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1. Introduction

The charm and bottom quarks play a very important role as probes of tieimereated in
relativistic heavy ion collision experiments. Since the masses of both thedesgua considerably
larger than the temperatures estimated to have been reached in RHIC aimlled€, one expects
these quarks to be produced largely in the early state of the collision. Taesfdahe allow us to
look at the medium at its early times. Besides, since the nature of energynibss aollective
behavior of the heavy quarks are different from those of the lightkgua study of the heavy
quark jets and the flow of the heavy hadrons leads to crucial insights intwaiehe medium
interacts.

As collision with a thermal quark does not change the energy of a heark gubstantially,
one would expect the thermalization time of the heavy quark to be large. Sliptie 8ow devel-
ops early, itis reasonable to expect that the elliptic flow will show a massrbhycalg > v2D > v?,
where D and B refer to generic mesons in D (one valence charm) andeBvédaence bottom)
family, andh refers to the light hadrons. Similarly, the nuclear suppression factdseariuitively
expected to be closer to 1 for the heavy-light mes@ils; < RR, < RE 4.

Since the typical energy loss in a hard collision with the thermal particleslisfor a thermal
heavy quark withM > T, p ~ v/MT, it takes a large number of collisions for the heavy quark
to change its momentum bg(1). Therefore, one can picture scattering with thermal quarks as
uncorrelated momentum kicks, and use a Langevin description for the mdtiba beavy quark
in the thermal medium [1, 2]:

B op +ED. (EOEE) = K& B1-1) (1.1)

The momentum diffusion coefficiert, is related to the correlation of the force term:

K = ;/_Zdt S (F(OF(0). (1.2)

Kk has been determined in perturbation theory[2]. The fluctuation-dissipéigmmem relategp
andk [3]:

K
= oM

The heavy quark elliptic flow, anBaa, has been measured in RHIC [4]. While a Langevin
formalism based description, Eq. (1.1), seems to describetttdependence of the heavy quark
flow quite well, the value ok needed to describe the data [4] is much larger than the leading
order (LO) perturbation theory prediction. Recently, the next-to-leadidgr (NLO) calculation
of k has been performed in the static quark limit [5]. While the NLO result is, eagingly,
much larger, the large change between LO and NLO also points to the uilitgliafperturbation
theory in the temperature regime of a few times the transition tempef&tufenon-perturbative
evaluation, if possible, will greatly add to our understanding of the mediuporse to a heavy
quark probe.

Here we report the results of an non-perturbative estimatiox o$ing lattice QCD in the
guenched approximation (i.e., for a gluon plasma). In the next section theeothe methodol-

Npb (1.3)
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ogy, and in the following section we discuss the results. A more detailed disaysncluding
examination of various systematic errors, can be found in Ref. [6].

2. Calculational Details:

The calculation of the heavy quark momentum diffusion coefficienis a nontrivial problem
for lattice QCD. On the lattice, one only calculates the Euclidean-time Matsubaedators, while
K, and other transport coefficients, are directly connected to the real-¢italed correlators of
suitable currents [7]. An analytical continuation of the Matsubara caarda real time is required
to extractk from it. Such a continuation of numerical data is very difficult (see [7]daecent
review). On top of thatk is related to the width of a narrow peak in the spectral function of the
qguark number current, making it very difficult to extract it reliably.

A strategy of extracting for an infinitely heavy (“static”) quark has been formulated in Ref.
[8, 9] which alleviates this second problem somewhat. In the static limit, the gatipa of heavy
quarks is replaced by Wilson lines, and the correlator of Eq. (1.2) esxiacthe evaluation of re-
tarded correlator of electric fields connected by Wilson lines [8]. Thisetatior can be analytically
continued to Euclidean time [9]. The lattice discretization of the Euclideanlatwrdeads to

3

GLat - _ =
£ (T) 3L 2

<Real tr [u (B,7) E(1,0) U(1,0) Ei(o,a)] > (2.1)
whereU (11, 2), the timelike gauge connection between po{ts1) and(X, 12), is the phase factor
associated with the evolution of an infinitely heavy quark in imaginary tigeér,X) is the color
electric field at pointX, T) andL = trU (j3,0) is the Polyakov loop.

In order to calculat&:? (1), we use the discretization of the electric field [9]

E(XT) = Ui(%,T) Ug(R+1,T) — Ug(X,T) Ui (X+4) (2.2)

which has good ultraviolet properties. We calculaB&'(1) on a set of SU(3) pure gauge lattices
in the temperature range-12T,. It is imperative to use sufficiently fine lattice spacingsso that
we get a large number of pointhl;, in the T direction. We could reliably extraet only from
lattices withN; = 20 or more. The different lattices for which we will be quoting estimates of
are shown in Table 1.

B N T/Tc | #sublattices # sublattice updates
6.76 20 1.04 5 4000

6.80 20 1.09 5 3000
690 20 1.24 5 2000
7192 24 1.50 4 2000
7.255 20 1.96 5 2000

Table 1: List of lattices which were used to calculatefrom Gg (7). Also given are the parameters used
for multilevel update: the number of sublattices thdirection was divided in, and the number of sublattice
averagings before a full lattice update.
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A precise calculation 06GE2(1) on lattices with such larghl; is known to be very difficult
with a naive updating algorithm. We adapted the multilevel algorithm [10], whiak devised
precisely for such problems, to calculate Eqg. (2.1). The lattice is dividedsewueral sublattices.
The expectation value of the correlation functions are first calculatecchn ®éblattice by averag-
ing over a large number of sweeps in that sublattice while keeping the bgufiied. A single
measurement is obtained by multiplying the intermediate expectation values apiigp The
number of sublattices and the number of sublattice averagings were turibd f@rious sets, so as
to get correlators with a few per cent level accuracy. The parametedsfar the lattices in Table 1
are also shown in the table. The use of the multilevel algorithm turned out tosodutely essen-
tial for our calculation: for large, it was up toc’(10%) times more efficient than a naive updating
algorithm. For details about implementation of the algorithm, and its performage&ef. [6].

Before extracting, we need to conveB?!(1) to the physical correlator of the electric field,

Ge (1) = Z(a)Gg™(1) (2.3)

whereZ(a) = Z2 is the lattice spacing dependent renormalization factor for the electric field co
relator. We use the tree-level tadpole factorZ¢a) [11]. A nonperturbative evaluation @(a) is
planned for the future.

3. Reaults:

Standard fluctuation-dissipation relations [3] connect the momentum diffesiefficient k,
to the low-w behavior of the spectral function:

ce(m) = [ % pe °°S”;’f,fh‘;j/ 2T) (3.1)
. 2T
K = J!Toap(w). (3.2)

The nontrivial part of the calculation is to extrgmtw) from Gg (7). In this work we assumed
a functional form forp(w), so that calculation gp(w) andk become a fitting problem. We use
the simple fit form
plw) = %w O(A — w) + ba®, (3.3)

where the first term in the r.h.s. of Eq. (3.3) is the langiffusion part, and\ is an infrared cutoff.
As elaborated later, we fixk = 3T for our central results and fit far, b. For the fit,x? minimization
was carried out with the full covariance matrix included in the definitiony®f We typically
obtained acceptable fits to the correlatorsifarin the ranggN: /4,N; /2], with x2/d.o.f ~ 1. At
shorter distances, lattice artifacts start contributing and the simple form. ¢BE) does not work
well. Also using the leading order lattice correlator instead of the continuam dad not improve
the quality of the fit. We, therefore, restrict ourselves to the long distaautepthe correlator.

In order to get a feel for the contribution of the diffusive part of thecal function to the
correlator, in Fig. 1 a) we show the correlators reconstructed frorardiit parts op(w) sepa-
rately. In this figure we take thid; = 24, 1.5T; data set, and use the best fit form of Eq. (3.3) (for
A = 3T). The contributions to the total correlation function from @@ part of p(w) and that
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Figure 1. (a) Gg(1) and the correlator reconstructed from the diffusive pafE), shown normalized to
that reconstructed from the leading order part (LOC), affl (8 = 7.192); see text. (b) The contribution of
the diffusive part, normalized by the leading order parthatdifferent temperatures in Table 1.

from the diffusive part are calculated separately using Eqg. (3.1).dfiglire these two parts are
referred to as LOC and DIFF, respectively, and the total correlatbbdiRF are shown normalized
by LOC. While the correlator is dominated by the contribution fromthg term, the diffusion
term has a substantial contribution near the center of the lattice. In Fig. tajtributes~ 17 %
attT =0.5.

In Fig. 1 b) we show the ratio of the diffusive and the leading order pétteeacorrelator with
varying T at the different temperatures studied in Table 1. Here we show thbdnds and not the
best fit values. At all temperatures, except the one at the highest t&imerthe diffusive part is
seen to reach about 5 % level by ~ 0.3. Note that the accuracy of our correlator is better than
this. Also no significant trend of temperature dependence is seen in thig, figdicating the lack
of a strong temperature dependence drfi this temperature range.

The value of the momentum diffusion coefficiemt, obtained from the analysis outlined
above, is shown in Fig. 2 a). The central error bar corresponds tputedy statistical error,
obtained from a Jackknife analysis. The larger error bar corrésoruncertainties due to various
systematics:

e As mentioned above, for the central value shown in the figure, we havwk se3T. In
order to look for the dependence of the result on this choice, we haiezlvain the range
[2T,0). A systematic error band which envelops the central values of the fits wiginga\
is introduced.

e The fit form, Eq. (3.3), is a simple model, taking into account the leading @elturbative
behavior and the fact that at smab, p(w) O w. In order to test the dependence of the
extracted value ok on Eq. (3.3) we also use an alternate form for the infrared paot @f:

po(w) = K tanh% O(w—A) + bw?. (3.4)

This form is motivated by classical lattice gauge theory [12]. The difiezdmetweerk
obtained from uses of Eq. (3.3) and Eq. (3.4) is also included in the sytitesnar.
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Figure 2. (a) k/T3 extracted fromGg (1), as explained in the text, at various temperatures in thenglu
plasma. (b) The diffusion coefficierd, obtained fromk using Eq. (3.5). Also shown are the LO perturba-
tion theory estimate [2] and a different lattice estimate][both for gluon plasma. The experimental value
guoted by PHENIX, and an estimate from thé = 4 supersymmetric Yang-Mills theory are also shown.

e For the central values in Fig. 2, we have used the ramgeto N;/2, wherety, is the
smallestt for which we got a goog(®. We looked for the stability of the fit values for
variation oftmin. In all sets except one, we could get stable fits, with go®tbr Tyin > N /4.

For the set at 1.98., where the fit value was not so stable, we included the variation of the
fit value into our systematic error estimation.

A detailed discussion of the sizes of the various systematics can be fourad. if6R Within
the small variation oET our resources permitted, we did not find a finite volume dependence above
our other errors fot. T > 2.

The value ofk /T2 at 1.5T,, shown in Fig. 2 a), agrees within errors with a similar calculation
by Francis et al. [13], while an earlier calculation [14] found smaller \&lltes also an order-of-
magnitude larger than the LO perturbation theory value that can be extfemtedRef. [2].

The experimental results for heavy quark diffusion are usually pteden terms of the dif-
fusion coefficienD, which controls diffusion of the heavy quark in position space. The BHimste
relation,

T 2T

" Mnp Kk
connectd with k. D obtained from Eqg. (3.5) and Fig. 2 a) is shown in Fig. 2 b). The leading
order perturbation theory value [2] is also shown there.

A more direct approach to calculatifyfrom lattice QCD would be to look at the correlation
function of the heavy quark number curre@y.Q. A calculation ofD for the gluon plasma using
such an approach has been presented in Ref. [15]. Their resulidsarshown in Fig. 2 b),
where we have added there statistical and systematic errors in quadrahg@eesults are even
further from the perturbation theory estimate and systematically lower tharesuits, although
consistent within the large error bars.

Our results are for a gluon plasma, so a comparison with the experimenti$ {d$ requires
due caution. At the least, a comparison of the results in Fig. 2 with the petitwgrivasults for
guenched QCD gives us an indication of how much the nonperturbasuisean change from

(3.5)
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the perturbative results in the deconfined plasma at moderate temperattifesEven then, the
results are most encouraging since they indicate that the nonperturbstiivate foDT can easily
be an order of magnitude lower than perturbation theory, bringing it in tihe Ioigjipark to explain
thev, data.

Since dimensionless ratios of various quantities are known to scale nicelgdretyjuenched

and full QCD if plotted as function of /T;, one can, more optimistically, hope that our results,
as plotted in Fig. 2, will be even quantitatively close to the full QCD values. iggpirit, in Fig.
2 b) we also compare the lattice results with the experimental data. The lattitts se=sam to be
a little above the best range for description of the PHENIX data [4] using.dingevin approach
[2], though reasonably close within our large systematics. Interestinglyatiice results seem to
show very little temperature dependence in the temperature regime studied here

As mentioned in Sec. 1, the heavy quark diffusion coefficient has also t&lculated in a
very different theory, the4” = 4 supersymmetric Yang-Mills theory with the number of colors,
Ne — oo, at large 't Hooft coupling\iy = g°Nc, using AdS/CFT correspondence [8]. Of course,
this theory is very different from QCD in many respects. MoreoverLitially exploits symmetries
which QCD does not have. However, to get a feel for what kind ofastfD such a theory would
predict for parameters relevant for QCD~atl.5T;, we naively selN; = 3 andas = 0.23 in the
results of Ref. [8]. This giveBT ~ 0.2 (Fig. 2 b), which is lower than, but in the same ballpark as
our estimate.
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