
roughly 1000.

The plots in Fig. 4 show that for β = 5 and 12 the ξπ aligns well as a function of x using
an optimal value of the γ as in the N f = 12 case. The value, however, largely depends on β .
At the highest β the γ is still five times larger than the perturbative result, although the result at
this β would include large systematic error coming from finite volume. Fig. 5 shows the scatter
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Figure 4: ξπ in the 16 flavors at β = 3.15(left), 5(center) and 12(right). The different symbols denote the
data at the different volumes. The dashed line denotes the fit result of the finite-size hyperscaling. The filled
and open symbols represent the data included in the fit and omitted from the fit, respectively.
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Figure 5: Scatter plot of the Polyakov loops in the spacial directions.

plots of Polyakov loop in the spatial directions with fixed bare mass m f = 0.3 and lattice sizes
L = 18,T = 32. As shown here, at the highest β , the Polyakov loop has a non-zero value associated
with the center symmetry breaking. On the other hand, at the lower β region, this value decreases
with β . We consider that this symmetry breaking at the higher β occurs due to the small physical
volume, so that to reduce finite volume effects we would need much larger lattice size than L = 18
at β = 12. We will continue investigations with larger volumes at higher β region to obtain the
correct value of the γ at the vicinity of the infrared fixed point.

4. Summary and outlook

We have studied the SU(3) gauge theories with the fundamental 12 and 16 fermions using a
HISQ type staggered fermion action, For the 12-flavor case, we attempt to determine the phase
of this theory through the analysis of Mπ , Mρ and Fπ . Our present data is consistent with the
conformal hypothesis. The mass anomalous dimension, γ∗ at the infrared fixed point was estimated
through the (finite-size) hyperscaling analysis. Our result is γ∗ ∼ 0.4− 0.5, which is not as big
as γ∗ ∼ 1 for the theory to be close to the realistic technicolor model. In the test of chiral broken
scenario, the chiral expansion parameter χ is much larger than one even at the smallest Mπ . We
could not consistently analyze the data based on the chiral expansion. A possibility of the chiral
broken phase in N f = 12 is not excluded yet. More detailed analyses with more data at larger
volume and lighter mass would be required. For the 16-flavor case, the pion mass data exhibit the
scaling which is consistent with the conformal scenario, while the obtained value of the γ is much
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bigger than the perturbative result. To obtain the γ at the infrared fixed point, further study of the
γ , especially volume dependence would be required. Another series of the study in our project has
been reported for the test of the walking behavior in N f = 8 [13], and an analytical calculation of
the hyperscaling through the Schwinger-Dyson equation [14].
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