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We propose a novel lattice calculation of spontaneous chiral symmetry breaking in QED model

with 2+1 dimensional fermion brane. Considering the relativistic action with gauge symmetry

we rigorously carry out path integral in Monte-Carlo simulation with Fermi-velocity relevant to

effective coupling constant. We numerically show the evidence of spontaneous chiral symme-

try breaking in strong coupling region with chiral condensate, low-lying mode distribution and

Nambu-Goldstone boson spectrum in bare Fermi-veloctyv = 0.1. This is a feasible study to

investigate the phase structure of Graphene.
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1. Motivation and background

We consider QED model with 2+1 dimensional fermion brane (bQED3) [1, 2]; in this model
fermion has smaller velocity than speed-of-lightc whose magnitude has been roughly estimated as
c/300 [4]. Tight-binding approximation of Graphene [3] (or similar material formed as honeycomb
seat of atoms) has suggested that will possess a particular property which is described by a massless
Dirac particle (quasiparticle) [4, 5]. Although there are many analytic studies [6, 7, 8, 9] and
numerical works [10, 11], it has not been successful to clearly describe the electric property of
Graphene.

Many models argue that there should be a signature of spontaneous gap generation due to
strong dynamics which indicates the occurrence of semiconductor-insulator transition for sus-
pended monolayer Graphene. However in the experiment thereis no evidence of the gap of band
structure between electron-hole, and thus it turns out to bepermanently conductor. Such incon-
sistency may be due to the suppression effect of silicon bases, whose dielectric permittivityε
appears in the denominator of effective coupling,αe(ε) = 2αe/(1+ ε) ≪ 1, and thus the impurity
of Graphene might be cause of no phase transition. To verify this argument the identification of
critical point of effective coupling constant from theoretical study is needed. Our motivation is
clarification of phase structure of bQED3 model to understand the transition of Graphene and other
kinds of honeycomb crystal.

2. Brane QED3 model

As pointed out in [2] therelativistic bQED3 model enables us to rigorously deal with path
integral under gauge invariant formalism,

SbQED3 =
β
2

∫

dtdx3
(

v~E2+ v−1~B2
)

+

∫

dtdx2ψ̄
[

iDtγt + iv(Dxγx + Dyγy)
]

ψ (2.1)

with bare Fermi-velocity parameter. In this action we consider not only the Coulomb interactions
but also induced magnetic interactions which arev2 times weaker than electric field. Since we
attempt to treat bQED3 model as local field theory (super-renormalizable), the theoretical param-
eters,v andβ , are affected by renormalization. The argument of perturbation theory in bQED3
model is that the Fermi-velocity has a logarithmic divergence. The experiment [14] supports the
renormalization effect of fermi-velocity of Graphene as suggested in perturbative bQED3 model
[12, 13] rather than non-relativistic one [6, 7, 8, 9, 10, 11]. The effective coupling constant is
defined as the modified form asαe = 1/(4πβv) and 2-loop analysis in approximated perturbation
explicitly shows the UV fixed point inαe ≫ 1 [13]. The check of existence of UV fixed point with
non-perturbative method is interested in this work.

The gap generation of Graphene is considered to be related with spontaneous chiral symmetry
breaking (χSB) in bQED3 model. This is analogous to the second order chiral phase transition
in N f = 2 massless QED3 involving the mass gap [15, 16]. In Eq.(2.1) quasiparticle field ψ has
4 spinor component,ψ t = (ψA+

σ ,ψB+
σ ,ψB−

σ ,ψA−
σ ) which corresponds to three kinds of Graphene

symmetry; Dirac valleys (degenerating ground energy) (±), sublattice symmetry(A,B) and spin
of carbon atoms(σ). The gamma matrix is given as the tensor structure;γt = σ0 ⊗ I2×2, γi =
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−iσ2⊗σi(i = x,y,z) in which the first part is degree of freedom (DOF) in valley times sublattice
and the second one is DOF in spin rotation. Regarding the Graphene symmetry as "flavor" U(4)
symmetry in bQED3, whose 16 generators are represented as{1,γ5, iγ3, [γ3,γ5]/2}⊗σi=t,x,y,z with
γ5 = iγtγxγyγz, we defineγ5 = diag(1,1,−1,−1) "chiral" projection corresponding to left and right
chirality (valley chirality) asUL(2)×UR(2). The chiral condensate〈ψ̄ψ〉 is used to be the order
parameter ofγ5 χSB as well as QCD.

3. Lattice calculation of brane QED3 model

In order to carry outab initio calculation of bQED3 model, we implement the staggered-type
fermion action including the non-compact U(1) gauge action;

Sg = ∑
n=(x,y,z,t)

[

βv∑
i

(∇4θi(n)−∇iθ4(n))+ βv−1∑
i, j

(∇iθ j(n)−∇ jθi(n))
]

, (3.1)

S f = ∑
m=(x,y,t)

[

∑
i

ηi(m)χ̄(m)
{

Ui(m)χ(m + î)−U†
i (m)χ(m− î)

}

+ Mχ̄(m)χ(m)
]

, (3.2)

with differential ∇i(m,n) = δm,n+1−δm,n, link variableUi(m) = exp(iθ(m)) and Kawamoto-Smit
phase factorηi(m) = ∏mi−1

k=1 (−1)k. Conveniently the staggered action in 2+1 dimension hasU(2)×

U(2) (flavor-) chiral symmetry in the continuum limit, and hence we can perform Hybrid-Monte-
Carlo (HMC) simulation straightforwardly [10, 11, 2].

Here we show the numerical results of chiral condensate, low-lying mode distribution and
hadronic spectrum inNs ×Nt = 402 × 20 andNz = 8 lattice with fixedv = 0.1 as a function of
fermion massM and coupling constantβ . For U(1) field we use periodic boundary for spatial
and temporal directions, and for fermion field is periodic boundary for spatial direction and anti-
periodic boundary for temporal one. This simulation realizes the lower temperature system thanks
to a rescaled temporal size by velocity. To avoid the autocorrelation we use every 20 HMC tra-
jectory per configuration, and the error analysis adopts theJackknife(JK) method with 10 bin size.
Chiral condensate is estimated by 100 noise sources in each configurations.

4. Chiral symmetry breaking in brane QED3 model

4.1 Chiral condensate

We first show the chiral condensate and chiral susceptibility;

σ ≡ 〈χ̄χ〉 =
〈

∑
m

D−1(m,m)
〉

, χm ≡
∂σ
∂M

=
〈(

∑
m

D−1(m,m)
)2

−
1
V ∑

m
|D−1(m,0)|2

〉

(4.1)

in severalβ andM, whereD−1 denotes the inverse of staggered fermion matrix. Figure 1 shows
σ andχm have clear dependence of both bare effective couplingα = 1/(4πβv) and massM. σ
drastically grows up atβv ≃ 0.05 – 0.06, and decreasingM this growth is further developing. It
seems that the critical point exists aroundβv≃ 0.05 – 0.06 which corresponds toαc ≃ 1.3 – 1.6, and
in α < αc σ is close to zero while inα > αc σ remains in finite value. The chiral susceptibility is
clearly shown to be significantM and 1/(βv) dependence similar to critical transition. Inαc ≃ 1.3
– 1.6 there will be a singular point forχm in M = 0 limit, which indicates thatαc is expected to be
discontinuous at the critical point.
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Figure 1: The dependence of the inverse of effective coupling constant 1/(β v) for chiral condensateσ (left)
and chiral susceptibilityχm (right). Different symbols denote the points in the different fermion masses.

4.2 Lowlying mode distribution

Investigation of lowlying mode of massless Dirac operator (Dirac kernel) is helpful to quantify
renormalized chiral condensateΣ through the Banks-Casher relation;

Σ/π = lim
ε→0

lim
V→∞

ρ(ε), ρ(λ ) =
1
V

〈

∑
n

δ (λ −λn)
〉

, (4.2)

in chiral broken phase. Spectral densityρ(λ ) is as a function of the eigenvalueλn of Dirac kernel
(here we consider Dirac kernel in finite volumeV , and thus distribution ofλ is a discretized distri-
bution.). The Banks-Casher relation expects that spectraldensity shows a constant distribution near
zero eigenvalue. In finite volume, according to the discussion of random matrix theory (RMT), the
“hard edge” [17] ofρ appears atλ = 0 with width 1/(V Σ). On the other hand in symmetric phase
the spectral densityρ(λ )∼ λ d−1 (d denotes dimension of fermion), at weak coupling regime. This
different behavior is used to not only distinguish the phasein effective coupling constant as well as
Figure 1 but also quantitatively estimate theΣ in constant region ofρ nearλ ∼ 0. In the calculation
of lowlying eigenvalue we evaluate 75 different eigenpair (staggered-type Dirac kernel has a pair
of eigenvalue with different sign).

In Figure 2 we can clearly see a significant change of the lowlying distribution ofρ above
and belowαc which is observed in Figure 1. Belowαc (β ≃0.4), there is clear plateau starting
from λ = 0.002 in which spectral density is consistent with one in different volume. Near zero
point there is also expected “hard edge” whose width becomesnarrow increasing volume as in the
chiral broken phase. When decreasing theα , this “hard edge” disappears and inα < αc ρ becomes
monotonically growing. Fitting in 0.002≤ λ ≤ 0.007 with constant function, we obtainΣ in each
sea fermion mass.

4.3 Nambu-Goldstone boson spectrum

In order to confirmΣ obtained in spectral density, we attempt to reproduce this from measure-
ment of the spectrum of Nambu-Goldstone (NG) boson particlein bQED3. In NG theorem, when
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Figure 2: Left panel shows the spectral density at differentβ which are above, close and belowαc. We also
compare different spatial volume. Right panel is a zoomed-up right panel nearλ = 0. This is result in sea
fermion massMsea= 0.001.

spontaneousχSB occurs, NG bosons appear as an asymptotic one-particle state coupled with axial-
vector current (or pseudoscalar via Ward-Takahashi identity) operator. Ifα > αc is in the chiral
broken phase, four NG bosons exist as well as pion (and eta) meson in QCD (note that in bQED3
model, since there is no anomaly, flavor singlet particle canbe regarded as massless NG boson.)
If this picture is true, we can extract the NG boson amplitudeand mass from pseudoscalar (PS)
correlator in large distance separation between source andsink point. After taking large separation
of x direction we expect that PS correlator which is defined as theexact NG boson operator in
staggered-type fermion approaches to the following form:

lim
x≫1

GPS(x) = |ZNG|
2(e−mNGx + e−mNG(Ns−x))/(2mNG), fNG = 2MZPSm

−3/2
NG , (4.3)

where fNG is a corresponding quantity to pion decay constant in QCD although its mass dimension
is 1/2 in 2+1 dimension. Here we set the source operator in theorigin as point source.

Figure 3 shows the clear shape of exponential function ofGPS, and effective mass plot explic-
itly illustrates that inα > αc there is plateau inx ≥ 9, however inα < αc plateau is not observed.
This result indicates that NG boson state following in Eq.(4.3) appears as a consequence of spon-
taneousχSB in α > αc.

Using the value obtained from fittingGPSwith function in Eq.(4.3), we show the lattice results
of fNG andm2

NG/M in each NG boson mass squared in Figure 4. To evaluate the chiral condensate
from these results we can use the GMOR relation;Σ = f0m2

π/(2M) as in the case of QCD wheref0
is a value offNG in M = 0. According to the loop calculation in chiral perturbationtheory (ChPT)
in 3-dimension, we set the fitting function

fNG = f0(1+ mNG/(4π f 2
0 ))+ cm2

NG, m2
π/M = 2B(1−mNG/(4π f 2

0 ))+ dm2
NG, (4.4)

where f0, B, c andd are fitting variables. We introducec andd as correction terms to higher order
effect than LO ChPT. We attempt to compare the extrapolated result with different fitting range of
m2

π , and including the data atM = 0.005 to extrapolateM = 0 limit we use a function in Eq.(4.4)
besides using data up toM = 0.0025 we excludec andd terms. In Figure 4 we see that inα > αc

(β = 0.4, 0.45, 0.5) the chi-square fitting with both NLO ChPT and NLO CHPT + linear term

5
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Figure 3: GPS(x) (left) and effective mass plot (right) at differentβ in M = 0.001(circle), M =

0.0025(square) andM = 0.005(diamond). The straight lines are fitted result.

Table 1: Fitting results of chiral condensate obtained by spectral function via Banks-Casher relation and
ChPT with NLO and NLO+linear. We also describe the value ofχ2/dof. The error is only statistical one.

β Σ (spectral) Σ (NLO ChPT) χ2/dof Σ (NLO ChPT+linear) χ2/dof

0.4 0.2433(48) 0.2587(8) 12.2(4.1) 0.2657(15) 6.1(2.9)
0.45 0.2140(45) 0.2243(7) 4.1(2.3) 0.2275(13) 2.7(1.9)
0.5 0.1694(51) 0.1807(6) 1.5(1.4) 0.1766(13) 2.9(2.0)

works better than inα < αc. This is also consistent with picture that spontaneousχSB aboveαc

occurs in accompany with NG boson. In table 1 we show preliminary results of comparison ofΣ
with three different ways in aboveαc. These are consistent results within 1–2σ under a few %
accuracy.

5. Summary and discussion

We perform theab initio calculation of QED model with 2+1 dimensional fermion brane
(bQED3) in Monte-Carlo method. Due to preserving gauge symmetry wetake into account not
only coupling constant but also fermi-velocity as theoretical parameters. In this proceedings we
numerically show the strong evidence ofχSB and critical coupling constant from three kinds of
way; chiral condensate, spectral density and NG boson spectrum. Although we fix the “bare”
velocity parameter in 0.1 which is relatively larger than naive estimate (v ∼ O(10−3)), we have the
consistent result with expected inχSB phenomena. This is feasible study to search the applicability
to study of phase structure of Graphene.

The calculations were performed by using the RIKEN Integrated Cluster of Clusters (RICC)
facility. This work is supported by the Grant-in-Aid of the Japanese Ministry of Education (No.
20105002, 23105714(MEXT KAKENHI grant)).
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Figure 4: M dependence offNG (left) andm2
π/M (right). Solid line denote the LO ChPT in the range of

0.001≤ m2
NG ≤ 0.0025 and dashed one denotes the fitting function in LO ChPT plus linear term in the range

of 0.001≤ m2
NG ≤ 0.005.
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