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We exploit analytic continuation to prolongate to the regif real chemical potentials the
(pseudo)critical lines of QCD with two degenerate staggdeemions at nonzero temperature
and quark or isospin density obtained in the region of imagirchemical potentials. We de-
termine the curvatures at zero chemical potential and éfyehe deviation between the cases
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quadratic dependence of the pseudocritical lines on theida¢ potential are clearly seen. We
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1. Introduction

The determination of the QCD phase diagram in the temperatuark density plane is be-
coming increasingly important, due to its impact in cosmggland in the physics of compact stars
and of heavy-ion collisions. The first-principle nonpesative approach of discretizing QCD on a
space-time lattice and performing numerical Monte Carouations is plagued, at nonzero quark
chemical potential, by the well-known sign problem: thenfemic determinant is complex and
the Monte Carlo sampling becomes unfeasible. Analyticinaation is amongst the possible al-
ternatives to solve (approximately) the sign problem [14H3¢onsists in performing Monte Carlo
simulations at imaginary chemical potentiak= iy : where there is no sign problem. The results
obtained at imaginary chemical potential are then analigiqorolongated g — —iu) at real
values of the chemical potential. There are however limoitat due to ambiguity in the interpo-
lation and nonanalyticities and periodicity [4], so thdialele estimations are expected only for
Re(u)/T < 1, whereT is the temperature.

In previous works [5-7] we have studied the analytical camtion of the pseudo critical
line in the case of SU(2) with; = 8 staggered fermions and finite quark density and SU(3) with
n; = 8 staggered fermions and finite isospin density. It was fahad the nonlinear terms in the
dependence g8 on u? in general cannot be neglected and that the extrapolaticgatpr may be
wrong otherwise. We have also studied [8] SU(3) with= 4 staggered fermions and finite quark
density. In this case we observed deviations in the pseitidatiine from the linear behavior in
u? for larger absolute values of? and we saw that there are several possible extrapolatiaesito
U that are in agreement with each other upa ~ 0.6.

In the present study [9] we consider two-flavor QCD in presasf@ quark or an isospin chem-
ical potential in the standard staggered discretizatiorfcionion fields, whose partition function,
in the standard staggered discretization for the fermidddjeeads

Zajsol ) = [ PUE (detM [u]) (detM =) (L1)

In Section 2 we present results on the analytic continuadfche critical line,T¢(u) from imagi-
nary to realu in the case of a finite isospin chemical potential, where simulations are available
for both imaginary and regliso and on the analytic continuation of the quark chemical gatken
Hg. In Section 3 we make a comparison between the two theorisitatLig or Liso, quantifying
systematic differences for quantities like the curvaturéhe pseudocritical line at zero chemical
potential. In Section 4 we study the nature of the transiéisra function of the isospin chemical
potential.

2. Analytic continuation of the pseudocritical line

We performed numerical simulations on & 164 lattice (apart from some special cases where
we varied the spatial size to investigate the critical barafor bare quark masam= 0.05 cor-
responding tam; ~ 400MeV. We used the Rational Hybrid Monte Carlo (RHMC) aitjon,
properly modified for the inclusion of quark/isospin cheatipotential. Typical statistics have
been around 10k trajectories of 1 Molecular Dynamics umitefach run, growing up to 100k tra-
jectories for 4-53 values around the pseudocritical point, for eachin order to correctly sample
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Figure 1: (Left) Pseudocritical couplings in finite isospin SU(3) kwvih; = 2. Negative values of
(Hiso/ (TT))? correspond to imaginary chemical potentials. (Right) &itetal and imaginary isospin chemi-
cal potential data using a ratio of a fourth to second-ord&mpomial (ratio (4,2) fit).

the critical behavior at the transition. The pseudocritiggu?) has been determined as the value
for which the susceptibility of the (real part of the) Polgakoop exhibits a peak. In fig. 1 (left)
the data for the pseudocritical coupling vergusg,/ (7T ))? are shown. To interpolate these values
we can exploit the ratio of polynomials:

_ap+ay(p/ ()% +ap(u/(mT))* +ag(u/(mT))°
N 1+ ag(u/(1T))2 '

The fit to all data requires (see fig. 1) at least a ratio of fowrder to second order polynomial
(ratio (4,2) fit) and gives g2/d.o.f.= 0.6. If we consider data witku /7T )? > —0.37% a linear
(in (u/mT)?) polynomial works quite well x2/d.o.f. = 0.95), contrary to our previous findings
for other theories [5—8] where nonlinear corrections areenmmportant for imaginary values than
for real ones. The interpolation to only imaginamso/(71T)) data using a atio (4,2) fit gives a
x?/d.o.f.= 0.49. We have also interpolated imaginary isospin chemicténiil data using the
implicit relation betweerB. and 2

Bc(uz)

2.1)

1+Ax+BxX
1+Cx

and the following interpolating function ("physical” fitjvgn in terms of the physical units=
u/(nT) andT /T(0),

aZ(BC(UZ)”Zroop = az(Bc(O)) |2-1oop X (2.2)

2
[TC(O)] _ 1+AX+BX 23

To(u) 1+Cx ’

with T = 1/(Nea(B)), we also get a very goog?/d.o.f.= 0.53 and a corresponding prolongation
to real values that works quite well (see fig. 2 left). Anothaite good interpolation of imaginary
isospin data is attained by means of a sixth-order constiigiolynomial fit, where the coefficient
of (u/(mT))? is fixed at the value derived from a linear (jn/(7T))>?) fit at small imaginary chem-
ical potential data. In fig. 2 (right) the extrapolations éalrisospin chemical potentials together
with results from simulations at real values are shown. Weses that several extrapolations agree
up tou/(nT) < 0.2. Therefore we may conclude that different interpolatitiveg well reproduce
imaginary data, lead to distinct extrapolations (as we ls@en [8] fom; = 4 SU(3)).
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Figure 2: (Left) Fit to the pseudo critical couplings in finite isosgatJ(3) with ns = 2 according to the
"physical" fit Eq. (2.3). (Right) Extrapolation to real igos chemical potentials of the sixth-order con-
strained, ratio fourth to second-order polynomials and/4atal” fits (only the border of the 95% CL band
have been reported). Data points (circles) are the restitoate Carlo simulations performed directly at
real isospin chemical potential.

Let us move now to the nonzero quark chemical potential gtiors. In this case the sign
problem prevents us to perform simulations at real valugseofjuark chemical potential. In fig. 3
(left) we can see that the ratio (4,2) interpolation usedhadase of isospin chemical potential is
well suited here too, giving &2/d.o.f.= 0.60. If we tried a linear fit (inu?) we got a largely
unsatisfactoryy?/d.o.f.= 2.87. As for the isospin chemical potential we also tried they4ical”
fit (Eq. (2.3) to the imaginary quark chemical potential ddte result, as shown in fig. 3 (right), is
good also in the present cagg’(d.o.f.= 0.51). Assuming that it is possible to extrapolate down to
T = 0 the relationT¢(u)/Tc(0) versusu (Eqg. (2.3), we get the following estimate for the chemical
guark potential at zero temperature:

pe(T = 0) = \/gTC(O) — 3.284(65)T,(0), (2.4)

to be compared withu(T = 0) = 2.73(58)T¢(0) of ref. [10] with ny = 2 Wilson fermions. In
fig. 4 the extrapolations at real values of the quark chengiogdntial starting from three different
successful interpolating functions at imaginary chempagkntial values are compared. The three
analytic continuations begin to deviatesgt(niT) > 0.1. However two of these extrapolations
(in particular the ratio of polynomials and the "physical) fiontinue to be in good agreement.
Moreover we observe that in the case of isospin chemicahfiatehe ratio of polynomials is pre-
ferred, but we cannot claim this is the interpolation to useahalytic continuation since systematic
differences between finite quark density and finite isosgib@annot be excluded.

3. Thecurvatures of thecritical lines

To obtain the curvatures of the critical line gt= 0 ((dBc(uz)/du2)|u:0) for isospin and
qguark chemical potentials respectively, we tried a commiatio fll data we have collected for the
critical couplings at quark chemical potential and isoggiemical potential (in the latter case we
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Figure 3: Fits to the pseudocritical couplings at finite quark densiyio of a 4th- to 2nd-order polynomial
(left) and “physical” fit according to the function (2.2)dht). The dashed vertical line indicates the boundary
of the first Roberge-Weiss sectogyv )/ (1T) = 1/3.
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Figure 4: (Left) Extrapolation to real quark chemical potentialstod 6th-order constrained, ratio (4,2) of
polynomials and "physical" ratio fits (only the borders o 5% CL band have been reported). (Right)
Comparison between the extrapolations to real quark argpilsachemical potential of the fits linear in
(u/(mT))2. Data points (circles) are the results of Monte Carlo sitioits performed directly at real
isospin chemical potential.

included also data at imaginary values):

Beli i) = Be(0) 2 (1) oy (Hze) ™. @)

We included in the fit as many data as to have a reasonghld.o.f. and we obtained:aq =
—0.399787), aiso = —0.360667), B.(0) = 5.3237057) with a x?/d.o.f. = 0.93. Therefore we
can conclude that the curvatures of the critical lines retspaly for isospin and quark chemical
potentials differ up to 4 standard deviations. By expras#ie curvatures in terms of dimensionless
quantities [11]

Te(Hg, Miso) Ha\? | o Hiso 2
T U Ral) R () 52
with
10a N 1 _
Rq/iso - _a% £:(0) aq/iso - ZBC(O)S BL(BC(O)amq)aq/lsm (3.3)
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Figure5: (Left) Normalized plaquette distributions at the pseudmal coupling for different spatial lattice
sizes anduiso/ () = 0.475. (Right) Maxima of the plaquette susceptibility as a fuoatdf the spatial
volume forpiso/ (1T ) = 0.475.

wheref = a% is the 2-loop lattice beta-function, we g&f = —0.515(11) andRiso = —0.465(9)
in agreement with Refs. [10, 12, 13]. Therefore:

—Risozaq—aisoz
Rq

This could be the first evidence of tidg(1/N2) difference between the two theories at small chem-
ical potential [14—17].

Ry_iso = Rq 0.098(26) ~ 10%. (3.4)

4. Order of the phase transition at imaginary chemical potentials

The phase structure at finifeand imaginary chemical potential may be important of its own
and teach us something about the nonperturbative prop@ft@®@CD also at zero and small chemi-
cal potential. The phase transition at the Roberge-Weidpant could in principle have influence
also far from the endpoint. Foiz = 2 the Roberge-Weiss transition is first order for small amggh hi
guark masses and second order for intermediate quark nfd83esn the present study we have
am= 0.05 so that we expect a second order Roberge-Weiss phas@draet tyv /(77T ) = 1/3) in
the case of the quark chemical potential. On the other harekpect that imaginary isospin chem-
ical potential may strengthen the transition as an imagigaark potential does: a first-order tran-
sition could be manifest along the pseudocritical line (ef@ our quark mass valuem= 0.05).

In fig.5 (left) we display the normalized plaquette disttibos at the pseudocritical coupling for
different spatial lattice sized.{ = 12 16,20), while in fig.5 (right) we can see the maxima of the
plaguette susceptibility that scale linearly with the sdatolume. Therefore we conclude that for
ns = 2 staggered fermions of maasn= 0.05 the transition is first order atso/(7T) = 0.475
and there is possibly a critical point along the line at somalker value ofpiso/(7TT). Such
non-trivial behavior resembles what happens for quark atedrpotentials [18—21] and may have
consequences on the general structure of the QCD phasamiagr
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