PROCEEDINGS

OF SCIENCE

Radial Quantization for Conformal Field Theories on
the Lattice

Richard C. Brower*"
Boston University
E-mail: pr ower @u. edu|

George T. Fleming
Yale University
E-mail: Geor ge. f| emi ng@al e. edy

Herbert Neuberger
Rutgers University
E-mail: pheuber g@hysi cs. rut gers. edy

We consider radial quantization for conformal quantum figlegory with a lattice regulator. A
Euclidean field theory oRP is mapped to cylindrical manifol® x SP~1, whose length is loga-
rithmic in scale separation. To test the approach, we apyd the 3D Ising model and compute
n for theZ, odd primary operator and its descendants.

The 30th International Symposium on Lattice Field Theory
June 24 - 29, 2012
Cairns, Australia

*Speaker.

TRCB acknowledges support under DOE grants DE-FG02-91ER4IBZE-C02-06ER41440, and NSF grants
OCI-0749317, OCI-0749202. RCB has benefited from conversatidth Joseph Minaham. GTF acknowledges partial
support by the NSF under grant NSF PHY-1100905. HN acknowkedggial support by the DOE under grant number
DE-FG02-01ER41165. HN is grateful for support under the Wesisiting scientist program at the Weizmann Institute
in the Department of Physics and Astronomy. HN has benefited fronecsations with Adam Schwimmer and Micha
Berkooz. We also thank the Galileo Galilei Institute for Theoretical Physicshie hospitality and INFN for partial
support offered to us (RCB, GTF) during the workshop "New Frosiiel_attice Gauge Theories".

(© Copyright owned by the author(s) under the terms of the Cre@dmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:brower@bu.edu
mailto:George.fleming@yale.edu
mailto:neuberg@physics.rutgers.edu

Radial Quantization for Conformal Field Theories on the Lattice Richard C. Brower

1. Introduction

Conformal or near conformal behavior in field theory lie at the heart afyrenallenging
theoretical and phenomenological problems. For example models that segitace the Higgs
mechanism of the Standard Model with a new strong gauge dynamics aiMtsedie often invoke
conformality as an explanation of the flavor hierarchies. While lattice gawg®ythn principle
provides a useful approach to explore such non-perturbativenigaaconventional lattice meth-
ods for theories that are parametrically close to conformal theories di@ildiprecisely because
of the growing separation of the length scales between the UV and IR. wieexplore a new
technique that replaces the traditional Euclidean lattice in favor of one doifRatlial Quantiza-
tion. Radial quantization has a long history starting with the observation that tlyeceaariant
guantization of the 2-d conformal string action was given as a radialtigednsystem with the
VirasoroLo operator replacing the Hamiltonian. In 1979 Fubini, Hanson and JaEkisuggested
radial quantization of field theory in higher dimensions and later in 1985yCardggested lattice
implementations in general dimensiofis [2].

For an exactly conformal field theory, the idea is straight forward. Taenfletric for any
Euclidean field theory o®P can obviously be expressed in radial co-ordinates,

d?s = dxHdx* = rge? (dt? +dQ3 ,), (1.1)

wheret = log(r /ro), introducing an arbitrary reference scajeand wheradQ3 _, is the metric on
the SP—* sphere of unit radius. However in the case of an exactly conformaltfielory, a local
Weyl transformation will also remove the conformal factor, [@kp from the Lagrangian of the
quantum theory. The resultant theory is mapped from the Euclidean BSaizea D dimensional
cylinder, R x SP~1. A simple intuitive illustration of this map begins with the exact two point
function for a primary operator with dimensidy

1
X)P(X2)) = —————+, 1.2
(@0)90)) = [ (12)
and then converts it to radial form,
1 _
rer5 (@(t, Q1) @(tz, Q2)) = )~ e A (1.3)

[I’z/l’l—|— I’l/l’z — 200%912)]A

ast =log(ry) —log(r1) — . The factors on the left are the Weyl factors absorbed into the field
redefinition of operators for radial quantization. The angular deper@projected onto spherical
harmonics give rise to integer spaced descenddnts:A+1.

Our goal is to develop numerical methods to solve conformal quantum fieldiebess the
infinite refinement limit of a lattice regularization dk x SP~1. If the action is real, one can
solve the latter numerically by Monte Carlo methods, extract quantitative ésatnd test the
mathematical question of convergence to a universal continuum limit. If thisssilple, a potential
advantage is that a lattice with sites int = log(r /ro) represents an exponential scale separation
as function ofT relative to conventional Euclidean finite lattice BR.
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2. Lattice Implementation

As atest of this idea, we present first results for the 3D Ising model &Vilsen-Fisher critical
point. The largest discrete subgroup of the isometrié& 02 are achieved by a uniform lattice for
the non-compadR co-ordinate and an icosahedral approximation to the compact sjfferghe
icosahedron has 12 vertices and 20 faces given by identical flat egjallaiangles as illustrated in
Fig.[d. Its symmetry groufy, is a 120 element subgroup 6{3). The angular momenta= 0,1, 2
representations dd(3) remain irreducible representations undier There is enough symmetry
to isolate a scalar primary state and at least two of its immediate descendant Btatene the
lattice on the icosahedron each face is subdivided shiequilateral triangles. The sites on each
icosahedral surface at fix¢dre connected to the corresponding sites on the neighboring surfaces
att £ 1.

The patrtition function is of the usual form,

7 — TranLXBO'(t,X)O'(t +1,%) + zt7<XY> Bo(t,x)o(t.y) , (2.1)

where(xy) denotes a nearest-neighbor pairs on each icosahedral shekahe - T — 1 sums over
the radial co-ordinate. The trace is the sum over the Ising gfinx) = +1, on each sitét, x).
For finites, the logarithm of the transfer matrix along the cylinder is a regularized septation of
the dilatation operator. To get information on the spectrum of the transfeixiriats convenient
to compactify the infinite axis of the cylinder to a circle with periodic boundaryd@mns on the
spins.

Figure 1. On the left is thes = 1 icosahedral approximation to the sphere and on the righs th 8
equilateral triangle refinement of the icosahedron , itatsd by projecting each vertex at fixed angles from
the center of the icosahedron to the unit sphere.

To approach the Wilson-Fisher conformal field theory in the continuum limitheesl to tune
B to the critical point. The relative scale between the longitudinal and trases\attice (“speed
of light” ) is fixed by the integer spacing of descendants of the primaryatpes. There are no
other free parameters. For example the leading primary operator odd Ztndas a sequence of
descendantd =1/2+n/2+1forl =0,1,.... The first 3 states were clearly identified with modest
calculations, verifying the integer spacing and determining the anomalotrsbcdion .
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3. Numerical Results

The number of sites on one icosahedral shell is@s?>. We chose our cylinders to have
lengths which scale with the refinemeéhnt= ps. To locate the critical point, we used aspect ratios
p = 4,8 while for computation of the magnetization correlation functions we usedma\.

The critical pointf. was determined first by constructing a sequence of pseudo-ciitical
values defined as matching points of the Binder cumulgnts[3],

(M%)
3<M2>2

UB.sp)=1- (3.1)
for sp11 = rsp at consecutiv-values. This was done for several values ofthe range 5 <r <
5. We also numerically obtained the subleading terms in the approach to th@dixggredicted
by the Renormalization Group. Subsequently we improved the estimate byrpigrdoa global fit
of the scaling relation,

U(B,S,P) = U(BC,OO,p) +a1(p)[ﬁ _BC}Sl/V +b1(p)s_w

to many independent simulationp & 4,8), a subset of which appear in Fig. 2, of the scaling
relation where the exponentsandw were held constrained to agree with the published va[jes [4].
We find B; = 0.16098698(2)J (¢, 0, 4) = 0.3040(2) andl (3¢, «,8) = 0.1876(2).

(3.2)
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Figure 2. Determiningf3. from the Binder cumulantsl (s) = 1 — (M#)/3(M?)? near the pseudo-critical
point for two different aspect ratigs and increasing values of s.

We started our study employing the Swendsen-Wang cluster algoffithmt{Spitehed to the
more efficient single cluster Wolff algorithnfi] [6]. For our final results o #ipin-spin correlation
function, we generated ensemblegat 0.160987. Each independent run was thermalized using
2048 sweeps of the Wolff algorithm followed by 8192 sweeps with one estiafdte spin-spin
correlation function after each sweep. We defined a sweep todj@ Y¥olff cluster updates which
leads to the average number of spins flipped each sweep equal to theototagy All results for
a given run are then averaged together to form a single blocked estinthteaany thousands of
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independent block estimates are combined to form the ensemble at. éBHod jackknife method
was used to estimate errors.
We projected the spin-spin correlations function on spherical harmonics,

G(t) = Z Yim(Qx) (0(t+10,X)0(to,y)) Yim(Qy) (3.3)
mlo, Xy

whereY|m(Qx) is spherical harmonic evaluated at the angular position of thexsiteighted by
1/3 of the area of the adjacent spherical triangle projected on the umitesph illustrated in Fid] 1.
This represents a finite element approach giving an improved approxintat@thonormality of
the discrete spherical harmonic. As we are only interested in the rotationedigiant part of the
correlation function on any given lattice, we have summed over the azimutaaluqa numbem.

In addition we found it very useful to evaluate the spin-spin correlatiorctfan using the
momentum space single cluster improved estimator meffjod [7]. The conneateldtoo for the
lowest mass discrete eigenstate of transfer matrix on our periodic latticedyesepresented by
a single hyperbolic cosine,

Ci(t)=Acosi—pu(t—-T/2), (3.4)

at discrete values=0,---, T — 1. We transform this to momentum space,

(1—e MT)sinh(p)
sinkP(p /2) +sirf(k/2)”

~ 17tk

Ci(k) = thje Gi(t) = cod 000+ & (3.5)
wherek = 2rmq/T with q=0,---, T — 1 is the momentum conjugatette= logr along the cylinder.
Since our value o ~ 3. is slightly larger that the pseudo-critical coupling at any fisjte@e expect

that ourl = O correlation function will have a small disconnected contribution. This dnri&s a
non-analytic termgpdy 0. IN momentum space the disconnected piece can in principle be isolated
by subtracting a smooth extrapolation@jf(k) from k £ 0 tok = 0.

We found that our data require parameterizing the ground state plus tthieseshigher mass
states to get excellent fits wity? /dof < 1 and estimates of ground state masses which are essen-
tially free of higher state contamination. These represent possible higk sititer propagating
forward in theZ, even or propagation backward # odd sectors. While the dimension of the
higher state coming from th& even sector might be lower, its mixing will also be proportional to
the 3 point coupling of the energy operator and two spin operatorsethaéh higher statistics,
we believe quantitative determination of the higher spectrum is well within refitiis method.

Once we have determined tpgs, we relate them to the eigenvalues of the dilatation operator
up to a single unknown constant; = A~1[Ag + 1] whereA~! ~ ¢; /sass — . Numerically, we
find c; ~ 1.51(1) with the uncertainty dominated by systematic error. Clearly, we see evidence f
sub-leading contributiong(1/s%) as well in the left figure of Fig[] 3. We then test for the equal
spacing rule of descendants by examining the ratios,, — ti+1)/(t+1— L), as shown on the
right in Fig.[3. Using this confirmation, we are able to estimate numerically the gaifimension
of the primary operator using ratios,

=r [u|+u|f I+|’]

A _
T2 - TV

(3.6)

as shown in Fig]4.
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Figure3: The left figure shows the scaling Afrelative tos. The extrapolated value is roughly 1.51(1) with
the uncertainty dominated by the systematic differencevéen the two estimates. The right figure tests
the hypothesis of integer level spacing between primanesdescendents by comparing the level spacing
between the first and second descendents to the spacingeetiveeprimary and its first descendent. We fit
to a linear function and find an intercept of 0.994(4) and slof0.0(2) withx?/dof = 0.43 for 11 dof.

We end up with what we feel is a quite conservative estimatp-610.034(10), consistent with
other estimateg]4]. Moreover this method can be extended to include addtionary operators
in both theZ,-odd andZ,-even sectors as well as direct test of the restoration of full conformal
symmetry for 2- and 3-point correlators.

4. Discussion

We have presented a simple example of lattice radial quantization for the 3Pnsidel. This
raises important questions and suggests further applications.

For the 3D Ising radial quantization, we have chosen a simple approximatibe sphere by
a triangular refinement of the icosahedron with “flat” sides. This is refldntthe action by assign-
ing equal weights on all the nearest neighbor links. Viewed in the langafdgegge calculus, this
geometry has all the curvature concentrated at 12 exceptional verfittes wnderlying icosahe-
dron that are bounded by 5 rather than 6 triangles. We are implicitly making tijectare that by
virtue of maintaining exact icosahedral symmetry the continuum limit gives theckymmetry of
S?, indeed the full conformal group. Our modest numerical results to daostithis conjecture,
but we are undertaking more stringent numerical test on the spectruooemethtors. It is an open
guestion whether the conical singularities at the vertices of the icosahadedrrelevant to the
continuum spectrum. If necessary one might introduce improved triangulaitihe metric or§?,
similar to our improvement of thg,,, weights in our correlation measurement. On the other hand,
it is also interesting to ask if the simpler geometry of a refined cube is adegirate applications
to 4D gauge theories are probably easier to formulate on concentric 3duges.
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Figure4: The scaling exponent of loweZb-odd primary operatovs. 1/s. The lower (red) points using
the primary and first descendant have disconnected cotitrilsuthat have not been fully determined. A
linear extrapolation from upper (blue) points, using thstfivo descendants which have no disconnected
contributions, givedy, = 0.517(5), consistent with the best published estimate 0.518Ek3) [4]

The next simplest model beyond the 3D Ising model to consider is the 3D 1@¢Ngl, which
because of the analytical results in the large N limit is an excellent test-bedeanethod. We
are considering generalization to include gauge fields and fermions in @@[@nEach of these
steps will require careful consideration to make sure that there are stouctions to taking the
continuum limit. There maybe subtle issues for example with fermions on a sphewamifolds
and potentially relevant conformal symmetry breaking operators the @dmm$h in the continuum.
Even more challenging are theories that are not quite conformal whedddtetion operator is no
longer a conserved quantity, such as those exhibiting asymptotic freedtim 10V and softly
broken conformality near an IR fixed point.
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