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We investigate the dependence of the deconfinement temperature of SU(3) pure gauge theory on
the topological θ parameter, finding that, for small values of θ , it decreases linearly in θ 2. The
problem is approached numerically using lattice simulations at imaginary θ , in order to avoid
the sign problem present at real θ , then exploiting analytic continuation. The dependence is also
studied analytically in the limit of a large number of colors N, based on a simple model for the
dependence of the topological susceptibility on T : we find that the critical temperature decreases
linearly with θ 2/N2; model results are comparable with numerical results obtained for N = 3.
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1. Introduction

The possible presence of a CP violating topological θ term in the QCD Lagrangian:

Lθ = LQCD− iθq(x) q(x) =
g2

0
64π2 εµνρσ Fa

µν(x)F
a

ρσ (x) (1.1)

where q(x) is the topological charge density, is constrained by stringent experimental upper bounds,
(|θ |. 10−10). Nevertheless, the dependence of QCD and of SU(N) gauge theories on θ is of great
theoretical and phenomenological interest. θ derivatives of the vacuum free energy, computed at
θ = 0, enter various aspects of hadron phenomenology. An example is the topological susceptibility
χ ≡ 〈Q2〉/V (Q≡

∫
d4x q(x) and V is the space-time volume), which enters the solution of the so-

called U(1)A problem [1, 2].
In the present study we focus on the effects that a non-zero θ induces on the deconfinement

phase transition of pure Yang-Mills theories. The CP symmetry present at θ = 0 implies that the
critical temperature, Tc(θ), must be an even function of θ , therefore we parameterize it as follows

Tc(θ)/Tc(0) = 1−Rθ θ
2 +O(θ 4) (1.2)

In the following we will determine Rθ for the SU(3) pure gauge theory by means of numerical
lattice simulations, obtaining Rθ > 0. Then we will discuss the results of a model computation,
valid in the large N limit, showing that Rθ is expected to be O(1/N2).

2. Numerical approach: analytic continuation

Lattice simulations are the ideal tool to study non-perturbative effects related to θ dependence.
Nevertheless, the Euclidean path integral representation of the partition function

Z(T,θ) =
∫
[dA] e−SQCD[A]+iθQ[A] = e−Vs f (θ)/T , (2.1)

is not suitable for Monte-Carlo simulations, because the measure is complex when θ 6= 0. In
Eq. (2.1) SQCD is the pure gauge action, f (θ) is the free energy density and Vs is the spatial volume.

A similar sign problem appears for QCD at finite baryon chemical potential µB. In that case,
a possible but not exhaustive solution is to study the theory at imaginary µB, where the measure
is positive, then exploiting analytic continuation to infer the dependence at real µB, at least for
small values of µB/T [3]. The approach proposed in Refs. [4, 5, 6, 7] for exploring a non-zero θ

is identical in principle. As for µB 6= 0 one assumes the theory to be analytical around θ = 0: this
fact is supported by our present knowledge about free energy derivatives at θ = 0 [8, 9, 10, 11, 12].

As it happens for analytic continuation at nonzero µB [13], we expect that linear terms in θ 2,
hence Rθ , can be determined reliably by analytic continuation from an imaginary θ ≡ iθI term, i.e.
from numerical studies of the lattice partition function:

ZL(T,θ) =
∫
[dU ] e−SL[U ]−θLQL[U ] , (2.2)

where [dU ] is the integration over the elementary gauge link variables Uµ ; SL and QL are the lattice
discretizations of respectively the pure gauge action and the topological charge, QL = ∑x qL(x). We
consider the Wilson plaquette action, SL = β ∑x,µ>ν(1−ReTrΠµν(x)/N), where β = 2N/g2
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Figure 1: Left panel: Polyakov loop and its susceptibility as a function of β on a 243× 6 lattice and for a
few θL values. The susceptibility values have been multiplied by a factor 250. Right Panel: Determination
of the renormalization constant Z on a 164 lattice. The dashed line is a cubic interpolation of data.

The lattice discretized operator qL(x) is linked, in general, to the continuum operator q(x) by
a finite multiplicative renormalization [14]

qL(x)
a→0∼ a4Z(β )q(x)+O(a6) , (2.3)

where a = a(β ) is the lattice spacing and lima→0 Z = 1; therefore the imaginary part of θ is related
to the lattice parameter θL appearing in Eq. (2.2) as follows: θI = Z θL. It is important, in order to
keep the Monte-Carlo algorithm efficient enough, to choose a simple definition of qL(x), even if
the associated renormalization is large. Following Ref. [7], we adopt the gluonic definition

qL(x) =
−1

29π2

±4

∑
µνρσ=±1

ε̃µνρσ Tr
(
Πµν(x)Πρσ (x)

)
, (2.4)

where ε̃µνρσ = εµνρσ for positive directions and ε̃µνρσ = −ε̃(−µ)νρσ . That allows for a standard
heat-bath + over-relaxation algorithm over SU(2) subgroups [7].

The ZN center symmetry, corresponding to gauge transformations which are periodic in the
Euclidean time direction only up to a center group element, is exact for SU(N) pure gauge theories
and is spontaneously broken at their deconfinement transition. It remains exact also at finite θL,
since qL(x) is a sum over closed local loops, hence we still expect ZN spontaneous breaking and we
can adopt the Polyakov loop and its susceptibility as probes for deconfinement

〈L〉 ≡ 1
Vs

∑
~x

1
N
〈Tr

Nt

∏
t=1

U0(~x, t)〉 χL ≡Vs (〈L2〉−〈L〉2)〉 , (2.5)

where Nt is the number of sites in the temporal direction.
We have performed simulations on three different lattices, 163×4, 243×6 and 323×8, corre-

sponding, around Tc, to equal spatial volumes (in physical units) and three different lattice spacings
a ' 1/(4Tc), a ' 1/(6Tc) and a ' 1/(8Tc). That permits us to perform a continuum limit extrap-
olation of our results. On each lattice, different series of simulations at fixed θL and variable β

have been performed, with typical statistics of 105−106 measurements, each separated by 4 over-
relaxation + 1 heat-bath sweeps, for each θL. In Fig. 1 we show results for the Polyakov loop
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Figure 2: Left panel: Tc(θ)/Tc(0) as a function of θ 2 for different values of Nt . Dashed lines are the result
of linear fits, as reported in the text, then extrapolated to θ 2 > 0. Right panel: Rθ as a function of 1/N2

t . The
point at 1/Nt = 0 is the continuum limit extrapolation, assuming O(a2) corrections.

modulus and its susceptibility as a function of β for a few values of θL on a 243×6 lattice; we also
show data obtained after reweighting in β .

The critical coupling βc(θL) has been located at the maximum of the susceptibility after a
Lorentzian fit to unreweighted data. We checked that the values obtained at θL = 0 coincide, within
errors, with those found in previous works [15]. From βc(θL) we reconstruct Tc(θL)/Tc(0) =
a(βc(0))/a(βc(θL)) by means of the non-perturbative determination of a(β ) reported in Ref. [15].
Notice that most finite size effects in the determination of βc(θL) are expected to cancel when
computing the ratio Tc(θL)/Tc(0). A complete set of results is reported in Table 1 of Ref. [16].

Finally, we need to convert θL into the continuum parameter θ = iθI . Possible methods for
a non-perturbative determination of the renormalization constant Z(β ) are based on the assump-
tion that the ultraviolet fluctuations responsible for Z are independent of the topological back-
ground [17]; here, following Ref. [7], we obtain Z in terms of averages over the thermal ensemble:

Z = 〈QQL〉/〈Q2〉 (2.6)

where Q is, configuration by configuration, the integer closest to the topological charge obtained
after cooling. Z has been determined for a set of β values on a symmetric 164 lattice (see Fig. 1),
then obtaining Z at the critical values of β by a cubic interpolation. A check for systematic effects
has been done by changing the number of cooling sweeps (15, 30, 45 and 60 sweeps) and, at the
highest explored value of β , by exploring also a larger 244 lattice. In this way we finally obtain
θI(βc(θL)) = Z(βc(θL))θL. The values of θI we have obtained are reported in the 4th column of
Table 1 in Ref. [16]. Final results for Tc(θI)/Tc(0) and for the three different lattices explored
are reported in Fig. 2. In all cases a linear dependence in θ 2, according to Eq. (1.2), nicely fits
data. In particular we obtain Rθ = 0.0299(7) for Nt = 4 (χ2/d.o.f. ' 0.3), Rθ = 0.0235(5) for
Nt = 6 (χ2/d.o.f. ' 1.6) and Rθ = 0.0204(5) for Nt = 8 (χ2/d.o.f. ' 0.7). Assuming O(a2) (i.e.
O(1/N2

t )) corrections, we can extrapolate the continuum value Rθ = 0.0175(7), χ2/d.o.f. ' 0.97
(see Fig. 2). We conclude that Tc decreases in presence of a real non-zero θ , in agreement with
arguments based on model [18, 19] and semi-classical [20] computations.
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3. Large N estimate

A first order transition is the point where the free energies of two different phases get the same
value. Let fd/c be the free energies associated to the deconfined/confined phase of SU(N) gauge
theories. around Tc they can be expanded, apart from a common constant, in terms of t = (T −
Tc)/Tc: fc/d/T = Ac/d t+O(t2). The slope difference is related to the latent heat ∆ε = Tc(Ac−Ad).

At θ 6= 0 both free energies get an additional contribution which, at the lowest order in θ , reads
χ(T )θ 2/T , where χ(T ) is the topological susceptibility at θ = 0. Our model exploits the fact that
in the large N limit χ(T ) = χ(0)≡ χ for T < Tc and χ(T ) = 0 for T > Tc [21, 22, 23], hence

fc/T = Ac t +χθ
2/2T +O(t2) fd/T = Ad t +O(t2)

From this argument one can obtain Tc(θ) by finding the temperature at which fc = fd , the result is

Tc(θ)

Tc(0)
= 1− χ

2∆ε
θ

2 +O(θ 4) = 1− 0.253(56)
N2 θ

2 +O(1/N4) (3.1)

where ∆ε is again the latent heat of the transition θ = 0. The coefficient of the quadratic term
have been determined numerically using the results in [8, 22, 24]. We can extrapolate such re-
sult to SU(3), getting Rθ ' 0.0282(62): this is larger than our determination, but we expect that
since, for SU(3), our assumption for a sharp drop of χ at Tc is not true, the actual behavior being
smoother [21]. It would be interesting to extend our numerical results to N > 3, in order to check
Eq. (3.1), as well as to N = 2, to compare with the results of Ref. [20]. From Eq. (3.1) we read
that Rθ scales as 1/N2 in the large N limit, in agreement with general arguments predicting the free
energy to be a function of θ/N [25]: therefore in the large N limit Tc should be θ independent.

4. Conclusions and speculations

We have discussed the θ−dependence of the deconfinement temperature in SU(3) pure gauge
theories. Exploiting analytic continuation from imaginary to real θ , we have deduced that Tc de-
creases with θ , the curvature of the critical line being Rθ = 0.0175(7) at θ = 0. As it happens for
the T − µ2

B plane case, other transition lines may be present in the T −θ 2 plane. For µ2
B < 0 one

finds unphysical transitions, known as Roberge-Weiss lines [26], associated with the periodicity of
the theory in imaginary µB. In the case of the T −θ 2 diagram the situation is different but similar
in some sense: no periodicity is expected for imaginary θ , CP being explicitely broken for any
nonzero θI , hence we cannot predict other possible transitions for θ 2 < 0. A 2π−periodicity is
instead expected for real θ , with a possible phase transition at θ = π where CP breaks sponta-
neously. Our simulations give evidence only for a deconfinement transition line, which is linear
in θ 2 at least for small real θ : non-trivial corrections may appear as θ approaches π . However,
following Ref. [25] and the arguments above, we speculate that, at least for large N, Tc(θ) be a
multibranched function, dominated by the quadratic term also down to θ = π

Tc(θ)/Tc(0)' 1−Rθ min
k
(θ +2πk)2 (4.1)

where k is a relative integer. Periodicity in θ implies cusps for the function Tc(θ) at θ = (2k+1)π ,
where the deconfinement line could meet the CP breaking transition present also at T = 0. A
similar situation has been described in Ref. [19]. Therefore, analogies may be present between the
real θ case and what found at imaginary µB.
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