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Bose-Fermi mixtures have been recently realized and invesitigated in ultracold atomic experi-

ments. We formulate quantum Monte Carlo simulation of Bose-Fermi mixtures on the (3+1)-

dimensional lattice. As its first application, we analyze the boson-fermion pair correlation and the

phase diagram of the Bose-Einstein condensation.
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Lattice simulation of ultracold atomic Bose-Fermi mixtures

1. Introduction

One frontier of ultracold atomic physics is multi-component quantum system, such as Bose-
Fermi mixtures. The most famous example is a4He-3He mixture. Recently, many kinds of Bose-
Fermi mixtures have been investigated in ultracold atomic experiments. In particular, Bose-Fermi
mixtures can be trapped on a three-dimensional optical lattice. The mixtures of87Rb-40K [1, 2, 3],
170Yb-173Yb and174Yb-173Yb [4] were examined on the optical lattice. Since the optical lattice is
a real physical lattice, we can exactly study lattice physics in laboratory.

On the theoretical side, we can exactly reproduce the lattice physics in quantum Monte Carlo
simulations. Bose-Fermi mixtures have been studied in quantum Monte Carlo simulations in 1+1
dimensions [5, 6, 7, 8, 9, 10, 11]. All the previous simulations were done in the world-line formal-
ism [12] or its extensions [13, 14]. The world-line formalism is an exact scheme in 1+1 dimensions.
In higher dimensions, however, there is the sign problem which originates from antisymmetric
property of fermions. For this reason, there was no quantum Monte Carlo study of Bose-Fermi
mixtures in 3+1 dimensions.

In this study, we perform quantum Monte Carlo simulation of Bose-Fermi mixtures on the
(3+1)-dimensional lattice [15]. We adopt the same framework as the lattice QCD simulation. In
this framework, there is no sign problem on fermions. We use the lattice unit and drop the lattice
constant throughout this paper.

2. Formalism

We consider one-component boson fieldΦ(⃗x,τ) and two-component fermion fieldΨ↑(⃗x,τ)
andΨ↓(⃗x,τ). The formalism is based on the path integral in terms of the Euclidean action. The
generating functional is

Z =

∫
DΦ∗DΦDΨ∗

↑DΨ↑DΨ∗
↓DΨ↓ e−S

=
∫

DΦ∗DΦ detK↑detK↓e
−SB , (2.1)

This system is similar to the two-flavor QCD, in which the boson field is gluon and the fermion
fields are u-quark and d-quark. We adopted the hybrid Monte Carlo algorithm, which is frequently
used in the lattice QCD simulation.

For the lattice action, we consider the Bose-Fermi Hubbard model. The naive form of the
action is

S = SB+SF +SBF (2.2)

SB = ∑⃗
x,τ

[
Φ∗(⃗x,τ){Φ(⃗x,τ)−Φ(⃗x,τ −1)}−µBnB(⃗x,τ)

−tB
3

∑
j=1

{Φ∗(⃗x,τ)Φ(⃗x+ e⃗j ,τ)+Φ∗(⃗x,τ)Φ(⃗x− e⃗j ,τ)}+UBnB(⃗x,τ){nB(⃗x,τ)−1}
]
(2.3)

SF = ∑
x⃗,τ,σ

[
Ψ∗

σ (⃗x,τ){Ψσ (⃗x,τ)−Ψσ (⃗x,τ −1)}−µFσ nFσ (⃗x,τ)
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−tFσ

3

∑
j=1

{Ψ∗
σ (⃗x,τ)Ψσ (⃗x+ e⃗j ,τ)+Ψ∗

σ (⃗x,τ)Ψσ (⃗x− e⃗j ,τ)}
]

(2.4)

SBF = ∑
x⃗,τ,σ

UBFnB(⃗x,τ)nFσ (⃗x,τ) (2.5)

with nB(⃗x,τ) = Φ∗(⃗x,τ)Φ(⃗x,τ) andnFσ (⃗x,τ) = Ψ∗
σ (⃗x,τ)Ψσ (⃗x,τ).

We list several remarks on this action:

• This action has the sign problem on the imaginary-time derivative term of the boson field.
This is understood in the Fourier transformation as

∑⃗
x,τ

Φ∗(⃗x,τ){Φ(⃗x,τ)−Φ(⃗x,τ −1)}= Nτ ∑⃗
x,k

{1−e−iωBk}Φ̃∗(⃗x,k)Φ̃(⃗x,k) . (2.6)

The boson Matsubara frequency isωBk = 2kπT. To avoid this sign problem, we adoptedthe
zero-frequency approximation. In this approximation, nonzero-frequency modesΦ̃(⃗x,k ̸= 0)
are set to zero, and the boson field is independent of imaginary time asΦ(⃗x,τ) = Φ̃(⃗x,k =

0) ≡ Φ(⃗x). This approximation is a priori justified in high-temperature limit or near the
critical temperature. In general case, we can check the validity of the approximation by
adding a few lowest frequency modes, e.g., in the reweighting method. This sign problem is
characteristic in the non-relativistic theory. There is no sign problem in the relativistic scalar
theory because the imaginary-time derivative term is bilinear.

• We do not consider the fermion self-interaction term for simplicity. It is straightforward to
treat the fermion self-interaction term by the Hubbard-Stratonovich transformation and the
auxiliary field.

• We take the same hopping parameter and the same chemical potential for the two fermions,
tF ≡ tF↑ = tF↓ and µF ≡ µF↑ = µF↓, because the hybrid Monte Carlo algorithm becomes
simple. The two fermions are degenerated.

• The imaginary-time derivative is discretized to the backward difference. The chemical poten-
tial and the interaction are multiplied to the backward hopping term, according to Refs. [16,
17]. For example,

Ψ∗(⃗x,τ)[Ψ(⃗x,τ)−Ψ(⃗x,τ −1)]+{−µF +UBFnB(⃗x)}Ψ∗(⃗x,τ)Ψ(⃗x,τ)
→ Ψ∗(⃗x,τ)[Ψ(⃗x,τ)+{−eµF +UBFnB(⃗x)}Ψ(⃗x,τ −1)] . (2.7)

• The most time-consuming part of the simulation is the inversion of the fermion matrix. We
used the BiCGstab solver for the matrix inversion. We performed the Fourier transforma-
tion to the frequency space for preconditioning, i.e., for accelerating the convergence of the
solver. After the Fourier transformation, the fermion matrix becomes diagonal in the fre-
quency space. Because the temporal lattice sizeNτ is much larger than the spatial lattice size
Ns, this preconditioning greatly improves the convergence of the solver.
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From the above consideration, the final form of the lattice action is

SB = Nτ ∑⃗
x

[
(1−eµB)nB(⃗x)

−tB
3

∑
j=1

{Φ∗(⃗x)Φ(⃗x+ e⃗j)+Φ∗(⃗x)Φ(⃗x− e⃗j)}+UBnB(⃗x){nB(⃗x)−1}
]

(2.8)

SF = Nτ ∑
x⃗,k,σ

[
(1−eµF e−iωFk)ñFσ (⃗x,k)

−tF
3

∑
j=1

{Ψ̃∗
σ (⃗x,k)Ψ̃σ (⃗x+ e⃗j ,k)+ Ψ̃∗

σ (⃗x,k)Ψ̃σ (⃗x− e⃗j ,k)}
]

(2.9)

SBF = Nτ ∑
x⃗,k,σ

UBFe−iωFknB(⃗x)ñFσ (⃗x,k) . (2.10)

The fermion Matsubara frequency isωFk = (2k−1)πT.
We can prove the positivity and the reality of the fermion determinant. In the fermion matrix,

the complex factor is onlye−iωFk and other parts give real eigenvalues. Therefore, the fermion
determinant is

detKσ = ∏
k

(A+e−iωFkB) = ∏
sinωFk>0

[(A+BcosωFk)
2+B2sin2 ωFk]> 0 , (2.11)

whereA andB are real numbers.
There are many simulation parameters in this system. We fixed the hopping parameters

tB = tF = 0.01, the chemical potentialsµB = µF = 0, the boson self-interactionUB = 0.1, and
the spatial lattice volumeN3

s = 103. We varied the boson-fermion interactionUBF = −0.1 to 0.1
and temperatureT = 1/Nτ = 0.01 to 0.05.

3. Result

Because the simulation is in the grand-canonical formalism, number densities are not fixed.
The number densities are functions of chemical potentials and other parameters. In Fig.1, we
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Figure 1: Left: the boson number density⟨nB⟩. Right: the fermion number density⟨nF⟩.
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Figure 2: The boson-fermion correlation function⟨nB(⃗x)nF (⃗y)⟩ as a function of the distanceR= |⃗x− y⃗|.
Left: the attractive boson-fermion interactionUBF =−0.05. Right: the repulsive boson-fermion interaction
UBF = 0.05.

show the boson number density⟨nB⟩ and the fermion number density⟨nF⟩. The number densities
depend on the boson-fermion interactionUBF. The number densities are decreasing functions of
UBF because the chemical potentials are replaced asµB → µB−UBFnF andµF → µF −UBFnB at
tree level. Since the free fermion has the particle-hole symmetry, the fermion is half-filling, i.e.,
⟨nF⟩ = 0.5 atUBF = 0. On the other hand, the boson does not have the particle-hole symmetry at
finite UB. Thus, the regions ofUBF > 0 andUBF < 0 are not symmetric.

In this setup, we measured the boson-fermion pair correlation⟨nB(⃗x)nF (⃗y)⟩. At x⃗ = y⃗, this
quantity is called the pair occupancy. The physical interpretation of the pair occupancy is a proba-
bility to find boson-fermion pairs in a single lattice site. In Fig.2, we plot the boson-fermion pair
correlation as a function of the distanceR= |⃗x− y⃗|. The temperature isT = 0.05. In the attractive
caseUBF < 0, the pair correlation is enhanced atR= 0, and thus the formation of boson-fermion
pairs is favored. In the repulsive caseUBF > 0, the pair correlation is reduced atR= 0, and thus
the bosons and the fermions tend to separate.

Next we analyze the Bose-Einstein condensation. The Bose-Einstein condensation is identified
from the long-range behavior of the boson propagator⟨Φ∗(⃗x)Φ(⃗y)⟩, which is so-called the off-
diagonal long-range order. As shown in the left panel of Fig.3, the boson propagator drops to zero
at high temperature. At low temperature, zero-momentum mode of the boson field appears and the
boson propagator has a nonzero expectation value inR→ ∞. This expectation value corresponds
to the Bose-Einstein condensation density. In the right panel of Fig.3, we draw the condensate
fraction

⟨nB0⟩
⟨nB⟩

=
⟨Φ∗(⃗x)Φ(⃗y)⟩R=Ns/2

⟨Φ∗(⃗x)Φ(⃗y)⟩R=0
. (3.1)

Despite the fixed boson self-interactionUB, the phase transition temperature is changed by the
boson-fermion interactionUBF. We see that the fermion-induced interaction affects the Bose-
Einstein condensation. This is similar to the confinement-deconfinement phase transition in QCD.
Color confinement is a gluon phenomenon, but its phase transition temperature is changed by the
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Figure 3: Left: the boson propagator⟨Φ∗(⃗x)Φ(⃗y)⟩ as a function of the distanceR= |⃗x− y⃗| at UBF = 0.
Right: the phase diagram of the Bose-Einstein condensation.

dynamical quark effect. The current simulation was performed in a fixed spatial volume. For
precisely determining the phase boundary, we need to perform the finite size scaling.

4. Summary

We have formulated the quantum Monte Carlo simulation of Bose-Fermi mixtures on the
(3+1)-dimensional lattice. We have calculated the boson-fermion pair correlation and the phase
diagram of the Bose-Einstein condensation. Physics in 3+1 dimensions differs from physics in 1+1
dimensions. For example, the Bose-Einstein condensation cannot be observed in 1+1 dimensions.
We should note that these are experimental observables in ultracold atomic physics. The pair oc-
cupancy was experimentally measured on an optical lattice [4]. The fermion-induced effect on the
Bose-Einstein condensation was observed in the interference pattern on an optical lattice [1].
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