
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
9
3

An estimate of heavy quark momentum diffusion
coefficient in gluon plasma

Debasish Banerjee
Albert Einstein Center, Institute for Theoretical Physics,
Bern University, Bern, Switzerland
E-mail: dbanerjee@itp.unibe.ch

Saumen Datta ∗ and Rajiv Gavai
Tata Institute of Fundamental Research
Mumbai, India.
E-mail: saumen@theory.tifr.res.in,gavai@tifr.res.in

Pushan Majumdar
Indian Association for the Cultivation of science
Kolkata, India.
E-mail: tppm@iacs.res.in

We calculate the momentum diffusion coefficient for heavy quarks in SU(3) gluon plasma at

temperatures 1-2 times the deconfinement temperature. The momentum diffusion coefficient is

extracted from a Monte Carlo calculation of the correlationfunction of color electric fields, in the

leading order of expansion in heavy quark mass. Systematicsof the calculation are examined,

and compared with perturbtion theory and other estimates.

The 30th International Symposium on Lattice Filed Theory
June 24-29,2012
Cairns, australia.

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
9
3

Heavy quark momentum diffusion coefficient Saumen Datta

1. Introduction

The charm and bottom quarks play a very important role as probes of the medium created in
relativistic heavy ion collision experiments. Since the masses of both these quarks are considerably
larger than the temperatures estimated to have been reached in RHIC and even in LHC, one expects
these quarks to be produced largely in the early state of the collision. They therefore allow us to
look at the medium at its early times. Besides, since the nature of energy loss and of collective
behavior of the heavy quarks are different from those of the light quarks, a study of the heavy
quark jets and the flow of the heavy hadrons leads to crucial insights into theway the medium
interacts.

As collision with a thermal quark does not change the energy of a heavy quark substantially,
one would expect the thermalization time of the heavy quark to be large. Since elliptic flow devel-
ops early, it is reasonable to expect that the elliptic flow will show a mass hierarchy: vh

2 ≫ vD
2 ≫ vB

2 ,
where D and B refer to generic mesons in D (one valence charm) and B (one valence bottom)
family, andh refers to the light hadrons. Similarly, the nuclear suppression factor canbe intuitively
expected to be closer to 1 for the heavy-light mesons:Rh

AA ≪ RD
AA ≪ RB

AA.
Since the typical energy loss in a hard collision with the thermal particles is∼ T, for a thermal

heavy quark withM ≫ T, p ∼
√

MT, it takes a large number of collisions for the heavy quark
to change its momentum byO(1). Therefore, one can picture scattering with thermal quarks as
uncorrelated momentum kicks, and use a Langevin description for the motion of the heavy quark
in the thermal medium [1, 2]:

dpi

dt
= −ηDpi + ξi(t), 〈ξi(t)ξ j(t

′)〉 = κ δi j δ (t − t ′). (1.1)

The momentum diffusion coefficient,κ, is related to the correlation of the force term:

κ =
1
3

∫ ∞

−∞
dt ∑

i

〈F(t)F(0)〉. (1.2)

κ has been determined in perturbation theory[2]. The fluctuation-dissipationtheorem relatesηD

andκ [3]:

ηD =
κ

2MT
. (1.3)

The heavy quark elliptic flow, andRAA, has been measured in RHIC [4]. While a Langevin
formalism based description, Eq. (1.1), seems to describe thepT dependence of the heavy quark
flow quite well, the value ofκ needed to describe the data [4] is much larger than the leading
order (LO) perturbation theory prediction. Recently, the next-to-leadingorder (NLO) calculation
of κ has been performed in the static quark limit [5]. While the NLO result is, encouragingly,
much larger, the large change between LO and NLO also points to the unreliability of perturbation
theory in the temperature regime of a few times the transition temperatureTc. A non-perturbative
evaluation, if possible, will greatly add to our understanding of the medium response to a heavy
quark probe.

Here we report the results of an non-perturbative estimation ofκ using lattice QCD in the
quenched approximation (i.e., for a gluon plasma). In the next section we outline the methodol-
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ogy, and in the following section we discuss the results. A more detailed discussion, including
examination of various systematic errors, can be found in Ref. [6].

2. Calculational Details:

The calculation of the heavy quark momentum diffusion coefficient,κ, is a nontrivial problem
for lattice QCD. On the lattice, one only calculates the Euclidean-time Matsubara correlators, while
κ, and other transport coefficients, are directly connected to the real-time retarded correlators of
suitable currents [7]. An analytical continuation of the Matsubara correlator to real time is required
to extractκ from it. Such a continuation of numerical data is very difficult (see [7] fora recent
review). On top of that,κ is related to the width of a narrow peak in the spectral function of the
quark number current, making it very difficult to extract it reliably.

A strategy of extractingκ for an infinitely heavy (“static”) quark has been formulated in Ref.
[8, 9] which alleviates this second problem somewhat. In the static limit, the propagation of heavy
quarks is replaced by Wilson lines, and the correlator of Eq. (1.2) reduces to the evaluation of re-
tarded correlator of electric fields connected by Wilson lines [8]. This correlator can be analytically
continued to Euclidean time [9]. The lattice discretization of the Euclidean correlator leads to

GLat
E (τ) = − 1

3L

3

∑
i=1

〈

Real tr
[

U(β ,τ) Ei(τ,~0) U(τ,0) Ei(0,~0)
]〉

, (2.1)

whereU(τ1,τ2), the timelike gauge connection between points(~x,τ1) and(~x,τ2), is the phase factor
associated with the evolution of an infinitely heavy quark in imaginary time.Ei(τ,~x) is the color
electric field at point(~x,τ) andL = trU(β ,0) is the Polyakov loop.

In order to calculateGLat
E (τ), we use the discretization of the electric field [9]

Ei(~x,τ) = Ui(~x,τ) U4(~x+ î,τ) − U4(~x,τ) Ui(~x+ 4̂) (2.2)

which has good ultraviolet properties. We calculatedGLat
E (τ) on a set of SU(3) pure gauge lattices

in the temperature range 1−2Tc. It is imperative to use sufficiently fine lattice spacings,a, so that
we get a large number of points,Nτ , in the τ direction. We could reliably extractκ only from
lattices withNτ = 20 or more. The different lattices for which we will be quoting estimates ofκ
are shown in Table 1.

β Nτ T/Tc # sublattices # sublattice updates

6.76 20 1.04 5 4000
6.80 20 1.09 5 3000
6.90 20 1.24 5 2000
7.192 24 1.50 4 2000
7.255 20 1.96 5 2000

Table 1: List of lattices which were used to calculateκ from GE(τ). Also given are the parameters used
for multilevel update: the number of sublattices theτ direction was divided in, and the number of sublattice
averagings before a full lattice update.
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A precise calculation ofGLat
E (τ) on lattices with such largeNτ is known to be very difficult

with a naive updating algorithm. We adapted the multilevel algorithm [10], which was devised
precisely for such problems, to calculate Eq. (2.1). The lattice is divided intoseveral sublattices.
The expectation value of the correlation functions are first calculated in each sublattice by averag-
ing over a large number of sweeps in that sublattice while keeping the boundary fixed. A single
measurement is obtained by multiplying the intermediate expectation values appropriately. The
number of sublattices and the number of sublattice averagings were tuned for the various sets, so as
to get correlators with a few per cent level accuracy. The parameters used for the lattices in Table 1
are also shown in the table. The use of the multilevel algorithm turned out to be absolutely essen-
tial for our calculation: for largeτ, it was up toO(103) times more efficient than a naive updating
algorithm. For details about implementation of the algorithm, and its performance, see Ref. [6].

Before extractingκ, we need to convertGLat
E (τ) to the physical correlator of the electric field,

GE(τ) = Z(a)GLat
E (τ) (2.3)

whereZ(a) = Z2
E is the lattice spacing dependent renormalization factor for the electric field cor-

relator. We use the tree-level tadpole factor forZ(a) [11]. A nonperturbative evaluation ofZ(a) is
planned for the future.

3. Results:

Standard fluctuation-dissipation relations [3] connect the momentum diffusion coefficient,κ,
to the low-ω behavior of the spectral function:

GE(τ) =
∫ ∞

0

dω
π

ρ(ω)
coshω(τ −1/2T)

sinh ω
2T

(3.1)

κ = lim
ω→0

2T
ω

ρ(ω). (3.2)

The nontrivial part of the calculation is to extractρ(ω) from GE(τ). In this work we assumed
a functional form forρ(ω), so that calculation ofρ(ω) andκ become a fitting problem. We use
the simple fit form

ρ(ω) =
κ
2T

ω Θ(Λ−ω) + bω3, (3.3)

where the first term in the r.h.s. of Eq. (3.3) is the low-ω diffusion part, andΛ is an infrared cutoff.
As elaborated later, we fixΛ = 3T for our central results and fit forκ,b. For the fit,χ2 minimization
was carried out with the full covariance matrix included in the definition ofχ2. We typically
obtained acceptable fits to the correlators forτa in the range[Nt/4,Nt/2], with χ2/d.o.f ∼ 1. At
shorter distances, lattice artifacts start contributing and the simple form of Eq. (3.3) does not work
well. Also using the leading order lattice correlator instead of the continuum form did not improve
the quality of the fit. We, therefore, restrict ourselves to the long distance part of the correlator.

In order to get a feel for the contribution of the diffusive part of the spectral function to the
correlator, in Fig. 1 a) we show the correlators reconstructed from different parts ofρ(ω) sepa-
rately. In this figure we take theNτ = 24,1.5Tc data set, and use the best fit form of Eq. (3.3) (for
Λ = 3T). The contributions to the total correlation function from theω3 part of ρ(ω) and that
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Figure 1: (a) GE(τ) and the correlator reconstructed from the diffusive part(DIFF), shown normalized to
that reconstructed from the leading order part (LOC), at 1.5Tc (β = 7.192); see text. (b) The contribution of
the diffusive part, normalized by the leading order part, atthe different temperatures in Table 1.

from the diffusive part are calculated separately using Eq. (3.1). In the figure these two parts are
referred to as LOC and DIFF, respectively, and the total correlator and DIFF are shown normalized
by LOC. While the correlator is dominated by the contribution from thebω3 term, the diffusion
term has a substantial contribution near the center of the lattice. In Fig. 1 a) itcontributes∼ 17 %
at τT = 0.5.

In Fig. 1 b) we show the ratio of the diffusive and the leading order parts of the correlator with
varyingτ at the different temperatures studied in Table 1. Here we show the 1-σ bands and not the
best fit values. At all temperatures, except the one at the highest temperature, the diffusive part is
seen to reach about 5 % level byτT ∼ 0.3. Note that the accuracy of our correlator is better than
this. Also no significant trend of temperature dependence is seen in this figure, indicating the lack
of a strong temperature dependence ofκ in this temperature range.

The value of the momentum diffusion coefficient,κ, obtained from the analysis outlined
above, is shown in Fig. 2 a). The central error bar corresponds to thepurely statistical error,
obtained from a Jackknife analysis. The larger error bar corresponds to uncertainties due to various
systematics:

• As mentioned above, for the central value shown in the figure, we have set Λ = 3T. In
order to look for the dependence of the result on this choice, we have varied Λ in the range
[2T,∞). A systematic error band which envelops the central values of the fits with varying Λ
is introduced.

• The fit form, Eq. (3.3), is a simple model, taking into account the leading orderperturbative
behavior and the fact that at smallω , ρ(ω) ∝ ω . In order to test the dependence of the
extracted value ofκ on Eq. (3.3) we also use an alternate form for the infrared part ofρ(ω):

ρ2(ω) = κ tanh
ω
2T

Θ(ω −Λ) + bω3. (3.4)

This form is motivated by classical lattice gauge theory [12]. The difference betweenκ
obtained from uses of Eq. (3.3) and Eq. (3.4) is also included in the systematic error.
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Figure 2: (a) κ/T3 extracted fromGE(τ), as explained in the text, at various temperatures in the gluon
plasma. (b) The diffusion coefficient,D, obtained fromκ using Eq. (3.5). Also shown are the LO perturba-
tion theory estimate [2] and a different lattice estimate [15], both for gluon plasma. The experimental value
quoted by PHENIX, and an estimate from theN = 4 supersymmetric Yang-Mills theory are also shown.

• For the central values in Fig. 2, we have used the rangeτmin to Nτ/2, whereτmin is the
smallestτ for which we got a goodχ2. We looked for the stability of the fit values for
variation ofτmin. In all sets except one, we could get stable fits, with goodχ2 for τmin ≥Nτ/4.
For the set at 1.96Tc, where the fit value was not so stable, we included the variation of the
fit value into our systematic error estimation.

A detailed discussion of the sizes of the various systematics can be found in Ref. [6]. Within
the small variation ofLT our resources permitted, we did not find a finite volume dependence above
our other errors forLT ≥ 2.

The value ofκ/T3 at 1.5Tc, shown in Fig. 2 a), agrees within errors with a similar calculation
by Francis et al. [13], while an earlier calculation [14] found smaller values. It is also an order-of-
magnitude larger than the LO perturbation theory value that can be extractedfrom Ref. [2].

The experimental results for heavy quark diffusion are usually presented in terms of the dif-
fusion coefficientD, which controls diffusion of the heavy quark in position space. The Einstein
relation,

D =
T

MηD
=

2T2

κ
, (3.5)

connectsD with κ. D obtained from Eq. (3.5) and Fig. 2 a) is shown in Fig. 2 b). The leading
order perturbation theory value [2] is also shown there.

A more direct approach to calculatingD from lattice QCD would be to look at the correlation
function of the heavy quark number current,Q̄γiQ. A calculation ofD for the gluon plasma using
such an approach has been presented in Ref. [15]. Their results arealso shown in Fig. 2 b),
where we have added there statistical and systematic errors in quadrature. The results are even
further from the perturbation theory estimate and systematically lower than ourresults, although
consistent within the large error bars.

Our results are for a gluon plasma, so a comparison with the experimental results [4] requires
due caution. At the least, a comparison of the results in Fig. 2 with the perturbative results for
quenched QCD gives us an indication of how much the nonperturbative results can change from
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the perturbative results in the deconfined plasma at moderate temperatures< 2Tc. Even then, the
results are most encouraging since they indicate that the nonperturbativeestimate forDT can easily
be an order of magnitude lower than perturbation theory, bringing it in the right ballpark to explain
thev2 data.

Since dimensionless ratios of various quantities are known to scale nicely between quenched
and full QCD if plotted as function ofT/Tc, one can, more optimistically, hope that our results,
as plotted in Fig. 2, will be even quantitatively close to the full QCD values. In this spirit, in Fig.
2 b) we also compare the lattice results with the experimental data. The lattice results seem to be
a little above the best range for description of the PHENIX data [4] using theLangevin approach
[2], though reasonably close within our large systematics. Interestingly, our lattice results seem to
show very little temperature dependence in the temperature regime studied here.

As mentioned in Sec. 1, the heavy quark diffusion coefficient has also been calculated in a
very different theory, theN = 4 supersymmetric Yang-Mills theory with the number of colors,
Nc → ∞, at large ’t Hooft couplingλtH = g2Nc, using AdS/CFT correspondence [8]. Of course,
this theory is very different from QCD in many respects. Moreover, it crucially exploits symmetries
which QCD does not have. However, to get a feel for what kind of values ofD such a theory would
predict for parameters relevant for QCD at∼ 1.5Tc, we naively setNc = 3 andαS = 0.23 in the
results of Ref. [8]. This givesDT ≃ 0.2 (Fig. 2 b), which is lower than, but in the same ballpark as
our estimate.
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