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We study the dynamics of SU(2) gauge theory withNF = 6 Dirac fermions by means of lattice

simulation to investigate if they are appropriate to realization of electroweak symmetry break-

ing. The discrete analogue of beta function for the running coupling constant defined under

the Schrödinger functional boundary condition are computed on the lattices up to linear size of

L/a = 24 and preclude the existence of infrared fixed point belowg2 ∼ 7.6. Gluonic observables

such as heavy quark potential, string tension, Polyakov loop suggest that the target system is in

the confining phase even in the massless quark limit.
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After the seminal work [1], great attention has been paid to the possibility to study nearly
conformal dynamics of gauge theory by means of lattice simulation, which are expected to trigger
electroweak symmetry breaking. So far, many works have beeninvolved in the calculations on
SU(3)C gauge theory withNF Dirac fermions in the fundamental representation. Recently, it was
pointed out that three-color QCD with ten-flavors may be conformal in the infrared limit with
large mass anomalous dimension [2, 3]. However, large volume simulations indicated that chiral
symmetry breaking occurs in the twelve-flavor system [4]. The large scale simulation via Monte-
Carlo renormalization group [5] will be effective to extract the genuine dynamics of the system.

Here we focus on a series of SU(2)C gauge theories withNF Dirac fermions in the fundamental
representation, and try to find out a gauge system with the critical number of flavorsNcrt

F , at which
the chiral condensateψψ gets large anomalous dimension. SU(2) has a symplectic form so that its
fundamental representation is pseudo-real, and that the chiral symmetry ofNF -flavor system is en-
hanced to SU(2NF)⊃ SU(NF)L ×SU(NF)R×U(1)V . If chiral symmetry is spontaneously broken,
the plausible unbroken symmetry subgroup is SP(2NF). But, this enhanced unbroken symmetry
may contain the electroweak symmetryGW = SU(2)L ×U(1)Y depending on the representation
of new “quarks” underGW. It is thus inevitable to examine the vacuum alignment issue[6], i.e.,
whetherGW is broken or not. The transition between confinement and deconfinement is argued
to be second-order in pure Yang-Mills theory with SU(2)C [7] while it is first-order for SU(3)C.
Therefore, SU(2)C chiral dynamics can differ even qualitatively from those ofSU(3)C, in particular
at Ncrt

F .

Actually, two-color QCD has also been studied thus far. Iwasaki et al. showed thatNF =

3 system is conformal in the infrared (IR) limit [8] through study of phase structure of Wilson
fermions, while the perturbatively calculatedβ function suggests that 6≤ Ncrt

F ≤ 8. Afterwards,
running gauge coupling constant has been calculated nonperturbatively for two-color QCD with
six-flavors [9 – 11], and eight-flavors [12], implying that those systems are conformal in the IR
limit [9, 11, 12].

We note that SU(2)L gauge theory with three generations of quarks and leptons isexactly the
system of our concern here, the two-color QCD with six massless Dirac fermions. Our question
is if the quantum-mechanical dynamics of the presumed copy of the existing gauge symmetry and
fermionic matters but with largeΛ“QCD′′ could play the role of triggering spontaneous breakdown
of the electroweak symmetry, SU(2)L ×U(1)Y .

The purpose of this article is to report our first result for the dynamical features of two-
color QCD with six-flavors according to the simulation in theframework of lattice gauge the-
ory. Throughout this work, the standard Wilson plaquette gauge action with unimproved Wilson
fermions is used for simulation.

We measuregSF(L/a, g2
0) for sets of(L/a, g2

0 = 4
β ) defined under the Schrödinger functional

boundary condition with the twist angle for the quark fields set to 0 [13]. Compared to the preceding
work [9], computation on larger lattices,L/a = 6, 8, 12, 16, 18 and 24, is done with fine tuning
of the critical value of hopping parameter for every pair of(L/a, g2

0). Data are fit to the presumed
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functional form

g2
0

g2
fit(L/a, g2

0)
=

1−a(1)
L/a g4

0

1+ pL/a,1g2
0 +

N

∑
k=2

a(k)
L/a g2k

0

, (1)

where the coefficientpL/a,1 is obtained by the one-loop calculation. Using the fit resultg2
fit(l , g2

0),
the discrete beta function [14]

B(s)(u; l1 7→ l2 = sl1) ≡
1

g2
fit(l2 = sl1, g2

0)

∣

∣

∣

∣

u=g2
fit(l1,g

2
0)

− 1
u

,

for a fixed step scaling factorscan be calculated.
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Figure 1: Discrete beta function for the step scaling
s= 2. The horizontal axis is theinverseof squared
renormalized coupling constant. Red plots were ob-
tained from all data, while blue plots were obtained
from data withoutL/a = 24.

Figure 1 shows our result for its contin-
uum limit B(u, s= 2) taken in the same man-
ner as in Ref. [15]. The result precludes the
existence of infrared fixed pointu⋆ below 7.6.
We are also trying to calculate the anomalous
dimension of the chiral condensateψψ . We
find that the result is roughly consistent with
the perturbative prediction and the systematic
uncertainties are under examination.

The above result suggests thatNF = 6 is
not far fromNcrt

F and motivates us to investi-
gate the theory further from a different point
of view. We thus study the dependence of
mesonic spectrum on quark masses. First, in
order to see the phase structure as a statistical
system and fix the simulation parameters, we performed a scanon the(β , κ)-plane with relatively
small lattices. Figure 2 shows the plaquette〈W〉 as a function of 1/κ on 83×24 and 83×32. For
β . 1.7, there is a region ofκ in which 〈W〉 changes rapidly.

Thus, we chooseβ = 2.0 to simulate larger lattices for our target system.

Figure 3 shows the masses of the lightest pseudoscalar and vector mesons, where the depen-
dence onκ is translated to that onamPCAC via Figure 4 and the following properties are observed:

(1) The meson masses are bounded from below at smallamPCAC. The lower boundamsat
ψ (L/a)

depends onL/a.

(2) Even for smallamPCAC, the ratio of the mass of the vector meson to that of the pseudoscalar
meson is not far from 1. Figure 5 shows that the scalar meson ispaired with the axial-vector
meson1, and that their masses are well above those of the lightest pseudoscalar and vector
mesons before saturation occurs.

1The fit is performed for the two-point correlation functionsin the scalar and axial-vector channels before substantial
fluctuation sets in at larget/a.
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Figure 2: Plaquette,〈W〉, versus 1/κ on the lattices
of spatial linear sizeL/a = 8 with β = 1.5, 1.6, 1.7
and 1.9.
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Figure 3: Lightest pseudoscalar (◦) and vector (•)
meson masses versus PCAC massmPCAC in lattice
unit atβ = 2.0 on four different volumes.
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Figure 4: PCAC massmPCAC versus 1/κ at β =

2.0. The inset zooms in the vanishingmPCAC region.
Finite size effect is negligibly small.
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Figure 5: Masses of lightest pseudoscalar (P), vec-
tor (V), scalar (S) and axial-vector (A) mesons for
L/a = 24 andL/a = 32.

For L/a = 8, we also checked that the property(1) persists for Iwasaki gauge action and/or clover
fermions, and thatamsat

ψ (L/a = 8) depends modestly on the types of action andβ . This saturation
phenomenon was also observed in SU(3)C gauge theory with two sextet quarks [16]. When we
look at Figure 3 from largeamPCAC, the meson masses branch at largeramPCAC with amsat

ψ (L/a)

for smallerL/a, which strongly indicates that this saturation originatesfrom finite size effect.
We comment on the dependence ofamsat

ψ (L/a) on the linear sizeL/a of the system. The spatial
correlation lengthξψ cannot become larger than the system sizeL/a and saturated at∼ L/a. Thus,
if the Compton wavelength 2π/(amψ ) coincides withξψ , amsat

ψ (L/a) then decreases withL/a,
accounting for the dependence ofamsat

ψ (L/a) on L/a in Figure 32. However, this is actuallynot
the case in SU(2)C gauge theory with two adjoint Dirac fermions, whereamsat

P (L/a) increases with
L/a [18]. We recall that the finite size correction consists of two terms [19]; the term induced
by PP scattering which increases the pseudoscalar meson massamP, and the one induced by the
propagation of 0++ which decreasesamP. Since the two adjoint fermion system contains a glueball-

2The finite size effect observed here differs from the power correction found in Ref. [17].
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rich 0++ lighter thanP [20], the latter contribution is possibly larger than the former. The decrease
of amsat

P (L/a) with L/a in our target system suggests that thePP scattering contribution is the
dominant source of the finite size effect. The knowledge on the mass of the lightest 0++ will surely
give us more comprehensive understanding on this issue.

Our interest is if the property (2) reflects the dynamics of two-color QCD with six flavors of
almost massless quarks. The high degeneracy in masses between vector and pseudoscalar mesons
was also observed in the SU(2)C gauge theory with two adjoint fermions [18], which is considered
to be conformal in the deep IR. Meanwhile, such a degeneracy reminds us the spectrum of bound
states of massive quarks,mq ≫ ΛQCD. Another possibility is that it may occur as a consequence of
finite size effect; even if the theory is confining, the systemsize is too small for the confining force
to act between quark and anti-quarks so that they are boundedsolely byZ-copies of Coulombic
forces. The knowledge on the heavy quark potential will helpto answer these questions.
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Figure 6: Heavy quark potential obtained from the lattice with 243×48,β = 2.0, 0.1490≤ κ ≤ 0.1498 (left
panel), and 0.1498≤ κ ≤ 0.1502 (right panel). Note that the scale of the ordinate of theright differs from
that in the left.
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Figure 7: Masses of lightest pseudoscalar (P) and
squared root of string tensiona

√
σ .

The heavy quark potential is ex-
tracted from the measurement of various
sizes of Wilson loops. To reduce short dis-
tance fluctuation, four-level Wilson flow
smearing [21] with the weightε = 0.01 in
the exponent was performed for link vari-
ables in the spatial directions. Figure 6
plots the heavy quark potentials on the lat-
tices with L/a = 24 and variousκ . See
Figure 4 for the correspondence of 1/κ
and amPCAC. We can see that the heavy
quark potential contains the component of
linear term,i.e., confinement.

Figure 7 shows the squared roota
√

σ
of the string tension. The comparison ofa

√
σ for L/a = 24 with that forL/a = 32 indicates that

the finite size effect is not substantial for string tension.Moreover, there is no such a supporting
evidence that it approaches to zero in the limitamPCAC→ 0, suggesting that the theory is confining
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in the chiral limit. However,amP relative toa
√

σ in Figure 7 cautions that if the system exhibits
spontaneous chiral symmetry breakdown, the simulation on the lattice, say with sizeL/a= 48, will
be necessary to capture genuine chiral dynamics.
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Figure 8: Distribution of Polyakov loops in the
z-direction (NZ = 32, periodic) on the lattice with
323×64,β = 2.0, κ = 0.14965.
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Figure 9: Distribution of Polyakov loops in the di-
rection (NT = 8 and anti-periodic) on the lattice with
182×48×8,β = 2.0, κ = 0.1492.

Lastly, we study the distribution of Polyakov loopP in the thermal direction.P takes its value
in a real number in the SU(2) gauge theory. Its vacuum expectation value〈P〉 is not a good mea-
sure of confinement/deconfinement transition in presence ofdynamical quarks in the fundamental
representation, which explicitly breaks the centerZ2. In spite of this fact, its distribution will help
to capture the essence of the dynamics; the system is deconfining if the distribution ofP does not
cover 0 and is completely asymmetric with respect to the origin, while it is confining if it peaks at
the origin and distributes almost symmetrically.

We can see that the periodic boundary condition is equivalent to the anti-periodic boundary
condition in SU(2)C gauge theory if all matter fields belong to the representations ofZ2-odd con-
jugacy classes. (Only the sign of aZ2-odd observable depends on the condition.) Thus, we regard
one of the spatial directions with 32 sites on lattices of 323×64 as a thermal direction and measure
P along this direction. Figure 8 shows the distribution ofP for κ = 0.14965. The periodic/anti-
periodic boundary condition will reduce the dynamical modes so that the finite size effect will act
to order the system (〈P〉 6= 0, i.e., tendency of deconfinement). Even though the aspect ratio is
32/32, the distribution ofP in Figure 8 exhibits disordering, suggesting confinement. In contrast,
the distribution ofP for NT = 8 in Figure 9 does not cover 0, suggesting deconfinement. The
question whether this transition is really thermal type needs further study.

To summarize, we show some evidence supporting confinement in the two-color QCD with
six-flavors of quarks. As can be seen in the inset of Figure 3, the mass splitting between pseu-
doscalar meson and vector meson increases gradually in the small quark mass region until satura-
tion is encountered. The study with larger size of lattices is necessary to approach smallermP/

√
σ

and to get a definite conclusion. Now, it is interesting to start the calculation of the other physical
quantities, such as the mass of the lightest particle in the 0++ channel relative to the decay constant.
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