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We study the phase structure of QCD at high temperature and density by lattice QCD simulations
adopting a histogram method. We try to solve the problems which arise in the numerical study
of the finite density QCD, focusing on the probability distribution function (histogram). As a
first step, we investigate the quark mass dependence and the chemical potential dependence of
the probability distribution function as a function of the Polyakov loop when all quark masses
are sufficiently large, and study the properties of the distribution function. The effect from the
complex phase of the quark determinant is estimated explicitly. The shape of the distribution
function changes with the quark mass and the chemical potential. Through the shape of the
distribution, the critical surface which separates the first order transition and crossover regions in
the heavy quark region is determined for the 2+1-flavor case.

The 30th International Symposium on Lattice Field Theory
June 24 - 29, 2012
Cairns, Australia

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:ejiri@muse.sc.niigata-u.ac.jp

Probability distribution functions in the finite density lattice QCD S. Ejiri

1. Histogram method

Not only the temperaturel() and chemical potentialf) but also the quark masses are im-
portant to understand the properties of QCD phase transition. In fact, the structure of the phase
boundary inT — u phase diagram is rather sensitive to the value of the strange quark mass. Recent
lattice QCD simulations suggest that, for physical quark masses, Titi@nsition is crossover at
zerou, while it becomes first order for sufficiently large Identifying the critical point separating
crossover and first order is one of the most challenging topics in lattice QCD simulations and in
heavy-ion experiments. Probability distribution function or the histogram of the order parameter
provides us with an important clue to identify such point in numerical simulations: In the case of
the first order transition, different phases coexist at the transition point, so that the probability dis-
tribution function has multiple peaks. On the other hand, in the case of crossover, such phenomena
does not take place. Therefore, the nature of the transition can be identified through the shape of
the distribution function.

In this paper, we study the boundary of the first order transition region in QCD in the case
when quarks are all heavy. We determine the boundary as function of the chemical pqtential
by measuring histograms. Although this boundary in the heavy quark region is irrelevant to the
boundary near the physical point, this provides us with a good testing and developing ground for
the method, because the computational burden is much lighter.

Selecting a physical quantity, we calculate the probability distribution function defined by

Nt
WX, B, Ky, it) = /gugq@w S(X—R) eSS :/gu S(X—X) e [ deth(cr, )
=1

N detM(Kf Us)
= W(XaBaO>O) —_ " ) (11)
<'[|1 detM(0,0) (X fixed;B)

whereS;, § and deM are the gauge action, the quark action and the quark determinant, respec-
tively. k¢ is the hopping parameter for tHé&" flavor quark massB = 6/g? is the gauge coupling,
andN is the number of flavors(: - -) x fixedg) = (- 0(X — X))B/<5(X — X))B means the expec-
tation value measured with fixing the opera¥oat 3 in quenched simulationg; = us = 0. The
expectation value in the right hand side is the ratiovgX, 3, k¢, ts) andw(X, 3,0,0). However,

the calculation of deé¥l is usually difficult. We perform the hopping parameter expansion and
compute the quark determinant in the leading order of the exparfion [

detM(k, )

detM(0.0) — exp[288\lsiteK4I5+ N2 H2 N {cosh(u) Qr +i sinh(“) o} } 4. ] (1.2)

T T
for the standard Wilson quark action, wheredé0,0) = 1. The number of sites Nsjie = N§ X
N;. The quark determinant is simply given by the average plaquette opé&tatod the real and
imaginary parts of the Polyakov loop operalﬁr,: Qr+iQ,. Because the critica is very small,
at least fol\; = 4, this approximation can be justified for the determination of the crikical

In this calculation, it is essential to perform simulations at several simulation points and to
combine these data by the multi-point reweighting met@dJince values of the most observables
distribute in a narrow range during one Monte-Carlo simulation, it is difficult to investigate the
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Figure 1: Polyakov loop susceptibility as a func-  Figure 2: Distribution function of the absolute
tion of k* andf* = B + 48Nik* for Ny = 2. value of the Polyakov loop at the transition point.

shape of the distribution in a wide range. We thus combine several simulations. The expectation
value of a operatoX at 8 is computed by simulations @& with the number of configuratioh;
fori=1,---,Nspusing the following equation for the case of the plaquette action and degenerate
N¢-flavor,

1 . _ (XG(P)[detM(k, 1)/ detM(0,0)]™)
X)) = @/QU XS (det (k. )™ = (&(P)[detM (k, 1),/ detM (0, 0)]™+),

all’ (13)

all
where the weight facto®(P) is
eGNSiteB'S

= Z,N:s‘i NieﬁNsiteBilsg_l(Bi)’

G(P)

(1.4)

and(---),, means the average over all configurations generated @twith k = 1 = 0. The par-

tition functions.Z’(3) are parameters in this method and are determined by solving a consistency
condition: Z(3i) ~ ¥ (ai Confi}é(ls) , humerically for each = 1,---,Nsp, except for an overall
normalization constant (o cont} Means the sum of configurations at@ll (See the appendix A

in Ref. [J for details.) Note that this method enables us to changad continuously.

2. Polyakov loop distribution function at zero density

The most important observable near the transition point in the heavy quark region is the
Polyakov loop, which is the order parameter of the deconfinement transition. We analyze the data
obtained at 5 simulation pointf, = 5.68 — 570, in the quenched simulations with the plaquette
gauge action on a 34« 4 lattice [l. Figurellis the result of the Polyakov loop susceptibility,

Xa = N3((Q —(Q))?), as a function ok™ and the effectivg8 defined ag3* = B + 48N\ik* with

N = 4, computed att = 0 using Eq.[[.3. Because the plaquette actiongg= —6NsiteBP, the
plaquette term in EqI{2) can be absorbed into the gauge action by defifihgnd the analysis be-
comes simpler. Owing to the multi-point reweighting method, the susceptibility can be calculated
in a wide range of8 andk. We define the transition point as the peak positioy®f
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Figure 3: k-dependence of the probability distribution of the Polyakov loop at the transition point in the
complex plane foNs = 2. The value ok* is shown in the upper right of the figure.

We then measure the distribution function of the absolute value of the Polyakov loop at the
transition point for the case of 2-flavor QCD jat= 0. Expectation values with fixing the value
of the Polyakov loop are computed using the delta function approximated by a Gaussian function,
5(x) ~ expg—(x/A)?]/(Ay/T), whereA = 0.005 is adopted consulting the resolution and the sta-
tistical error. We plot the effective potentiddest(|Q|) = —Inw(|Q|), for several values ok* in
Fig.[2 B is adjusted to the peak position pf at eachk. The value ol (|Q|) is normalized at
|Q| = 0.01. This figure shows that the shapeve§(|Q|) is double-well type ak* = 0, indicating
the first order transition, and the shape changes gradually as increadingecomes single-well
aroundk® ~ 0.00002, suggesting the first order transition changes to crossover. The critical value
of k has been determined by measuring the distribution function of the average plaquette[j Ref.
with the same configurations. The resulkig = 0.06583)(*7,) for N = 2. Hence, the results of
Kep from the plaquette and Polyakov loop effective potentials are consistent with each other.

We moreover calculate the distribution function of the complex Polyakov loop in the complex
plane(Qg, Q) at the phase transition point, which is shown in Bdor 2-flavor QCD. The well-
known Z(3) symmetric 4 peak structure is observed at 0, and the 2 peaks in the negatg
region become smaller as increasingThen, the remaining 2 peaks are getting closer wijtand
the distribution becomes a single peak around 0.00002. These figures illustrate how the Z(3)
symmetric quenched QCD changes to full QCD.

3. Complex phase and distribution function at finite density

The histogram method is powerful in particular with the presence of the chemical potential
u. Direct simulations by the Monte Carlo method cannot be performed at finite chemical potential
because the quark determinant is complex. An approach to simulate finite density QCD is to
combine the reweighting method and simulations with the complex phase of the quark determinant
suppressed, which are called phase-quenched simulations. The distribution function for the real
part of Polyakov loopQg, is a good example to explain the contribution from the complex phase
and the phase-quenched part in the distribution function at finite density.
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Figure 4: The solid lines ar&/e(Qr) atu =0 Figure 5: The average of the complex phase fac-
for eachk®. Ver(QRr) at finite k*cosh{u/T) is tor and the 29, 4" and é" order cumulants calcu-
between the solid line and the dashed line. lated with fixedQg at k*sinh(11/T) =~ 0.00002.

We calculate the distribution function in heavy quark QCD for the degenlfate? standard
Wilson case. Using the hopping parameter expansion, the distribution function can be factorized
into the phase factor and the phase-quenched part.

W(Qr,B,K, 1) = /@U 5(Qr — Or) B (detM (k. 1))

— W(Qr, ,0,0) <e288“5iteNfK4ﬁeXp [3N§’2N‘*2NrKN‘ {005h<$> Qr-+i Si”h<u> Q H >(Q 510
R:P>

f
_ * 3oNe+2p, o N H i
=w(Qr, 3*%,0,0) exp[BNSZ N¢k cosh(_l_) QR} <e' >(QR;B*7O)’ (3.1)
where@ is the phase of the quark determinant:
6 = ANS2M 2Nk sinh(p/T) Q. (3.2)

and the part in front of the phase average is the distribution function in the phase-quenched theory:
The plaquette term is absorbed By shifting B to B* = B + 48Nik*. () (ar;B,x) Means the
expectation value a3, k) with fixing Qg.

The phase-quenched partwfQg, 3, K, 1) can be obtained from that gt= 0 simply by re-
placingk™ by k™ cosi{u/T), since the distribution function at = 0 is given byw(Qg, 8*,0,0)
x exp3NS2M 2k NQg]. Therefore, the critical valuegp(u) in the phase-quenched theory is given
by kgy(0) = k(1) coshu/T). Moreover, adoptinge™ cost{u/T) as basic parameter to in-
vestigate the critical point, the magnitude of the phase is limited for edtbosh(u/T) be-
causek™ sinh(i1/T) in 8 is always smaller thar™ cosH/T). The effective potential o€,
Vett(Qr) = —InW(QR), at the transition point fou = 0 is plotted in Figld by the solid lines for
eachk™, and is equal to the phase-quenched distribution function for gdatosH{u/T). This
Vesi IS Nnormalized afdg = 0.

Next, we calculate the phase fact@,é>(QR;B*70). If &0 changes its sign frequently, the statis-
tical error becomes larger than the expectation value, causing the sign problem. To avoid the sign
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problem, we evaluate the phase factor by the cumulant expa@Bh [

o ~ expl i@y, (e (8% (8% (6% (8%
<e' >(QR;E*7O) = exp[l<6>c > TR TR TR E G20
wAhere<é”ZC is then' order?umulant<éf>c = <é2>(QR?B*:0)A’ (6% = (6% @up-0) — 3<é2>.%QR;B*,O)’.
(6%)c = (6% (qrip.0) — 15(60%) (i 0)(0%) (auip- 0) + 30(6%) 7,5 0 -+ The key point of this

method is thatd") = 0 for any oddh due to the symmetry undér— —8, and thus the complex
phase can be omitted from this equation. This implies @8} is guaranteed to be real and positive

and the sign problem is resolved once the cumulant expansion converges. Another important point
is that® is given by the average of the Polyakov loop. When the correlation length is finite, the
phase can be written as a summation of local contributﬁmszx 6 with almost independer@(.

The phase average is then

|n

<éé>z |:|<ééx> :exp(ZZrﬂ(éQC). (3.4)

This suggests that all cumulan8"). ~ zx(é)’(‘)c increase in proportion to the volume as the vol-
ume increases. Only for such a case, the effective potergiatan be well-defined though the
phase-quenched effective potentiglwith Ve = Vo — In(€9) = Vo — 5,i"(8M¢/n! in the large
volume limit, sincéVe andVp are both in proportion to the volume.

We plot the results of8")¢/n! in Fig. B for k™ sinh(u/T) = 0.00002 and3* = 5.69. The
black, blue and green lines are the resultsrfer 2,4 and 6, respectively. The fourth and sixth
order cumulants are very small in comparison to the second order fokthighe red line is
— In(ei9>(QR;B*7o), which is almost indistinguishable from the second order cumulant. The contribu-
tion from the fourth and sixth orders becomes visible at s@galask™ sinh(u/T) increases. How-
ever, for the determination of the critical poimoNF; coshu/T) ~ 0.00002 in the phase-quenched
theory, the region at™ sinh(11/T) < 0.00002 is important because coghi T) > sinh(u/T). This
figure thus indicates that the phase average is well-approximated by the second order cumulant
around the criticak. The results of the effective potentials including the effect from the phase
factor are shown by the dashed lines in Eigor eachk™ cosi{u/T). In this figure, the phase
factor is estimated by the second order cumulant /&t = o, i.e. sini{u/T) = cosHu/T). The
results at finiteu are between the solid and dashed lines. We find that the contribution from the
phase,—In(€9), is quite small except at smallr and the phase factor does not affégt in the
region of Qg relevant for the determination of the critical point. This means that the contribution
from the complex phase to the location of the critical point is quite small on cux 24attice.

Neglecting the effect of the phase factor, it is easy to determine the critical point fb¥ the
2+ 1 case because the difference from Mie= 2 case is just to replacec®* by ZKL\'(; + k. We
thus find that the criticalkyg, Ks) iS given by

2Kyg(H) cosh{pua/T) + k8! (1) costips/T) = 2[kg=2(0)N, (3.5)

WhereKé\:;:z(O) = 0.06583)(*1,) for Ny = 4 . The critical lines in thec plane for up, down and
strange are drown in Fif@ for the cases oftyg/T = us/T = 0 — 10 (left) andu,q/T = 0 — 10 and

Uus/T = 0 (right).
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Figure 6: Critical surface separating the first order transition and crossover regions in the heavy-quark
region. Left The caseuy, = g = s = Y. Right The case that may be realized in heavy ion collisions:

Hu = Mg = Hug andps = 0.

4. Summary

We have studied the phase structure of QCD at nonzero chemical poteintitle heavy quark
region, highlighting the properties of the probability distribution function of the Polyakov {dop
The shape of the effective potential defined by the distribution function changes with the quark
mass and the chemical potential. The multi-point reweighting technique enables us to obtain the
distribution function in a wide range of the coupling parameters. We have shown that the effective
potential provides us with an intuitive and powerful way to investigate the fate of first order phase
transitions. Through the shape of the potential, the critical surface where the first order deconfining
transition in the heavy quark limit terminates is determined for the 2+1-flavor case. The effect from
the complex phase of the quark determinant has been estimated explicitly, and is found to be quite
small around the critical point for any chemical potential in the heavy quark region. On the other
hand, the effect from the complex phase must be important in the light quark region. An attempt to
study finite density QCD at light quark masses by combining phase-quenched simulations and the
reweighting technique is reported @]
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