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1. Introduction

Gauge theories can in principle, up to anomalies, be fortadlor all simple Lie groups. This
property has been used often to gain insight into structaresmplify calculations. One salient
example is the largét limit in QCD. Another option is to use the exceptional group Bading to
G, QCD.

The proposal to make this replacement was made [1] to urahetshe role of the center of
the gauge group, which was long assumed to play a centralaofeany of the salient features of
QCD, especially confinement. However, the detailed ingasitns, to be presented in section 2,
showed that most of these features are also present injtbage.

Besides these conceptual questions concerning the camther property of &QCD is
interesting from a practical point of view. Since all its regpentations are real, no sign problem
arises when simulating 8QCD with dynamical fermions. It is thus possible to inveataythe
whole phase diagram of the theory using lattice calculati@h G, QCD is so far the theory most
similar to QCD where this is possible in the continuum limithe resulting phase diagram [2] is
rather similar to the one obtained in other such theoriks,QICD with gauge group SU(2) (QD)
[3-6] or QCD in the strong coupling limit [7, 8]. Thus,&CD offers another perspective on the
QCD phase diagram. This will be detailed in sections 4 and 5.

Itis, of course, an interesting question whether there eagdtablished any direct connection
between the @case and the SU(3) world. Breaking the gauge group using a Higgs field works
for the Yang-Mills case [1], as briefly outlined in section®it it is yet not clear whether this is
also possible in the QCD case.

Thus, gauge theories with gauge groupdge very interesting from many perspectives, as will
be summarized in section 6. However, most investigatioagar on a qualitative and exploratory
level, and many interesting questions have not even beaessidl yet.

2. Yang-Millstheory

2.1 Zerotemperature

The simplest realization of a gauge theory with the gaugemi@, is Yang-Mills theory.
Since the adjoint representation of 5 14-dimensional, there are 14 gluons. Using the Macfarlan
representation [9] a &ink (or group element) in the 7-dimensional fundamental representation

can be written as
uo 0

u=z|o1o0|,
00u

whereZ is a 7-dimensional representation$fandu is an element of SU(3). Thus, 8 of the gluons
can be considered loosely as 'SU(3)-like. This will becoimgortant in section 3. Due to this
explicit SU(3) subgroup, lattice simulations of a eory are straightforward but expensive, see
[2, 10-12] for the algorithms employed here.

Gy is the smallest rank 2 gauge group with a trivial center. Asm@sequence, every funda-
mental charge can be screened by three adjoint chargeyathere is no infinitely rising Wilson
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Figure 1: The Wilson potential/ divide by the scalg for different representation® (left) and its string-
breaking, compared to hybrid masses for two representafraght), both in three dimensions, from [12].
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Figure 2: The minimal Landau-gauge gluon propagd@afieft panel) and running coupling (right panel)
of G, Yang-Mills theory compared to SU(3) Yang-Mills theory indle dimensions as a function of momen-
tum p, from [2].

potential, and thus no confinement in the sense of a Wilsamlave [1]. However, in practice the
corresponding Polyakov loop is found to be very small at zengperature, and in fact only upper
bounds are known, though it follows that it must be non-zéndfact, at intermediate distances a
linear rising Wilson potential [13, 14], including a chaeristic Casimir scaling [12, 15], is found.
Thus, a string appears in the same way as in QCD with dynamicaks, up to a distance where
string-breaking sets in [12]. Hencep ®ang-Mills theory is in the same sense (non-)confining as
is QCD. These facts are illustrated in figure 1. Of coursesesthe theory has no anomaly, it is still
a well-defined theory, with only colorless asymptotic stdtie 13], like glueballs [12, 16].

It is thus an interesting question what the effective degyddreedom are. On the level of the
elementary particles, the gluons, no qualitative, anie ltiantitative difference is found [10, 17].
This also manifests itself in a qualitative similar runniogupling, even in the far infrared, see
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figure 2. Thus, at the level of gluons, there is no distinct diffenc

Another set of effective degrees of freedom often used irg¥diils theory are topological
ones. Similarly, for G Yang-Mills theory vortices [14], monopoles [19], dyons [28nd instantons
[21] have been constructed. Using lattice simulations amaling, it is indeed possible to verify
the existence of topological lumps, which are associatdéd agtion lumps and a non-vanishing
topological susceptibility of roughly150 MeV)# [21], though yet with large systematic errors.
Though there exist differences in details, e. g. vorticesrant associated with a center [14], the
salient features of these topological excitations areecloghe ones in ordinary SNj Yang-Mills
theory. As one can expect from these observations, chimairstry is broken in the vacuum in the
same way as in ordinary Yang-Mills theory [18].

Thus in total, G Yang-Mills theory in the vacuum is very similar to SV Yang-Mills theo-
ries.

2.2 Finitetemperature

Since the finite-temperature phase transition infXang-Mills theories is associated with a
center-symmetry breaking/restoring phase transitiomag originally anticipated [1] that there will
not be a phase transition in,&¥ang-Mills theory, though the gluonic sector suggestectitice
[22]. Lattice simulations then indeed found a strong finrsten phase transition in &SYang-Mills
theory [13, 14, 23] using the free energy. However, in peacthis is non-trivial due to a bulk
transition requiring rather fine lattices [13, 23]. This ph#&ransition is also reflected in the behavior
of glueballs [16].

Amazingly, though not being an order parameter, the Poly&kop also reflected this phase
transition. In fact, it is possible to use the Polyakov loopgarious representations to describe the
phase structure of £5Yang-Mills theory rather accurately [24]. One of the maiasens seems to
be that though there is no genuine center symmetry, a disttiitee-fold structure is still preserved
by G,, which, when breaking the theory down to SU(3), yields thete@esymmetry, see section 3
below.

This alone is already in remarkable agreement to ordinang¥dills theory. But the similar-
ities are even more pronounced. Since all representatien®al, it would have been possible that
the chiral transition, as is the case for the adjoint chicaddensate in SW) [25, 26], would not
show a phase transition or only at a much higher transitimp&gature. This is not the case, and,
within lattice resolution, the chiral condensate showsspoase precisely at the same temperature
as the Polyakov loop and the free energy [18]. As would beahaixpected from the comparison
to SUN) Yang-Mills theory, it is then also found that the topolagiproperties change at the phase
transition [21], especially the topological susceptipilirops.

The resulting phase diagram is shown in figure 3. The firstrandéure is visible, though it
requires a detailed study of scaling properties to asceittfiz3]. Thus, from the point of view of
the phase diagram Grang-Mills theory behaves very similar to the SU(3) casenethough the
phase transition is not related to a symmetry. This is oné®féasons why Yang-Mills theory is
well suited as a stand-in for QCD thermodynamics, as digclisssection 4.2. The reason for the

LFor all results for Yang-Mills theory, the scale has beerbgajiving the intermediate distance fundamental string-
tension a value of (440 Me¥)[10, 18].
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Figure 3: The phase diagram of Grang-Mills theory. The critical temperature is taken frog8], the
Polyakov loop and chiral condensate from [18] and the togiokd susceptibility from [21].

existence of this similarity is besides the approximatedkfold structure [24] the fact that the size
of the gauge group appears to be more relevant for the phastuse than the center of the group
[13, 27].

3. Yang-Mills-Higgstheory

One of the interesting features ob @ that it has SU(3) as a sub-group. Thus, it appears
possible to somehow hide thé Bart of the gauge group using the Higgs mechanism such that
just SU(3) remains. In fact, it turns out that a single fundaral Higgs field is sufficient for this
purpose [1, 11]. In such a more complicated theory it is fbsdio follow the phase structure
at finite temperature, and map a phase diagram in the tempeitdiggs mass plane at infinite
four-Higgs coupling [11], as shown in figure 4.

The phase structure is rather intricate at intermediateegabf the couplings. Given the large
systematic uncertainties encountered in such theoridsa[2finite answer will remain hard to
find. However, this question is highly relevant: If a contims connection between the SU(3)-like
domain and the &like domain exists this would have significant implicasoior the physics of
both theories.

The situation becomes much more complicated when intradu@fermionic) matter fields
into the theory [1]. In this case, a hiding with just one Hidig$d will inevitably lead to an SU(3)
theory with the matter fields in the wrong representatiorparticular to real matter fields. Since
the natural question is, whether a connection to ordinanp@Xossible, the hiding or breaking
mechanism must complexify the matter fields to lead to thguivalent fundamental and anti-
fundamental representations of QCD. This will likely onlg possible, if at all, by manipulating
the theory on the level of Weyl fermions, a topic under curievestigation [29].
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Figure 4: The phase diagram of Grang-Mills-Higgs theory, from [11], as a function of gaugeupling
and Higgs hopping parameter at finite temperature.

4. G, QCD

4.1 Vacuum structure

When addingN\s fundamental fermions to £5¥ang-Mills theory one arrives at{3QCD. The
vacuum structure of this theory is yet little explored [1, 2Jt has a nhumber of highly interesting
features. The first concerns the spectrum. Due to the grouptste, there exists a richer set of
color-neutral bound states than in QCD [1], both of fermicemid bosonic type. In the boson sector
there are as in QCD the glueballs and mesons. In additiore #re also diquarks, since due to the
reality of the G representations such states are color-neutral, différemt QCD, but similar to
QGC,D. In addition, there are also tetraquarks and heptaquarksisting out of four and six quarks.
Besides these bosonic hadrons there are also fermionic dbfwgt notably the hybrid, consisting
out of one quark and three gluons, but also a nucleon frone tquarks, as well as pentaquarks and
heptaquarks from five and seven quarks.

The mass hierarchy of these states will depend strongly emthsses of the quarks, even
for degenerate flavors. E. g., at heavy quark mass the hyhlidevthe lightest particle in the
fermionic sector, while the nucleon is expected to take thisrrole at low quark masses, but will
still be heavier than the diquark or mesons. The detailsedfdlhierarchy are a dynamical problem.
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Figure 5: The connected part of the diquark/scalar meson correlaitbravmass fit (left panel) and the
masses for the diquark and the pion as a function of the gamg@ing (right panel), from [2]. The lattice
spacing is strongly-dependent on the lattice parameters.

These bound states are also influenced by the pattern of shimametry breaking. Due to the
reality of quarks, G has, similarly to QGD, an enlarged chiral symmetry of UN2) [1, 2, 30, 31].
This symmetry can be viewed as a flavor symmetry on the levéteieyl fermions. Of this
symmetry an axial U(1) is expected to be broken in the sameasay ordinary QCD by the axial
anomaly. Taking for the following a single flavor leaves, antrast to QCD, still an SU(2) chiral
symmetry. This symmetry is spontaneously broken [2], likéhie quenched case [18], leaving only
an U(1) intact. This conserved U(1) can then be associatddanbaryon number. The Goldstone
bosons of this breaking are then expected to be two diquatkfupt like in QGD [5]. These two
diquarks represent a flavor-doublet on the level of Weyl fens.

In numerical simulations this is rater hard to identify, as dne Dirac flavor the scalar and
the diquarks only differ by disconnected contributionsrtkermore, it turns out that 8QCD in
the range of accessible parameters is very sensitive tothetigauge coupling and the hopping
parameter, and has at rather low gauge coupling at fixed hggrameters already a transition
into an unphysical phase [29], possibly an Aoki-like phasenetheless, mass determinations are
possible, as is demonstrated fdy = 1 in figure 5. The determination of the vacuum spectrum is
thus a challenging task, even at a qualitative level, anchgniog project [29]. Especially the mass
of the nucleon is relevant, when one turns to the phase dragra

4.2 Phase diagram

Due to reality of the representations and the enlarged Ichyrametry, the whole phase dia-
gram for theN; = 1 case is both accessible in lattice simulations and rete#amen besides the fact
that & QCD is an interesting theory on an intellectual level, thera number of features which
makes it also highly relevant on the level of applicationghig continuum limit. First of all, as de-
scribed in section 2, the theory is in the quenched limit \&&nyilar to SUN) Yang-Mills theories,
in contrast to theories with adjoint matter [25, 26, 31]. tRarmore, the theory has nucleons, and
in general fermionic baryons, and thus also nuclei. HadrBuaiuli effects at intermediate densities
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Figure 6. The G QCD phase diagram for one flavor of quarks. The left panel sttbe (unrenormalized)
Polyakov loop, the middle panel the normalized chiral carsd¢e, and the right panel the Baryon density,
normalized to the saturation density of 14 quarks/lattite §or details and simulation parameters, see [2].
Note that afguark~ 1 GeV the system starts to become dominated by systematicte{].

will thus play a role, in contrast to QD [3—6]. No other gauge theory with this combination of
features has yet been simulated on a lattice, except witanitnuum limit [7, 8].

This provides the possibility of a number of unprecedengstistof lattice approaches to finite
density QCD. It is possible to test explicitly to which extémvestigations using analytical con-
tinuation in imaginary or isospin chemical potential woslkeé e. g. [32, 33]), and whether Taylor
expansions (see e. g. [34, 35]), Lee-Yang zeros (see e.])), (@®ther methods (see e. g. [37]) are
reliable tools.

Furthermore, and possibly even more important, theéQ&D lattice phase diagram provides
new benchmarks for both models [38—40] and continuum methiodthe latter case especially
functional methods [40-42]. Furthermore, if breaking @CD to ordinary QCD should be possi-
ble, this would be even more helpful, though, of course, mtespoint the sign problem will prevent
a simulation of QCD.

The first step in this program is provided by a proof-of-piphe showing the accessibility of
the phase diagram in lattice calculations, see fig@rf2p Though so far at a qualitative level,
it shows already a structure close to the expected one,dimgjuindications [29] of a silver-blaze
point [43], see also section 5. A more quantitative desompwill require more detailed calcu-
lations, in particular concerning systematic errors [28pnetheless, the theory shows the low-

2The scale is here chosen to get a zero-density transitiopesture of about 160 MeV, and the first excited meson
state is used to set the scale scale. This procedure [2]oisgdyr affected by systematic errors, and will be improved
[29].
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Boltzmann results with the same mass or for massless quartt$o leading order chiral perturbation theory
[3, 30] with coefficients fitted to the £5case at intermediate densities. The middle panel showsathe c
responding ratios (note the logarithmic scale), and thetiiigind panel the integrated equation of state,
normalized to the continuum Stefan-Boltzmann case. Allltesunpublished from [29]. The value of the
lattice constana is approximately 0.2 fm.

temperature, low-density ordinary phase, has a transiflaly a cross-over, to a high-temperature
phase, and also a transition at finite density. Whether antlgesfe are phase transitions remains
to be seen, but so far the finite-density transitions arenggo Also, first signals of additional
structure at zero temperature have been observed [29]hwhé&y correspond to various phase
also observed in Q4D [5, 6]. However, more details studies, especially of systiéc effects are
necessary before definite statements can be made.

Finally, an interesting question is, to which extent the-klmmperature case is simple, so that e.
g., quasi-particle models would be a good description. Risrjurpose, a comparison to a system
of free quarks and to chiral perturbation theory is showngar 7. While the high-density region,
which is dominated by lattice artifacts [2], is rather wadkdribed by the corresponding free lattice
system of quarks, this is not the case at low densities. Hleeeequation of state is much more
similar to lattice or continuum versions of a gas of free resssquarks, instead of massive ones,
though the deviations are still very large at the smallesstilies. Atthe same time, at least leading-
order chiral perturbation theory is not able to reproduaneyualitatively the physics of 3QCD.
Thus, non-trivial effects play a dominant role at densibetowau ~ 0.5, which translates in this
case to roughly 500 MeV of quark chemical potential. In tkgion, highly non-trivial effects have
to be dealt with.

5. Resultson a smaller lattice

Since many of the investigations above are limited by thebmmof different lattice settings
which can be simulated, the use of smaller lattices may hetpeipping the phase diagram on a finer
grid. However, due to the unphysical bulk transition it i$ possible to study the full phase diagram
on smaller lattices, especially at finite temperature otickzg withN; < 5. Nevertheless, at zero
temperaturés, QCD is investigated on a8 16 lattice in the parameter regigh= 0.90...1.10
andu = 0...2. The monopole density is already sufficiently small, suwt the system stays
outside the bulk phase for all values Bfand u. In Fig. 8 the diquark and nucleon (proton)
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Figure8: Diquark and nucleon mass (left panel) and its ratio (righgbpon a & x 16 lattice. From [29].

mass together with its ratio are shown as a functio8 ofAssuming a nucleon mass of about
1 GeV, the diguark mass changes frem500 MeV atf8 = 0.90 to ~ 200 MeV atf = 1.10.
On the small lattice the scale is set by the ground state igmassa(f3) = Myiquar(8). The
phase diagram at zero temperature is then given as a furaftibe dimensionless paramefer=
U /Myiquark and the dimensionless lattice spacenglii Fig. 9 the quark number density is shown.
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Figure 9: Quark number density as a function of the lattice spaeirfgft panel) and a3 = 1.05 (right
panel) on a 8x 16 lattice. From [29].

Independent of the lattice spacing the quark number deteigs it maximum value Ofiqsat =
2-N.-N; = 14 at largefi. With decreasing lattice spacing, the saturation shiftarger values of
chemical potential, indicating that this saturation isyoallattice artifact. The Polyakov loop and
the (renormalized) chiral condensate show almost the s@m@&vibur as on the larger lattices, see
Fig. 10. Furthermore, the onset transition from the vacummutclear matter is studied in Fig. 11.
At [ip ~ 0.5, a transition in the quark number density (left panel) isestied. The value of the
onset does almost not depend on the lattice spacing, inticiitat at smaller values gi finite
size effects are less important than for larger values othemical potential. In the right panel,
the transition (shaded region) is compared to half of thealik mass, and a clear coincidence is
visible. This indeed verifies th&, QCD possesses, as advertised above, the silver blaze fyroper
[43] for baryon chemical potential, i.e. half of the masshd tightest bound state carrying baryon

10
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number is a lower bound for the onset transition to nucledtenanith decreasing lattice spacing
&, a plateau develops fgiy(8) < [ < [11(8), where the quark number density is almost constant.
For {1 > [1;(8) it starts again to increase until it saturategias

6. Conclusions

Concluding, G QCD is a highly interesting arena to investigate both conm@@nd practical
guestions. Conceptually, it has already taught us that ¢éiec of the gauge group is far less
relevant than originally anticipated. Most of the saliegatiires of Yang-Mills theory are also
present for this case with trivial center. It can thus be etgmkthat many other questions may be
little affected by the center as well. However, it also taughthat the group structure and matter
representation is important for the physics.

Investigating practical applications, which particwanhvolve benchmarks for models and
continuum methods at finite densities and low temperatises)ly a newly emerging field. It has
been shown that this is possible. It was furthermore alrdadgd that the low and intermediate
density regime are quite different from simple systemsfiommg the situation in QgD. To fully

11
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control this domain, so important for compact stellar ot§emuch progress will be needed, G
QCD will, almost certainly, play an important role in the popt of this enterprise in the years to
come.
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