
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
8
7

Singular values of the Dirac operator at nonzero
density∗

Takuya Kanazawa

Department of Physics, University of Regensburg, 93040 Regensburg, Germany†

Tilo Wettig‡

Department of Physics, University of Regensburg, 93040 Regensburg, Germany
E-mail: tilo.wettig@ur.de

Naoki Yamamoto
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
Department of Physics, University of Maryland, College Park, MD 20742-4111, USA
E-mail: nyama@umd.edu

At nonzero density the eigenvalues of the Dirac operator move into the complex plane, while its
singular values remain real and nonnegative. In QCD-like theories, the singular-value spectrum
carries information on the diquark (or pionic) condensate. We have constructed low-energy ef-
fective theories in different density regimes and derived a number of exact results for the Dirac
singular values, including Banks-Casher-type relations for the diquark (or pionic) condensate,
Smilga-Stern-type relations for the slope of the singular-value density, and Leutwyler-Smilga-
type sum rules for the inverse singular values. We also present a rigorous index theorem for
non-Hermitian Dirac operators.
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1. Introduction

We give a summary of [1], which is very long and sometimes quite technical. Here we present
the main ideas and most important results. We work in Euclidean space and in the chiral limit.

2. Dirac eigenvalues and singular values

In the presence of a chemical potential µ , the massless Dirac operator in QCD and QCD-like
theories is given by

D(µ) = γνDν +µγ4 =

(
0 DL

DR 0

)
(2.1)

with Dν = ∂ν + iAν , where Aν = Aa
ντa/2 is the gauge field and the τa are the generators of the

gauge group in the representation in which the fermions transform. The eigenvalue equation and
the equation for the singular values are

D(µ)ψn = λnψn and D†Dφn = ξ
2
n φn , (2.2)

where the argument µ is understood if it is not shown explicitly. For µ = 0 we have the trivial
relation ξn = |λn|. For nonzero (and real) µ the eigenvalues move into the complex plane, while
the singular values are always real and nonnegative. Eigenvalues and singular values are unrelated
for µ 6= 0 and live on different physical scales. The scale for the eigenvalues is set by the chiral
condensate at low density [2] and by the BCS gap ∆ at high density [3], while the scale for the
singular values in QCD-like theories is set by the diquark condensate at all densities, see Sec. 3.

The operators D(µ) and D†D have the same zero modes, and the same is true for the operators
D(−µ) and DD†. For a non-Hermitian Dirac operator the index theorem takes the form

1
32π2

∫
d4xFF̃ =

1
2
[

indD(µ)+ indD(µ)†], (2.3)

where indD(µ) = dimkerDR−dimkerDL. We generically have indD(µ) = indD(µ)† unless the
gauge field is fine-tuned. The proof of (2.3) and further properties of the eigenvalues and singular
values are given in [1].

3. Banks-Casher-type relations for the singular values

For the derivation of the results in this section it is important that the fermionic measure (in-
cluding source terms) in the partition function is positive definite, see the discussion in [1, App. C].
We restrict ourselves to such cases, which in particular implies an even number N f of flavors (ex-
cept for adjoint QCD, where N f could also be odd).

3.1 Two-color QCD

In two-color QCD the Dirac operator satisfies an anti-unitary symmetry, [Cτ2K, iD] = 0 with
C = iγ4γ2 the charge conjugation matrix and K the operator of complex conjugation. Adding a
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source term 1
2 jψTCγ5τ2Iψ + c.c. with

I =

(
0 −1N f /2

1N f /2 0

)
(3.1)

to the fermionic Lagrangian and using the Nambu-Gor’kov formalism one can show that the parti-
tion function takes the form

Z( j) =
〈

detN f /2(D†D+ j2)
〉

YM
=
〈

∏
n
(ξ 2

n + j2)N f /2
〉

YM
, (3.2)

where YM stands for N f = 0 in the average over gauge fields. Taking the logarithmic derivative
w.r.t. j, followed by the limits four-volume V4→∞ and j→ 0+ (in this order), then yields a relation
between the scalar diquark condensate and the density ρsv(ξ ) of the singular values at the origin,

〈
ψ

TCγ5τ2Iψ
〉
=

N f

2
πρsv(0) , (3.3)

see also [4]. Some subtleties of this result and its derivation are discussed in [1].

3.2 QCD with isospin chemical potential

We now consider QCD with Nc≥ 2 colors, two flavors, and nonzero isospin chemical potential
µI = 2µ , i.e., we have D(µ) for the up quark and D(−µ) for the down quark. Adding a source
term j(d†

LuR−u†
LdR)+ c.c. to the Lagrangian and using D(µ)† =−D(−µ) we find

Z( j) =
〈
det(D†D+ j2)

〉
YM , (3.4)

which agrees with (3.2) for N f = 2. After differentiating lnZ( j) w.r.t. j we obtain a relation between
the pionic condensate and ρsv, i.e.,

〈
ūγ5d− d̄γ5u

〉
= πρsv(0) . (3.5)

3.3 Adjoint QCD

Turning to QCD with adjoint fermions and any number of colors, we add a source term
1
2 jψTCγ5ψ + c.c. and again obtain (3.2). An analogous calculation then yields

〈
ψ

TCγ5ψ
〉
=

N f

2
πρsv(0) . (3.6)

4. Low-energy effective theories with diquark sources

From now on we focus on two-color QCD and distinguish three density regimes that differ in
their pattern of chiral symmetry breaking and in the number of Nambu-Goldstone (NG) modes.
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4.1 Low density

This regime was analyzed in great detail in [5, 6]. Here one starts from the symmetry break-
ing pattern SU(2N f )→ Sp(2N f ) at zero density and treats µ and the diquark source as a small
perturbation. There are N f (2N f − 1)− 1 NG modes, parametrized by a field Σ = UΣdUT with
Σd = diag(I,−I) and U = exp(iπaT a/2F), where the T a are the generators of the coset space
SU(2N f )/Sp(2N f ) and F is a low-energy constant (LEC). The leading-order effective Lagrangian
in the chiral limit is

L L
eff =

F2

2
tr(∇νΣ∇νΣ

†)−ΦL Retr(J̄Σ) (4.1)

with

∇νΣ = ∂νΣ−µδν0(BΣ+ΣB) , ∇νΣ
† = ∂νΣ

† +µδν0(Σ
†B+BΣ

†) , (4.2)

B =

(
1N f 0
0 −1N f

)
, J̄ =

(
JL 0
0 −J†

R

)
. (4.3)

Here, JL/R are antisymmetric complex matrices of dimension N f in flavor space, and ΦL is another
LEC equal to the diquark condensate per flavor and handedness at µ = 0 and without sources,

ΦL =
1

N f

∣∣〈ψT
i Cτ2Iψi

〉∣∣
J̄=0,µ=0 (i = L,R) . (4.4)

For JR =−JL = jI there are two types of NG modes [6],

type 1: mass =
√

jΦL/F2 (N2
f −N f −1 modes) , (4.5a)

type 2: mass =
√

jΦL/F2 +(2µ)2 (N2
f modes) . (4.5b)

The type-2 modes become massive for µ 6= 0, while the type-1 modes stay massless for j→ 0.

4.2 Intermediate density

At intermediate density µ can no longer be treated as a small perturbation and breaks the
original SU(2N f ) symmetry to SU(N f )L×SU(N f )R×U(1)B. A diquark condensate then breaks
this symmetry to Sp(N f )L×Sp(N f )R. The corresponding NG modes are ΣL,ΣR ∈ SU(N f )/Sp(N f )

and V ∈ U(1)B, and the total number of NG modes in this regime is N f (N f − 1)− 1. The U(1)A

symmetry is broken explicitly by the anomaly. The effective Lagrangian is

L I
eff =


N f f 2

0
[
|∂0V |2 + v2

0|∂iV |2
]
+ f 2

2 tr
[
|∂0ΣL|2 + v2|∂iΣL|2 +(L↔ R)

]
−ΦI Re [V tr(JLΣL− JRΣR)] for N f ≥ 4 ,

2 f 2
0
[
|∂0V |2 + v2

0|∂iV |2
]
+2ΦI Re[( jL− jR)V ] for N f = 2 ,

(4.6)

where f0, f and v0,v are LECs corresponding to the decay constants and velocities of the NG
modes, respectively, and ΦI is an LEC similar to (4.4) but with µ 6= 0. All LECs depend on µ . The
masses of the NG modes are given by

mA =
√

jΦI/ f 2
A for A = 0, . . . ,N f (N f −1)−2 , (4.7)

where fA = f for A≥ 1. Note that in this regime all NG modes are massless in the j→ 0 limit.
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4.3 High density

At very high density the U(1)A anomaly is suppressed due to the screening of instantons [7, 8].
The U(1)A symmetry of the action is no longer broken explicitly by the anomaly but spontaneously
by the diquark condensate. Therefore the symmetry-breaking pattern is now [9]

SU(N f )L×SU(N f )R×U(1)B×U(1)A→ Sp(N f )L×Sp(N f )R . (4.8)

The NG modes are the same as at intermediate density, except that there is an additional NG mode
A ∈ U(1)A which can be considered to be the η ′ whose mass has become small. Hence the total
number of NG modes in this regime is N f (N f −1). The effective Lagrangian is

L H
eff =


[

N f f̃ 2
0

2

(
|∂0L|2 + ṽ2

0|∂iL|2
)
+ f̃ 2

2 tr
(
|∂0ΣL|2 + ṽ2|∂iΣL|2

)
+(L↔ R)

]
−ΦH Retr(JLLΣL− JRRΣR)−

2 f̃ 2
0

N f
m2

inst Re(L†R)N f /2 for N f ≥ 4 ,

f̃ 2
0
[
|∂0L|2 + ṽ2

0|∂iL|2 +(L↔ R)
]
+2ΦH Re( jLL− jRR)− f̃ 2

0 m2
inst Re(L†R) for N f = 2 ,

(4.9)

where L = A†V and R = AV . Similar to Sec. 4.2 we have LECs f̃0, f̃ and ṽ0, ṽ as well as ΦH,
all of which depend on µ . The term involving minst in (4.9) corresponds to the single-instanton
contribution to the η ′ mass, with minst→ 0 as µ→∞, see [1] for a detailed discussion. The masses
of the NG modes are given by

type 1: mA =
√

jΦH/ f̃ 2
A (N2

f −N f −1 modes) , (4.10a)

type 2: mη ′ =
√

jΦH/ f̃ 2
0 +m2

inst (1 mode) . (4.10b)

The type-1 modes stay massless for j→ 0, while the η ′ becomes massive as µ is lowered.
The effective theory at intermediate density can be obtained from the effective theory at low

density (or high density) by integrating out the NG modes that become massive as the density is
increased (or decreased). In this way the LECs of the three different regimes can be matched, see
[1] for details. The domains of validity of the three effective theories, and their overlaps, are also
discussed in [1].

5. Smilga-Stern-type relations for the singular values

Following the approach of Smilga and Stern for QCD at zero density [10], we can compute the
slope of the singular-value density at the origin. For technical reasons we start at infinite density.

5.1 Infinite density

We now add a more general source term 1
2 ψTCγ5τ2Jψ + c.c. to the fermionic Lagrangian,

where J = JR =−JL is again an antisymmetric N f ×N f matrix, which we can decompose as

J = I
N

∑
A=0

jAtA = jI + I
N

∑
a=1

jata with N =
1
2

N f (N f −1)−1 . (5.1)

5
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Here, the tA are the generators of U(N f )/Sp(N f ) and the jA are real parameters with j0 = j
√

N f .
We can then show the partition function of two-color QCD is given by

Z(J) =
〈

det1/2(D†D+ J†J)
〉

YM
=
〈

∏
n

det1/2(ξ 2
n + J†J)

〉
YM

. (5.2)

For N f ≥ 4 we define the scalar susceptibility

Kab( j) = lim
V4→∞

1
V4

∂ ja∂ jb lnZ(J)
∣∣∣
all ja=0

, (5.3)

for which we obtain after some algebra

Kab( j) = δab lim
V4→∞

1
V4

〈
∑
n

ξ 2
n − j2

(ξ 2
n + j2)2

〉
j
= δab

∫
∞

0
dξ ρsv(ξ ; j)

ξ 2− j2

(ξ 2 + j2)2 ∼ δabρ
′
sv(0) ln

Λ̃

j
.

(5.4)

In the last step we cut off the integral at ξ = Λ̃ and extracted the part that diverges for j→ 0. On the
low-energy effective theory side we start from (4.9), where at infinite density we can set minst = 0.
Performing a one-loop calculation with a momentum cutoff Λ̃ we obtain for j→ 0

Kab( j)∼ δab

[
(N f −4)(N f +2)

2N f f̃ 4
+

2
N f f̃ 2

0 f̃ 2

]
Φ2

H
16π2 ln

(
Λ̃

j

)
. (5.5)

Matching the divergences of (5.4) and (5.5) for j→ 0 yields the slope of ρsv at the origin,

ρ
′
sv(0) =

[
(N f −4)(N f +2)

2N f f̃ 4
+

2
N f f̃ 2

0 f̃ 2

]
Φ2

H
16π2 . (5.6)

This method does not work for N f = 2, but we expect, based on experience from partially quenched
chiral perturbation theory [11], that (5.6) is also valid for N f = 2.

5.2 Intermediate density

At intermediate density the calculation on the low-energy effective theory side starts from (4.6)
and proceeds in a similar way to yield

ρ
′
sv(0) =

[
(N f −4)(N f +2)

2N f f 4 +
1

N f f 2
0 f 2

]
Φ2

I
16π2 . (5.7)

5.3 Zero density

At strictly zero density we start from (4.1) with µ = 0 and obtain in a similar way

ρ
′
sv(0) =

(N f −2)(N f +1)
N f F4

Φ2
L

16π2 . (5.8)

5.4 Relation between the three results

At first sight it does not seem possible to interpolate smoothly between the three results for
ρ ′sv(0) at zero, intermediate, and infinite density. This puzzle can be understood by analogy with
the interpolation between SU(2) and SU(3) chiral perturbation theory, where the strange quark
mass plays the role of the symmetry-breaking parameter. In our case this parameter is µ . We find
(see [1] for details) that at low density the slope is given by (5.7) for ξ � µ2/Λ and by (5.8) for
µ2/Λ� ξ � Λ, where Λ∼ F ∼Φ

1/3
I . At high density the slope is given by (5.7) for ξ � gm2

η ′/∆

and by (5.6) for gm2
η ′/∆� ξ � g∆, where g is the coupling constant.
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6. Finite-volume analysis

In a finite volume V4 = L4, the three low-energy effective theories constructed in Sec. 4 have
ε-regimes in which the theory becomes zero-dimensional. The corresponding condition is

1
m`
� L� 1

mNG
, (6.1)

where m` is the mass scale of the lightest non-NG particle (see [1, Sec. 5.5] for actual values) and
mNG is the mass scale of the NG particles, see Eqs. (4.5), (4.7), and (4.10). In these ε-regimes
we have derive Leutwyler-Smilga-type sum rules [12] for the inverse singular values and random
matrix theories from which microscopic singular-value correlation functions can be derived [1].

7. Summary

We have derived a number of exact results for the singular-value spectrum in QCD-like theo-
ries without a sign problem. Our results could be used in lattice simulations to obtain the diquark
condensate at any density, allowing for a numerical test of the conjectured BEC-BCS crossover.
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