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We present studies of the SU(2) gauge theory with 4, 6 and 10 fermion flavors. These models are

expected to lie on both sides of the edge of the conformal window, where the theory has an infrared

fixed point. We observe that the coupling grows with the length scale at four flavors, implying

QCD-like behavior. At ten flavors the results are compatiblewith a Bank-Zaks type fixed point.

The results at six flavors remain inconclusive: the running is slow towards the infrared but the

range and accuracy of the study are insufficient for determining the existence of a fixed point.
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Figure 1: The phase diagram of SU(N) gauge theory as a function of the number of colors, fla-
vors and fermion representations (F = Fundamental, 2A = 2-index antisymmetric, 2S = 2-index
symmetric, Adj = Adjoint). The shaded bands indicate the estimated conformal windows.

1. Introduction

Within the possible phase space of gauge theories there is a group of models with a non-
trivial infrared fixed point. In these conformal models, under renormalization group evolution, the
coupling runs to smaller values at small distances, exhibiting asymptotic freedom, but runs to a
constant at large distances. They have applications in phenomenological model building, such as
for technicolor theories [1, 2, 3], where the Higgs sector isreplaced with a strongly interacting
sector with chiral symmetry breaking. From purely theoretical point of view, mapping the phase
diagram of gauge theories in the number of colorsN and fermion flavorsNf is interesting for
understanding their nonperturbative dynamics from first principles. Many lattice studies of the
conformal window have already appeared in the literature: for example SU(2) with fundamental
representation fermions [4], SU(2) with adjoint fermions [5, 6,?, 8, 9, 10] and SU(3) with fermions
in the fundamental [11, 12, 13] or in the two-index symmetric[14], i.e. the sextet, representation.

In figure 1 we sketch a phase diagram for SU(N) gauge theories as a function ofN andNf

for model with fermions interacting with the fundamental, two-index (anti)symmetric and ad-
joint representations of the gauge field. The upper boundarycorresponds to the loss of asymp-
totic freedom, when the first coefficient of the perturbativeexpansion of the beta function is zero:
β0 = 11/3N−4/3Nf T(R)= 0, whereT(R) is the group theory factor for the fermion representation
R. Just below the upper bound the value of the fixed point is expected to be small and perturbation
theory applicable. When the number of flavors is lowered, however, the fixed point is expected
to move to higher coupling. Finally, as one comes to the lowerlimit, the critical coupling for the
chiral symmetry breaking becomes smaller than the expectedfixed point and the model becomes
chirally broken. The lower bound is therefore and inexact approximation in a region where pertur-
bation theory may not be applicable, and needs to be checked using nonperturbative methods. This
provides and interesting challenge for the lattice community.

In this study we investigate the phase diagram of SU(2) gaugetheory withNf = 10,6 and
4. The results have been published in reference [15]. The models with 10 and 4 fermions flavors
are expected to lie well within and below the conformal window respectively. The model with 6
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fermions should be close to the lower boundary of the conformal window and is therefore the most
challenging of these models.

Since large discretization errors have been observed in previous studies with unimproved Wil-
son fermions, we measure the coupling using the Schrödingerfunctional method with perturba-
tively improved Wilson fermions. The models with 4 and 10 fermion flavors behave as expected
and are in the confining and conformal phases respectively. Unfortunately, in the 6 flavor case we
are unable to resolve whether a fixed point exists, but the possible locations of the fixed point is are
at a much higher value of the coupling than suggested by previous unimproved results.

2. The Method and Results

The model is defined by the lattice actionS= SG +SF , whereSG is the standard Wilson
plaquette action andSF is the clover improved fermion action

SF = a4
Nf

∑
α=1

∑
x

[

ψ̄α(x)(iD +m0)ψα(x)+acswψ̄α(x)
i
4

σµνFµν(x)ψα (x)

]

, (2.1)

whereD is the standard Wilson-Dirac operator. We set the improvement coefficientcsw to the
perturbative value [17]csw = 1+ 0.1551(1)g2

0 +O(g4
0). We have performed short measurements

with Nf = 6 and 10 that suggest that this is close to the nonperturbative value at large coupling.
This is not the case withNf = 2 [18], wherecsw seems to diverge wheng2 is increased. We have
also included perturbative improvement at the Schrödingerfunctional boundaries,

δSct =
βL

4 ∑
pT

(ct −1)tr(1−U(p))

δSc̃t =a4∑
x
(c̃t −1)

1
a

ψ̄(x)ψ(x)(δ (x0 −a)+δ (x0− (L−a))

as described in [18].
We measure the running coupling using the Schrödinger functional method [19, 20, 21, 22].

We consider a lattice of volumeV = (Na)4. The spatial links at the timelike boundaries of the
lattice are fixed to the values

Uµ(x̄, t = 0) = e−iησ3a/L, Uµ(x̄, t = L) = e−i(π−η)σ3a/L (2.2)

whereσ3 is the third Pauli matrix. The spatial boundary conditions are periodic for the gauge field.
The fermion fields are set to vanish at the thet = 0 andt = L boundaries and twisted periodic
boundary conditionsψ(x+Lî) = exp(iπ/5)ψ(x) are set at the spatial boundaries. At the classical
level the boundaries generate a constant chromoelectric field and the response of the field to the
boundaries can be easily calculated,

∂Scl.

∂η
=

k

g2
0

, (2.3)

where the constantk is a function ofN = L/a andη [20]. At full quantum level we define the
running couplingg2 trough

〈

∂S
∂η

〉

=
k
g2 .
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Figure 2: The measured values ofg2(g2
0,L/a) against the inverse lattice sizea/L with 4 and 6

flavors of fermions. The Black dashed lines give an example ofthe running in perturbation theory
to 2-loop order at a modest coupling, normalized to match themeasurement atL/a= 6.
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Figure 3: The measured values ofg2(g2
0,L/a) against the inverse lattice sizea/L with 10 flavors of

fermions. The Black dashed lines give an example of the running in perturbation theory to 2-loop
order at a modest coupling, normalized to match the measurement atL/a= 6.

The measured values ofg2 for the models withNf = 4 and 6 are given in figure 2 and for the
model withNf = 10 in figure 3. The figures show that in the four fermion model the running of
the coupling with the energy scale stays negative and increases in magnitude with the coupling.
In the 10 fermion model the running is slow at small coupling and changes sign betweeng2 = 1
or g2 = 2. In the six fermion model the running remains slow to very high coupling but does not
seem to change sign, although the within the errors it is impossible to make any conclusion above
g2 = 10.
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Figure 4: (color online) The scaled step scaling functionσ(g2,2)/g2 with 4 and 6 fermions. The
thick red line corresponds to the continuum extrapolation,and the hashed band to the statistical
errors of the extrapolation. The thick dashed line with the shaded error band is the largest volume
step scaling function without extrapolation. The thin dashed line is the 2-loop perturbative value of
σ(g2,2)/g2.

To quantify the running and facilitate taking the continuumlimit, we use the step scaling
functionΣ(u,s,L/a) introduced in [19]:

Σ(u,s,L/a) = g2(g2
0,sL/a)

∣

∣

g2(g2
0,L/a)=u (2.4)

σ(u,s) = lim
a/L→0

Σ(u,s,L/a). (2.5)

We chooses= 2 and calculateΣ(u,s,L/a) at L = 6 and 8. Since we expect mostO(a) effects to
be absent in the improved model, we obtain a continuum limit using quadratic extrapolation.

For the continuum extrapolation we need to calculateΣ(u,s,L/a) at the same measured cou-
pling u= g2 on both lattice sizes. We use an interpolating function to define the measured coupling
g2(g2

0,L/a) in a continuous range ofg2
0. At each volumeL/a we fit the data to the function

1

g2(g2
0,L/a)

=
1

g2
0

[

1+∑n
i=1aig2i

0

1+∑m
i=1big2i

0

]

.

For the models with 4 and 6 fermion flavors we find the best fit using the parametersm= 2,n= 2
and for the model with 10 flavorsm= 1,n= 2.

In figures 4 and 5 we show the step scaling function for SU(2) with 4, 6 and 10 fermion
flavors. Both the models with 4 and 10 fermions behave as expected, with the renormalized step
scaling functionσ(g2)/g2 increasing with the coupling in the case with 4 fermions and clearly
crossingσ(g2)/g2 = 1 in the case with 10 fermions. In both models the continuum extrapolation
starts to deviate from the lattice result at large coupling,implying the presence of discretization
effects. The results for the model with 6 fermions are inconclusive: the running remains slow but
the discretization errors start to dominate before there ispossibility of a fixed point.
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Figure 5: As in figure 4 but with 10 fermion flavors.

To solve the problem we have investigated using smeared actions in combination withO(a)
improvement to reduce the systematic errors and allow simulations with larger lattice sizes. A
hypercubic smearing procedure was used to study the runningcoupling in [10] and [23]. It was
demonstrated that smearing can reduce the systematic errors and stabilize the simulation. We are
currently investigating SU(2) with two adjoint fermions using a hypercubic stout smearing similar
to the one used in [24, 25], using a smeared fermion action anda partially smeared gauge action.
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