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We measure the sphaleron rate with the physical parameters of the Standard Model, including
the recently found Higgs mass of mH = 125 GeV. The sphaleron rate tells us about the efficiency
of baryon number violation through sphaleron transitions. These occur above the electroweak
scale ∼ 100 GeV and get exponentially suppressed at temperatures substantially below the elec-
troweak crossover. The sphaleron rate enters computations of Baryogenesis via Leptogenesis,
where non-zero lepton number is converted into non-zero baryon number. We simulate the effec-
tive electroweak theory on the lattice with multicanonical and real-time methods to calculate the
sphaleron rate as a function of temperature through the electroweak crossover.
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1. Introduction

Baryon and lepton number are not exactly conserved quantities in the Standard Model because
of the axial anomaly, which connects them to the Chern-Simons number of the weak gauge field.
Vacua in the electroweak theory are labeled by an integer-valued Chern-Simons number

NCS =
∫

d3x j0
CS =− g2

64π

∫
d3x ε

i jkTr
(

AiFjk + i
g
3

AiA jAk

)
. (1.1)

In the early Universe, when T > 100 GeV, it was possible to move from one vacuum to another sur-
mounting the potential barrier between vacua through sphaleron transitions, thus changing Chern-
Simons number, B and L according to

1
nG

[B(t)−B(0)] = Li(t)−Li(0) = NCS(t)−NCS(0), (1.2)

with nG the number of generations of fermions. At zero temperature, where the potential barrier is
high, the sphaleron rate is exponentially small and, when the Higgs field expectation value v� T ,
the rate is negligible. In electroweak Baryogenesis scenarios [1] the baryon number of the Universe
is generated during the electroweak phase transition. However, this scenario does not work in the
Standard Model: it requires stronger CP violation than observed and a first order phase transition,
whereas the Standard Model has a smooth crossover [2].

Nevertheless, the sphaleron rate during the electroweak crossover in the Standard Model is
relevant for Baryogenesis via Leptogenesis: indeed the sphaleron rate converts a lepton asymmetry
into a baryon asymmetry. If the lepton asymmetry is generated just before or during the electroweak
phase transition, how the sphaleron rate shuts off has an effect on the generated baryon number.

The sphaleron rate has been studied in the broken phase before, but either with unphysical
Higgs masses [3, 4, 5] or not very deeply in the broken phase [3]. Both perturbative calculations
[6, 7] and lattice simulations [3, 8, 9, 10] have been used.

In this paper we follow the procedure of our previous works [11, 12] in determining the
sphaleron rate at the energy range of the electroweak crossover, with the crucial difference that
now we are able to perform the simulations with the recently found Higgs mass, mH = 125 GeV.
Our results are compared to analytical estimates both in the broken and symmetric phases [6].

2. Theory on the lattice

The thermodynamics of the 4-dimensional electroweak theory is studied in 3 dimensions by
means of dimensional reduction [13], a perturbative technique that gives the correspondence be-
tween 4D and 3D parameters. The result is a SU(2) effective theory with the Higgs field φ and
gauge field Aµ (Fi j)

L =
1
4

Fa
i jF

a
i j +(Diφ)†(Diφ)+m2

3φ
†
φ +λ3(φ †

φ)2, (2.1)

and 3D effective parameters g2
3, λ3 and m2

3.
Bödeker showed [14] that at leading order in log(1/g) the time evolution of this effective SU(2)

Higgs model is governed by Langevin dynamics. The latter, though, is very slow to simulate on

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
5
5

The sphaleron rate at the electroweak crossover with 125 GeV Higgs mass Michela D’Onofrio

the lattice and can be substituted by any other dissipative procedure, e. g. heat bath. One heat-bath
sweep through the lattice corresponds to the real-time step [4]

∆t =
a2 σel

4
, (2.2)

with

σ
−1
el =

3
m2

D
γ, γ =

Ng2T
4π

[
ln

mD

γ
+3.041

]
(2.3)

where σel is the non-abelian color conductivity, which quantifies the current response to infrared
external fields, N is the dimension of the SU(N) gauge group, and mD is the Debye mass, determin-
ing the length scale lD ∼ 1/mD ∼ 1/gT . We made use of a 323 lattice, with βG ≡ 4

g2
3a = 9, where g3

is the 3D gauge coupling and a the lattice spacing. In real-time simulations, for each temperature
we computed 4 trajectories for every 1000 initial configurations.

3. Measurement of the sphaleron rate

In the symmetric phase we make use of canonical Monte Carlo simulations and approach the
broken phase. At very low temperatures, the rate is highly suppressed and canonical methods
do not work anymore. We need multicanonical methods, which calculate a weight function that
compensates the high potential barrier between the vacua, thus allowing transitions. The exact
value of the sphaleron rate

Γ≡ lim
t→∞

〈(NCS(t)−NCS(0))2〉
V t

(3.1)

is obtained, in the broken phase, through a method similar to the one used in [3, 4].

1. Once done the multicanonical simulations, we obtain the canonical (physical) probability
distribution of the Chern-Simons number pphys.(NCS).

2. We choose a narrow interval 1/2− ε/2 ≤ NCS ≤ 1/2 + ε/2 around the point that separates
vacuum NCS = 0 from the vacuum NCS = 1. The relative probability of finding a configura-
tion here is

P(|NCS−1/2|< ε/2) =
∫ 1/2+ε/2

1/2−ε/2
dN pphys(N). (3.2)

This is where we need multicanonical methods, as the probability of being on top of the
barrier is extremely small, and to get a reliable estimate would take an impractically long
time with canonical sampling.

3. Let us now take a random configuration from the canonical distribution but with the con-
straint 1/2− ε/2 < NCS < 1/2+ ε/2; i.e. near the top of the potential barrier. Starting from
this configuration, we now generate two real-time trajectories using heat-bath dynamics.
The trajectories are evolved until the Chern-Simons number falls near a vacuum value. In-
terpreting one of the trajectories as evolving backwards in time, we can glue the trajectories
together at the starting point and obtain a vacuum-to-vacuum trajectory. The trajectory can
either return to the starting vacuum or be a genuine tunneling trajectory. Only the latter-type
trajectories contribute to the sphaleron rate.
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4. We can obtain the tunneling rate by measuring |∆NCS/∆t| from the trajectories at the moment
they cross the value NCS = 1/2. Here ∆t is the time interval between successive measure-
ments, and ∆NCS the change in Chern-Simons number. This characterizes the probability
flux through the top of the barrier. We obtain the physical time difference from the relation
between the heat-bath “time” and physical time, equation (2.2).

5. If the tunneling trajectories would go straight across the top, the ingredients above would
be sufficient to calculate the total rate. However, typically the trajectories “random walk”
near the top of the barrier and can cross the value NCS = 1/2 several times. Because the
trajectories were chosen starting from a set of configurations near the top of the barrier, this
leads to overcounting: the evolution could be started at any point the NCS = 1/2 limit is
crossed. This can be compensated by calculating a dynamical prefactor

d =
1

Ntraj
∑
traj

δtunnel

# crossings
, (3.3)

where the sum goes over the ensemble of trajectories, Ntraj is the number of trajectories,
δtunnel is 0 if the trajectory does not lead to a change of the vacuum and 1 if it does, and
(# crossings) is the number of times the trajectory crosses NCS = 1/2.

With these ingredients, the sphaleron rate now becomes

Γ =
P(|NCS−1/2|< ε/2)

ε

〈∣∣∣∣∆NCS

∆t

∣∣∣∣〉d. (3.4)

We note that the result is independent of ε as long as ε� 1. It is also independent of the frequency
∆t with which the Chern-Simons number is measured: if we decrease the measurement interval, the
trajectories become more jagged due to the random-walk nature of the heat-bath updates. This will
increase the number of the crossings of the value NCS = 1/2 and hence decrease d. However, the
latter is completely compensated by a corresponding increase in 〈|∆NCS/∆t|〉. If the measurement
interval ∆t is small enough, random walk arguments imply d ∝ (∆t)1/2 and 〈|∆NCS/∆t|〉∝ (∆t)−1/2.
This is corroborated by the numerical data. Thus, equation (3.4) has a well-defined continuum limit.

4. Results

We obtain the sphaleron rate Γ/T 4 and the expectation value for the Higgs field 〈φ 2〉 for Higgs
mass mH = 125 GeV. Figure 3 shows the Higgs field expectation value behavior as a function of
temperature. We start from the “symmetric phase” with canonical Monte Carlo simulations and
lower the temperature to reach the “broken phase”, where we switch to multicanonical simulations.
We can see the Higgs field assuming a non-zero value when approaching the broken phase, and the
transition from the two methods occurring smoothly.
The sphaleron rate as a function of temperature is shown in Figure 4. Here again we perform the
simulations with canonical Monte Carlo at high temperatures and continue with multicanonical
methods when reaching the cold broken phase. The sphaleron rate changes from its asymptotic
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Figure 1: The Higgs expectation value 〈φ 2〉 for Higgs mass of 125 GeV as a function of temperature. The
high-temperature canonical and low-temperature multicanonical results match beautifully in the transition
region.

value to become exponentially suppressed at very low temperatures. The canonical and multi-
canonical methods are in good agreement. The theoretical curves, used to compared our results,
were obtained separately for the broken and symmetric phases, through perturbative calculations
in [6].

5. Conclusion

We improved the previous estimates for the sphaleron rate and determined its behavior from
the symmetric to the broken phase, through the electroweak crossover. Our results are in agreement
with previous estimates in the symmetric phase, and in the broken phase the slope of our curve is
the same as in the analytic calculation [6].

Even though the Standard Model has a too weak source of CP-violation in the quark sector,
Baryogenesis might still be viable through lepton number violating processes. The sphaleron rate
plays an important role in Leptogenesis, as the conversion of lepton to baryon number depends on
it, and it is therefore important to know its size rather accurately.
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Figure 2: The sphaleron rate for a Higgs mass of 125 GeV. The high-temperature canonical and low-
temperature multicanonical results again match very well in the transition region. Also shown are previous
high-temperature estimates ∼ 5 × 10−7 T4, (top, horizontal line) and perturbative calculations in the low-
temperature phase (bottom, wide band), both from [6].
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